MANY-ONE DEGREES OF THE PREDICATES $H_{a}(x)$

Yiannis N. Moschovakis

Abstract

Spector proved in his Ph. D. Thesis that if $|a|=|b|$ ($a, b \in O$), then $H_{a}(x)$ and $H_{b}(x)$ have the same degree of unsolvability; Davis had already shown that if $|a|=|b|<\omega^{2}$, then $H_{a}(x)$ and $H_{b}(x)$ are in fact recursively isomorphic, i.e., $$
\begin{equation*} H_{a}(x) \equiv H_{b}(f(x)), \tag{1} \end{equation*}
$$ where $f(x)$ is a recursive permutation. In this note we prove that if $|a|=|b|=\xi$, then $H_{a}(x)$ and $H_{b}(x)$ need not have the same many-one degree, unless $\xi=0$ or is of the form $\eta+1$ or $\eta+\omega$; if $\xi \neq 0$ is not of the form $\eta+1$ or $\eta+\omega$, then the partial ordering of the many-one degrees of the predicates $H_{a}(x)$ with $|a|=\xi$ contains wellordered chains of length ω_{1} as well as incomparable elements. The proof rests on a combinatorial result which relates the many-one degree of $H_{a^{\prime}}(x)\left(a^{\prime}=3.5^{a} \in O\right)$ to the rate with which the sequence of ordinals $\left|a_{n}\right|$ approaches $\left|a^{\prime}\right|$.

Summary of results. We denote the relations of many-one and one-one reducibility by \leqq_{m} and \leqq_{1}. By a result of Myhill [5], if $P(x) \leqq \leqq_{1} Q(x)$ and $Q(x) \leqq_{1} P(x)$, then $P(x)$ and $Q(x)$ are recursively isomorphic.

Let $a^{\prime}=3.5^{a}$ and $b^{\prime}=3.5^{b}$ be names in O of the same limit ordinal $|a|=\left|b^{\prime}\right|=\xi$. We say that a^{\prime} is recursively majorized by b^{\prime} and write $a^{\prime} \prec b^{\prime}$, if there is a recursive function $f(n)$ such that for all n,

$$
\begin{equation*}
\left|\alpha_{n}\right| \leqq\left|b_{f(n)}\right| \tag{2}
\end{equation*}
$$

(Here $a_{n} \simeq\{a\}\left(n_{o}\right)$; in dealing with constructive ordinals and hyperarithmetic predicates we use without apologies and sometimes without reference the notations of Kleene's [2] and [3].) If $a^{\prime} \prec b^{\prime}$ and $b^{\prime} \prec a^{\prime}$, a^{\prime} and b^{\prime} are equivalent, $a^{\prime} \sim b^{\prime}$; if neither $a^{\prime}<b^{\prime}$, nor $b^{\prime}<a^{\prime}, a^{\prime}$ and b^{\prime} are incomparable, $a^{\prime} \mid b^{\prime}$. Notations such as $a^{\prime} \precsim b^{\prime}$ are self-explanatory.

Theorem 1. Let $a^{\prime}=3.5^{a} \in O, b^{\prime}=3.5^{b} \in O,\left|a^{\prime}\right|=\left|b^{\prime}\right|=\xi$. Then $H_{a^{\prime}}(x) \leqq \varliminf_{m} H_{b^{\prime}}(x)$ if and only if $H_{a^{\prime}}(x) \leqq{ }_{1} H_{b^{\prime}}(x)$ if and only if $a^{\prime} \prec b^{\prime}$.

Theorem 2. If ξ is of the form $\eta+1$ or $\eta+\omega$ and $|a|=|b|=\xi$, then $H_{a}(x)$ and $H_{b}(x)$ are recursively isomorphic.

For each constructive ordinal ξ, let $\mathscr{L}(\xi)$ be the partial ordering of the many-one degrees of the predicates $H_{a^{\prime}}(x)$ with $\left|a^{\prime}\right|=\xi$.

