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MANY-ONE DEGREES OF THE PREDICATES Ha{x)

YlANNIS N . MOSCHOVAKIS

Spector proved in his Ph. D. Thesis that if \a\ = \b\

(α, b e 0), then Ha(x) and Hb(x) have the same degree of un-

solvability; Davis had already shown that if | a \ — \ b \ < ω2,

then Ha(x) and Hb(x) are in fact recursively isomorphie, i.e.,

( 1 ) Ha(x) EE Hb(f(x)) ,

where f(x) is a recursive permutation.
In this note we prove that if | a \ = \ b \ = f, then Ha(x)

and Hb(x) need not have the same many-one degree, unless
ξ = 0 or is of the form η + 1 or η + ω; if ξ φ 0 is not of the
form r] + 1 or η + ω, then the partial ordering of the many-one
degrees of the predicates Ha(x) with | a \ — ξ contains well-
ordered chains of length ωx as well as incomparable elements.
The proof rests on a combinatorial result which relates the
many-one degree of Ha'(x) (af = 3.5α e 0) to the rate with which
the sequence of ordinals | an I approaches | ar \.

Summary of results* We denote the relations of many-one and
one-one reducibility by g m and rg .̂ By a result of My hill [5], if
P(x) ^iQ(x) and Q(x)^1P(x)i then P(x) and Q(x) are recursively
isomorphie.

Let a! — 3.5α and b' — 3.5& be names in 0 of the same limit ordinal
I a I = I V I = ί. We say that α' is recursively majorized by V and
write α' •< δ', if there is a recursive function f(n) such that for all n,

( 2 ) \an\ g | 6 / U ) | .

(Here an a {a}(n0); in dealing with constructive ordinals and hyper-
arithmetic predicates we use without apologies and sometimes without
reference the notations of Kleene's [2] and [3].) If a! < V and V < α',
α' and b' are equivalent, a' — δ'; if neither af <V, nor V < a', af and
V are incomparable, a'\ δ\ Notations such as α' ς£ δ' are self-explanatory.

THEOREM 1. Let α' = 3.5α e O, V = 3.56 e O, | a'\ = | δ' | = ζ.

if Ha,{x) ^ Hh,(x) if and only if af < δ\

THEOREM 2. Ifζ is of the form η + 1 or η + ω and | a \ — \ b \ — ξ f

then Ha(x) and Hh(x) are recursively isomorphie

For each constructive ordinal ζ, let jδf (f) be the partial ordering
of the many-one degrees of the predicates Ha,(x) with | a'\ = ζ.
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THEOREM 3. // ζ Φ 0 is not of the form η + 1 or η + ω, then
J^{ξ) contains well-ordered chains of length ωλ.

THEOREM 4. If ξ Φ Q is not of the form η + 1 or rj + ω, then
Jίf(ζ) contains incomparable elements.

2. Proof of Theorem !•

LEMMA 1. (Kleeneys Lemma 3 in [2]). There is a partial re-
cursive function σ^a, 6, x), such that

( 3 ) if a Sob , then Ha(x) = H^σfa, 6, x)) .

Let P\x) denote the jump of the predicate P(x),

(4) P\x)= (Ey)Tξ(x,x,y).

LEMMA 2. (a) There is a primitive recursive σ2(e, x) such that
if Q(%) is recursive in P(x) with Gδdel number e, then

( 5 ) Q(x) = P'(σ2{e, x)) .

(b) There is a primitive recursive σz(e) such that

( 6) if t — σz(e) and {e}(t) is defined ,

then P'(t) =£ P({e}(t)) .

(Both of these facts are implicit in Section 1,4 of [4] and the
references given there to [1] and [6].)

LEMMA 3. There is a partial recursive <74(α, 6, c, x) such that for
α, 6, c in O,

( 7 ) if | α | ^ | 6 | and b <oc , then Ha(x) = Hc(σ,(ay b, c, x)) .

Proof. By Spector's Uniqueness Theorem in [7], if \a\^\b\r

then Ha(x) is recursive in Hb(x) with Godel number τ(a, b) (τ recursive).
Since b <oc implies 2δ ^oc, Lemma 1 together with Lemma 2(a) imply
that

Ha(x) = H2b(σ2(τ(a, b), x)) = ϋc(σ3(2% c, σ2(τ(a, b), x)))

and we can define σ4 as the argument of Hc in this equivalence.