Theorem 3. If $\xi \neq 0$ is not of the form $\eta+1$ or $\eta+\omega$, then $\mathscr{L}(\xi)$ contains well-ordered chains of length ω_{1}.

Theorem 4. If $\xi \neq 0$ is not of the form $\eta+1$ or $\eta+\omega$, then $\mathscr{L}(\xi)$ contains incomparable elements.

2. Proof of Theorem 1.

Lemma 1. (Kleene's Lemma 3 in [2]). There is a partial recursive function $\sigma_{1}(a, b, x)$, such that

$$
\begin{equation*}
\text { if } a \leqq o b, \quad \text { then } \quad H_{a}(x) \equiv H_{b}\left(\sigma_{1}(a, b, x)\right) \tag{3}
\end{equation*}
$$

Let $P^{\prime}(x)$ denote the jump of the predicate $P(x)$,

$$
\begin{equation*}
P^{\prime}(x) \equiv(E y) T_{1}^{P}(x, x, y) \tag{4}
\end{equation*}
$$

Lemma 2. (a) There is a primitive recursive $\sigma_{2}(e, x)$ such that if $Q(x)$ is recursive in $P(x)$ with Gödel number e, then

$$
\begin{equation*}
Q(x) \equiv P^{\prime}\left(\sigma_{2}(e, x)\right) \tag{5}
\end{equation*}
$$

(b) There is a primitive recursive $\sigma_{3}(e)$ such that

$$
\begin{gather*}
\text { if } t=\sigma_{3}(e) \text { and }\{e\}(t) \text { is defined, } \tag{6}\\
\text { then } P^{\prime}(t) \not \equiv P(\{e\}(t)) .
\end{gather*}
$$

(Both of these facts are implicit in Section 1.4 of [4] and the references given there to [1] and [6].)

Lemma 3. There is a partial recursive $\sigma_{4}(a, b, c, x)$ such that for a, b, c in O,
(7) if $|a| \leqq|b| \quad$ and $\quad b<_{o} c$, then $H_{a}(x) \equiv H_{c}\left(\sigma_{4}(a, b, c, x)\right)$.

Proof. By Spector's Uniqueness Theorem in [7], if $|\alpha| \leqq|b|$, then $H_{a}(x)$ is recursive in $H_{b}(x)$ with Gödel number $\tau(a, b)$ (τ recursive). Since $b<_{o} c$ implies $2^{b} \leqq_{o} c$, Lemma 1 together with Lemma 2(a) imply that

$$
H_{a}(x) \equiv H_{2^{b}}\left(\sigma_{2}(\tau(a, b), x)\right) \equiv H_{c}\left(\sigma_{1}\left(2^{j}, c, \sigma_{2}(\tau(a, b), x)\right)\right)
$$

and we can define σ_{4} as the argument of H_{c} in this equivalence.
Lemma 4. There is a partial recursive $\sigma(a, b, e)$, such that if $a<0$, then $\sigma(a, b, e)$ is defined and

$$
\begin{gather*}
\text { if } t=\sigma(a, b, e) \text { and }\{e\}(t) \text { is defined, } \tag{8}\\
\text { then } H_{b}(t) \not \equiv H_{a}(\{e\}(t)) .
\end{gather*}
$$

Proof is by induction on $b \in O$ for fixed $a \in O$ and the recursion theorem, utilizing Lemma 2 (b).

Case 1. $b=2^{a} . \quad$ Set $\sigma(a, b, e)=\sigma_{3}(e)$.
Case 2. $b=2^{c}$ and $c \neq a$. In this case, if $a<{ }_{0} b$ we must have $a<_{0} c$ and the Ind. Hyp. applies to a and c. Put

$$
\begin{equation*}
y \simeq \sigma\left(a, c, \Delta x\{e\}\left(\sigma_{1}(c, b, x)\right)\right), \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma(a, b, e) \simeq \sigma_{1}(c, b, y) . \tag{10}
\end{equation*}
$$