LEMMA 4β There is a partial recursive σ(a, 6, e), sucfe ίfeαέ
a <ob, then σ(a, 6, β) is defined and
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( 8) if t = σ{a, b, e) and {e}(t) is defined,

then Hb(t) * Ha({e}(t)) .

Proof is by induction on be O for fixed aeO and the recursion
theorem, utilizing Lemma 2 (b).

Case 1 . 6 = 2α. Set σ(a, 6, e) = σ3(e).
Case 2. b = 2C and c =£ α. In this case, if a <ab we must have

a < 0 c and the Ind. Hyp. applies to a and c. P u t

{ 9 ) y - σ(a, c, Ax{e}{σ1{c, 6, »))) ,

and

(10) σ(α, δ, e) ~ ^ ( c , δ, ?/) .

(For a partial recursive f(xu •••,#*, ^/), Ayf(xu , α;Λ, i/) is a primitive
recursive function of «1} •••,#« and a Godel number of / such t h a t

{Λyf{xu ---,xn, y)}(y) - f(xlf , xn, y)

see [1], Section 65.)
Since c <0 6, cr^c, 6, x) is totally defined; since a <oc, the induction

hypothesis implies that y is defined, hence σ(a, b, e) is defined. We
now derive a contradiction from the assumption

(11) for t = σ(α, 6, e), {e}(t) is defined and

Hb(t) = Hβ({β}(t)) .

Since

JEΓβ(») ^ f ^ M c , δ, »)) = Hb(t) ,

we have

H.(y) = H.({β}(ί))

but

{e}(t) ^ {eK^c, 6, »)) ~ {Λx{β}(σlίc, b, x

hence

Hc(y) = flβ({^{β}(σ1(c, 6,

which by induction hypothesis is false if y is given by (9).
Case 3. b = 3.5\ In this case a<ob implies α ^ o ^ ( α , 0 ) , where

^(α, 2J) is partial recursive ([2], Lemma 2). Now the definition and
proof of Case 2 apply if we substitute c(a, z) for c throughout.

The proof is completed by securing via the recursion theorem a
partial recursive function σ(a, 6, e) such that
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σ(a, b,e)~ {

σ,(e) if b = 2" ,

σ.iφ),, b, σ(a, (δ)0, Jx{e}(σ1((δ)0, b, x))))

if b = 2 ( δ \ (6)0 Φ a ,

σάia, (6)0, 6, σ(a, c(a, (6)s), Λ ί φ K c ^ α , (δ),), 6, «))))

if b = 3.

,0 otherwise .

LEMMA 5. Let a' = 3.5% 6' = 3.5* e O, | o ' | = | δ'l If HΛ^) Sm

Ht,(x), then Ha.(x) ^ Ht,{x).

Proof. Suppose that Ha,(x) = Hb,(f(x)), with f(x) general recursive,,
possibly many-one. Put

where

g(x) = 2!I3" ,

u = 2'3""»» , v = σx(b{MH, bu, (fix)),)

and σx is the partial recursive function of Lemma 1. It is clear that
g{x) is general recursive and one-one. To complete the proof we compute:

Hv{g(x)) = HtJv) = Hbu(σι(b{M)B, K, (f(x))d)

),) = Hb,(f(x)) = ίfα,(x) .

Proof of Theorem 1. First assume that a! <h\ i.e., for some
general recursive f(n) we have | αΛ | ^ |&/(W)I, all 7̂ . Since, for each
Wf δ/(W) <o&/(W)+i, L e m m a 3 yields

Han(x) = Hbf{n)+1(σ4(an, bf{n), bf{n)+ί, x)) .

Hence

with

u(x) — f((xQ)) + 1 ,

U{JU) O 4 ^ α ( ί t . ) o ? ί / / ( ( a ; ) 0 ) , O / ( ( x ) 0 ) f ! , V ^ j l / ,

which implies Ha,(x) gLmHb,(x); by Lemma 5 this is equivalent to

To prove the converse assume that for all x

(12) Ha.(x) = Hb,({e}(x)) ,

with {e}(x) general recursive. For fixed n we compute:



MANY-ONE DEGREES OF THE PREDICATES Ha(x) 333

where

(14) x0 = ({β}(2 +'.3 ))0 ,

(15) x1 = ({e}(2»+2 3a!))1.

Now assume that for a fixed x

this implies that for each y

(17) Hφ) = Han+1(σt(b.t, a., an+u y)) ,

which for y — x± yields

{18) Hanj%) Ξ HanJσt(b.Q, an, an+1, x,)) .

Equivalence (18) however is impossible if

(19) x = σ(an+u an+2, Λxσjp^, any an+ί, x,))

by Lemma 4, hence for this x the negation of (16) must be true. Thus
to prove a! < V it is enough to set

(20) f{n) - x0 ,

where x is given by (19) and x0 by (14).

3. Proof of Theorem 2. It is implicit in [4], Section 1.4, that
if P(x) is recursive in Q(x), then P'(x) ^Q\x). Thus if \a\ = | δ | =
77 + I, Spector's Uniqueness Theorem implies that Ha(x) and Hh(x) are
one-one reducible to each other and hence recursively isomorphic. The
case I α' | = | δ' | = η + o) is settled by the following Lemma in view of
Theorem 1.

LEMMA 6. If \ a' \ = | b'\ = η + ω, then a' < b\

Proof. It is easy to define primitive recursive functions L(x) and
N(x) so that for xeO,

(21) x = L(x)+0N(x),

where L(x) — 1 or | L(x) \ is a limit ordinal and | N(x) \ < ω (with these
requirements L(x) and N(x) are uniquely determined on members of 0).

Let α° and 6° be the uniquely determined elements of 0 such that

(22) α ° < o α ' , \ao\ = η; 6 ° < o δ ' , 16°| = ? .
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Set

(23) f(n) = μy\b0 + 0 N(an) ^ by] .

That f(n) is totally defined follows from the fact that if z is any
ordinal notation for an integer (in particular if z — N(an)), then
b° +0 z <0 6' and hence there is a y so that 6; + 0 z 1koby. That fin)
is recursive follows from the fact that ^0 is recursive on the < 0 -
predecesors of V (see [3], Section 21.).

If I an I <Ξ 57, then | αw | <Ξ | &/(Λ) |, since for each n, \ bf[n) \^η. If
\an\>η, then L(αΛ) = α°, hence | α n\ = | α° + 0 N(an) | = | α° | + | N(αΛ) | =

+ I JV(αΛ) I = i 6° + 0 iV(αΛ) | ^ | bfin) |, which completes the proof.

4* Proof of Theorem 3 for special ordinals* Call an ordinal
ς special if ξ > ω and whenever 07, ?/ < ς, then η + 7?' < 5.ς

LEMMA 7. There is a primitive recursive p^a') such that if
o! eO and \a'\ is special, then ρ,(af) e 0, | pjji') \ — \ af \ and a' ^ Pι{af).

Proof. Define f(n, t) by the recursion

f(n, 0) ~ an

(24) (2 if Tx{n, n, t + 1)
f(n, t + i)~\ ** :

(α { w } ( Λ ) otherwise .
It is clear that if α' — 3.5° e 0, then /(n, ί) is general recursive and
its range is a subset of 0. Moreover:

/o^ ^ 1 ̂  ^ - fl αΛ I + ω if W(n) is not defined ,

«=o (i α Λ I + I a[nHn) I + ω if {w}(^) is d e f i n e d .

Put

(26)

Since f is special, for each n, ξn < c; since for each nf \ an \ < f%, {ίu}
is a fundamental sequence converging to ς.

By an elementary construction one can define a primitive recursive
ρ{a') such that if a' = 3.5α e 0, then p(a') = V = 3.56 e 0 and for each rc,

I &• I = f . .
Since, for each n, \ an \ < Σt \ f(n, t) \ < ξn, it is trivial that af < b\

To show that the converse is impossible assume that for all n \ bn —
ξn ^ I a{m}(n) \) this is absurd for n — m, since
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ξm = ξm_x + Σt I / ( m , t) I = ίm_x + I α m I + I α { w } ( m ) | + ω > | α { w } ( w ) | .

This lemma already shows that for each a! with | a'\ = ω2 there
is a &', I 6' I = of such that the many-one degree of Hh,(x) is strictly
greater than the many-one degree of Ha,(x).

LEMMA 8. Let a! — 3.5α e 0, | a'\ be special. There is a primitive
recursive p2(e) such that if for each t, {e}(t)eθ and \{e}(t)\ = | α ' | ,
then p2(e) e 0, | pt(e) | = | α' | and for each t, {e}(t) < p2(e).

Proof. If e satisfies the hypothesis, then for each ί, {e}(t) = 3.5w(t)

and |m(ί) 0 | , |m(ί)i |, •••, is a fundamental sequence converging to | α ' | .
Put

/(O) = m(0)0

/ ( ί +c

w h e r e t h e associat ion is t o t h e left; s ince by [ 3 ] , X V I I if xeO a n d

y > o l , t h e n x <0% +oV, w e h a v e for e a c h ί,

f(t)<of(t + l).

Since \a'\ is special, for each ί, |/(ί) | < | α' | ; since for each t \ m(0)t \ S

\f(t)\, the sequence | /(0) | , | /(1) | , •••, is fundamental and converges

to | α ' | .
It is easy to construct a primitive recursive p2(e) such that if the

hypotheses are fulfilled then p2(e) — 3.5δ and for each t,bt = /(ί) . Now
|02(β) G 0, I |02(β) I = I a' I and for each t, n

t I S \f(n + t) \ - | bn+t \ ,

which proves that {e}(t) < 3.5\

LEMMA 9. Let a! = 3.5α e 0, | o! \ be special. There is a primitive
recursive p(x) such that

( i ) !θ(l) = θ '
(ii) if xeO, then p(x) e 0 and | p(x) \ — \ a'\,
(iii) if x<oy, then p(x) £ p(y).

Proof. Using the recursion theorem we obtain a p(x) satisfying:

|0(l) = a' ,

p(2*) = Pl{p(x)) ,

<o(S.5 ) - ρlAtp{zt)) .

Proof that p(x) is the required function is by induction on xeO. To
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treat the case x — 3.5*—here the induction hypothesis is that for each
t, p(zt) e 0, I p(zt) I = i o! | and ρ{zt) £ p(zt+1). Lemma 8 assures us that
for each t p(zt) < p(3.5z); if for some t p(3.5z) < p(zt), the transitivity
of -< would imply that p(zt+1) < p(zt), violating the induction hypothesis.

Theorem 3 for special ordinals follows from Lemma 9 by letting A
be a subset of 0, linearly ordered under <0 and containing a notation
for each constructive ordinal and considering p(A).

5* Proof of Theorem 4 for special ordinals* Let ξ — | 3.5α |
be a special ordinal. In the proof of Lemma 6 we constructed a
notation bf = Z.5b of f determined by a fundamental sequence {ξn} which
was in turn defined from a double sequence f(n, t) by equations (26).
Here we will define two such double sequences, f(n, t) and g(n, t), such
that the notations br — 3.56 and & — 3.5C for sequences {ξn} and {ζj
determined as in equations (26) from f(n, t) and g(n, t) respectively
will be incomparable.

We define the functions f(n, t) and g(n, t) in stages; at stage 2s
we will define f(n, t) for n9t^s and at stage 2s + 1 we will define
g(n, t) for n,t ^ s. At each stage s we will also define finite sets F,
and Gs of pairs <(m, ky of integers which will determine partial functions
—i.e., if ζm, kye F8 and ζm,kfyeF8, then k — kr, and similarly for
Gs. We give the definitions informally, but it is a routine matter to
derive Herbrand-Gδdel-Kleene equations for / and g from our instructions.

Basis 0. s = 0. Put /(0, 0) = αo; Fo = {<0, 0>}; Go = {<0, 0>}.

Basis 1. s = l . Putflr(0,0) = a0;F1=F0U{<l,l>};Gi=GoU{<l,l>}.
Even Induction Step 2s + 2.

Case 1. For every pair ζm, kyeF2s+1 and for every y 5g 2s + 1,
fi(m, k, y). In this case set:

(27)

f(n, s + 1) = 2 (n ̂  s) ,

f(s + 1, 0) = as+1 ,

/ ( * + 1, ί) = 2 (1 ̂  ί ^ 8 + 1) .

Put F28+2 = F2s+1 U {<(2s + 2, &')>} where A' is the smallest integer larger
than all the second members of the pairs in F2s+1; put G2s+2 =
G2s+1 (J {<2s + 2, &'>} where kr is the smallest integer larger than all the
second members of the pairs in G2s+1.

Case 2. Otherwise. Let m be the smallest integer such that some
ifc, ζm, kyeF2s+1 and for some y ^ 2s + 1, 2\(w, k, y); let & and y be
the corresponding (unique) k and T/.

Subcase 2a. C7(τ/) = 2; ̂  s.
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For any stage (in particular 2s + 1) and any x S s (in particular
z) consider the array of values of g(u, v) with u ^ x and v ^ s. Put

(9(0, 0) +o0(0,1) +o ••• +o#(0, s) +oωo

(28) Jβ(x,s) =•{+<,---

•«
+ 0 # , 0) +0g(x, 1) +o +og{xy s) +0o)Q,

where ω0 is some fixed ordinal notation of ω and the association in the
sum is to the left. It is clear that if all the values of g(u, v) for
u S x, v ^ x are elements of 0, then so is Jg(x, s). Put

(29)

f(n, s + 1) - 2 (n^s,nΦk) ,

f(k, s + 1) - Jg(z, s) ,

/(8 + 1, 0) - as+1 ,

/(* + 1, ί) = 2 (1 ̂  ί ^ s + 1) ,

Put F2s+2 = F2s+1 - {<m, k>} U {<2s + 2, jfc% where A;' is the smallest
integer larger than all the second members of the pairs in -F28+i.

To define G2s+2, first remove from G2s+i all pairs <(m', kry with m'^m;
then introduce one pair ζm', kry for each m', m ̂  m' ̂  2s + 2 in some
systematic way, so that if m' Φ m", then A;' ̂  A;", and all the second
members of the new pairs are larger than all the second members of
the pairs in G2s+1 and also larger than z.

Subcase 2b. U(y) — z > s. Give exactly the same definitions as
in Subcase 2a, except for the second equation of (29) for which we
substitute

(30) f(k,s + l) = Ja(8,8) + o α s + 1 + o ω o + o α s + 2 + o ω o + o + 0 α 2 +oo)o.

(Remark: the last conditions on the definition of G2s+2, that all new
second members be larger than z, will be utilized for this subcase.)

Odd Induction Step 2s + 3. The definitions are symmetric to those
in the Even Ind. Step, except for the following differences:

( i ) In Subcase 2a we put Jg(z, s + 1) where complete symmetry
would suggest Jf(z, s).

(ii) In Subcase 2b we put g(k, s + 1) = Jf(s + 1, s + 1) +0ω0 +0

(iii) In Case 2 we define F2s+3 by removing from and reintroducing
in F2s+2 all pairs with first members m' > m (rather than mr ^ m).

It is easy to prove by induction on s that for all n, t f(n, ί),
g ( n f t ) e θ a n d | f ( n , t)\<ξ, \ g ( n , t)\<ξ. P u t
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(31)

L-n = L + Σ I / O + 1,*) i , ζ^+i = ζΛ + Σ I ΰ{n + i,t) \ .
ί=0 ί=0

By a routine construction numbers br — 3.5δ and cr = 3.5C can be
defined such that b' eθ, c' eO and for all n,

We will prove that | V \ — \ & \ = ξ and that V and cr are incomparable.
Say that m F-joins k at stage s if <m, kyeFs but <m, ί ; ) ^ ^ ;

m F-leaves k at stage s if <m, ky$Fs but ζm,kyeF8_lm (Similarly
with G in place of .F throughout.)

Clearly at each stage s, some m F-joins some &. Using this we
can show by an induction on s that if m i^-joins k at stage s, then
& is larger than all the second members of all the pairs in Ft, with
t < s. This in turn implies that for a fixed k and in the course of the
whole computation there is at most one stage s at which some m F-
joins k, and consequently at most one stage s at which some m F-
leaves k. Hence for each k there is a t0 such that for t ^ ί0, f(k, t) ~
2, since only if t = 0 or some m .P-leaves A; at stage t is /(&, t) Φ 2,
and we have

(32) Σ I / ( M ) I = l/(*,«o)l + α>< f ,
ί = 0

since f is special. Now a simple induction on n shows that for each
n, ςn < ξ, and since clearly | αw | < fΛ, we have proved that lim ζn =

I v\ = f.
(Exactly the same considerations for r̂ prove that | c ' | = f.)
We prove by induction the following proposition depending on m:

m jP-joins only finitely many fe's, and G-joins only finitely many k's.
If m = 0 this is trivial since {0}(x) is the totally undefined function.
If m JP7-joins k at stage s either m — s or there is an m' < m such

that m' G-leaves some k' at stage s; by ind. hyp. each m' < m G-joins
some &' only for finitely many x's, hence each m' < m G-leaves some
k! only for finitely many s's, which completes the proof of half the
induction step.

If m G-joins k at stage s, either m = s or there is an mr ^ m
such that m' i^-leaves some kr at stage s; we now use the ind. hyp.
and the first half of the ind. step which has been already proved to
see that this can only happen finitely often.

For a fixed m, let k be the largest integer such that m F-joins k
and assume that {m}(k) — z is defined. An easy induction on m shows
that there must be some stage 2s + 2 where Case 2 applies with this
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m and k, and z = U(y). We prove that ζk > ζz.

Subcase 2a. Since f(h, s + 1) — J,(z, s), ξk > | J,(z, s) |. We assert
that if u g z, v > s, then #(M, v) = 2. Because if #(%, v) ^ 2, then
some m' G-leaves u at stage 2v + 1 > 2s + 2; since at stage 2s + 2
each m" ^ m G-joins some k" > 2, we must have m' < m; but this
implies that m i^-joins some k! > k, contrary to hyp. that k is the
largest integer that m F-joins.

Now the above implies that ζz — \ Jg(z, s) | < ξk.

Subcase 2b. Now we can prove that if u ^ s and v>s or s<u^z
and v > 0, then #(^, v) = 2, by exactly the same argument. Hence
ζz= \f(k,s + l)\<ξk.

For a fixed m let k be the largest integer such that m G-joins A:
and assume that {m}(k) ~ z is defined. As before there must be some
stage 2s + 3 where case 2 applies for this m and this k. We give one
of the cases of the proof that ζk > ξβm

Subcase 2a. We assert that if u 3* z, v > s + 1, then f(u, v) = 2.
Because if /(%, v) Φ z, then some m' F-leaves ^ at stage 2v > 2s + 3;
since at stage 2s + 3 each m" > m F-joins some Λ" > z, we must have
m' S m; but this implies that m G-joins some kf y k, contrary to hyp.
that k is the largest integer that m G-joins.

The above remarks complete the proof that V and c' are incom-
parable. Because if V < c'f then there is an m such that for each k,
\bk\ S I £{»}(*) I, i.e., ξk < ζ { Λ } ( Λ ), which we showed to be false if k is
the largest integer that m jP-joins, and similarly for & < b'.

6* Reduction of the general to the special case* In this section
we prove that if ξ = η + ζ (ζ Φ 0), then £f{£) and «5f(ζ) are similar
and that if ξ is Φθ and not of the form η + 1 or η + ω, then there
is a unique special ordinal ζ such that for some η, ξ — η + ζ.

LEMMA 10. There is a primitive recursive δ(a, b) such that if
a Sob, then §(a, b)eθ and

(33) \a\ + |δ(α,6) | = | δ | .

Proof. We obtain via the recursion theorem a primitive recursive
δ(a, b) satisfying the following conditions:

δ(α, o) = l ,

δ(a, 2b) = 2 {a>b) ,

δ(α, 3.52) = 3.5^ , where for each ί, τ/t ^ δ(α, 2t(β,,)+ί) ,

δ(α, a;) = 0 otherwise
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(recall that c(a, z) is partial recursive and such that if <z<03.5% then

We prove by induction on δe 0 the following statement: if a ^ o δ ,
then δ(a, b)eθ and for each x, if a ^ox <ob, then δ(a, x) <0 δ(a, b).
The following cases arise: (1) δ = α, (2) δ = 2α, (3) δ = 2C and a<oc
and (4) δ = 3.5* and for some t, a ^ozt.

Case 3. By Ind. Hyp. δ(a, c) e 0, hence δ(a, b) = 2δ(α>c) e 0. If
x < o δ , either a; —c or x < o c ; in the first case it is clear that
δ(a,c) < o δ(α, δ), while in the second case the Ind. Hyp. implies that
δ(a, x) <0 δ(a, c), hence δ(a, x) <0 δ(a, δ).

Case 4. Since α< 0 3.5*, c(a, z) is defined and for each t, a <ozi{a,e)+t.
Thus the Ind. Hyp. implies that for each t, yt is defined, yte0 and
yt <oyt+2, hence δ(a, b)eθ. If x <O3.5% then for some t, x <0Zi{a,z)+t,
hence by Ind. Hyp. δ(α, x) <0<?(α, zι{atZ)+t) = ^ < o δ(α, δ).

Equation (33) is proved easily by induction on | δ |, using the
continuity of ordinal addition, e.g.,

I a I + I δ(a, 3.50 I = I α I + Πm t | δ(a, zL{a,z)+t) \
— liπiί (I α I -f-

= I 3.5*] .

This lemma allows us to represent a constructive limit ordinal as
an infinite sum of smaller ordinals,

I 3.5* I = \zo\ + \δ(zo,z1)\ + \δ(zί,z2)\+ . . . .

LEMMA 11. Assume that ξ — rj + ζ, where ζ is a limit ordinal.

Then Jϊf(ξ) and J?f(Q are similar.

Proof. Let u be a fixed notation in 0 for ^. For each a' =
3.5α 6 0 we define by induction

g(O) = u +0^0

flr(w + 1) = g(w) + o δ(α % , an+1) .

A routine construction yields a primitive recursive τ(α') such that if
a' = 3.5α6 0, then τ(α') = 3.5xe 0 and for each n, xn = gr(w). Notice
that by the definition of δ,

(34) I x n I = η + I α» I .

It is clear that if | a'\ = ζ, then | a?'| = l i m ^ I ^ I = 9 + ζ = f
Assume that | δ ' | = ζ and α' •< &', i.e., there is a general recursive
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f(n) such t h a t for each n,\an\^\ bf{n) |. Now if r(δ') = 3.5*,

\xn\ = η+\an\£y+\ δ/(», I = I Vf(n) I ,

hence τ(α') •< τ(V).
Assume that τ(α') -< τ(δ'), i.e., there is a general recursive /(w)

such that for each n, \ xn \ S \ Vnn) | Then ΎJ + | an | ^ 77 + | &/(»> |, i.e.,
I an I ̂  I &/(«) I which proves that α' -< 6'.

We have shown that τ(α') induces a mapping from J5^(ζ) into J*f(ζ)
which is a similarity imbedding. To complete the proof we must show

that this mapping is onto, i.e., that given y\ \ yf \ — ζ, there is an α',
α' | = ζ, such that if τ(α') = x\ then a;' ̂  y'.

If I y f | — ξ y there is a unique v < 0 y
f such that \v\~η, and some

t such that v <oyt. Put

MO) = «(v, ifc) ,
h(n + 1) = Λ(w) +oδ(?/ ί + w, 2/t+w+1)

and choose α' = 3.5α so that for each n, an — h(n). Surely a' eO and
since for each n, η + | an \ = | ̂ t + n |, we have | α' | = I ί m ^ ί <̂^ | = C- If
x' = r(α'), then for each n we have

which implies xr ~ y'y which completes the proof.

LEMMA 12. Let ζ > 0 be given and assume that ξ is not of the
form Ύ] + 1 or r] + ω. Then there is a unique special ordinal ζ such
that for some η, ζ — ΎJ + ζ.

Proof. Let ζ be the smallest nonzero ordinal for which there is
an 7] such that ξ = η 4- ζ. Our assumptions imply that ζ> ω. If ζ
is not special, there exist d, ζ2 < ζ such that d + ζ2 Ξ> ζ. The continuity
of ordinal addition implies that there exist ζu ζ2 < ζ such that d + ζ2 = ζ
(hence ζ2 ̂  0); but this is turn implies that ζ = η + ζ1 + ζ2 with
0 < ζ2 < ζ, which violates the defining condition of ζ.

To prove that ζ is unique assume that ξ = Ύ]ί + ζx = ^2 + ζ2 and
without loss of generality further assume η^^rj^ Then there is a #
such that % + θ =" % which implies η1 + ζ1 = ηx + Θ + ζ2, i.e., d =
^ + ζ2. Now if d is special we must have d = ζ2, which completes
the proof.

7* Open problems* We do not have answers for the following
questions:

1. Is Sf(ζ) for special ζ an upper semi-lattice, a lower semi-lattice
or a lattice?
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2. Does Jίf(ζ) have a minimum for each special f ? It is easy to
show that ^f(ω2) has a minimum; we conjecture that Jϊf(ω*) does not.

3. If ξ and ζ are special and ς Φ ζ, is it possible that .Sf (f) and
Jzf(ζ) are similar? We conjecture that it is not.
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