(For a partial recursive $f\left(x_{1}, \cdots, x_{n}, y\right), \Delta y f\left(x_{1}, \cdots, x_{n}, y\right)$ is a primitive recursive function of x_{1}, \cdots, x_{n} and a Gödel number of f such that

$$
\left\{A y f\left(x_{1}, \cdots, x_{n}, y\right)\right\}(y) \simeq f\left(x_{1}, \cdots, x_{n}, y\right) ;
$$

see [1], Section 65.)
Since $c<_{0} b, \sigma_{1}(c, b, x)$ is totally defined; since $a<_{0} c$, the induction hypothesis implies that y is defined, hence $\sigma(a, b, e)$ is defined. We now derive a contradiction from the assumption

$$
\begin{gather*}
\text { for } t=\sigma(a, b, e),\{e\}(t) \quad \text { is defined and } \tag{11}\\
H_{b}(t) \equiv H_{a}(\{e\}(t)) .
\end{gather*}
$$

Since

$$
H_{c}(y) \equiv H_{b}\left(\sigma_{1}(c, b, y)\right) \equiv H_{b}(t),
$$

we have

$$
\left.H_{c}(y) \equiv H_{a}(\{ \}\}(t)\right) ;
$$

but

$$
\{e\}(t) \simeq\{e\}\left(\sigma_{1}(c, b, y)\right) \simeq\left\{A x\}\}\left(\sigma_{1}(c, b, x)\right\}(y),\right.
$$

hence

$$
\left.H_{c}(y) \equiv H_{a}\left(\{\Lambda x\{ \}\}\left(\sigma_{1}(c, b, x)\right)\right\}(y)\right)
$$

which by induction hypothesis is false if y is given by (9).
Case 3. $b=3.5^{z}$. In this case $a<_{o} b$ implies $a \leqq_{o} z_{(a, z)}$, where $c(a, z)$ is partial recursive ([2], Lemma 2). Now the definition and proof of Case 2 apply if we substitute $\iota(a, z)$ for c throughout.

The proof is completed by securing via the recursion theorem a partial recursive function $\sigma(a, b, e)$ such that

$$
\sigma(a, b, e) \simeq\left\{\begin{array}{l}
\sigma_{3}(e) \quad \text { if } \quad b=2^{a}, \\
\sigma_{1}\left((b)_{0}, b, \sigma\left(a,(b)_{0}, \Lambda x\{e\}\left(\sigma_{1}\left((b)_{0}, b, x\right)\right)\right)\right) \\
\quad \text { if } \quad b=2^{(b)_{0} 0},(b)_{0} \neq a, \\
\sigma_{1}\left(c\left(a,(b)_{2}\right), b, \sigma\left(a, \iota\left(a,(b)_{2}\right), \Lambda x\{e\}\left(\sigma_{1}\left(e\left(a,(b)_{2}\right), b, x\right)\right)\right)\right) \\
\quad \text { if } \quad b=3.5^{(b)_{2}}, \\
0 \quad \text { otherwise } .
\end{array}\right.
$$

Lemma 5. Let $a^{\prime}=3.5^{a}, b^{\prime}=3.5^{b} \in O,\left|a^{\prime}\right|=\left|b^{\prime}\right|$. If $H_{a^{\prime}}(x) \leqq{ }_{m}$ $H_{b^{\prime}}(x)$, then $H_{a^{\prime}}(x) \leqq{ }_{1} H_{b^{\prime}}(x)$.

Proof. Suppose that $H_{a^{\prime}}(x) \equiv H_{b^{\prime}}(f(x))$, with $f(x)$ general recursive, possibly many-one. Put

$$
g(x)=2^{u} 3^{v}
$$

where

$$
u=2^{x} 3^{(f(x))_{0}}, \quad v=\sigma_{1}\left(b_{(f(x))_{0}}, b_{u},(f(x))_{1}\right)
$$

and σ_{1} is the partial recursive function of Lemma 1. It is clear that $g(x)$ is general recursive and one-one. To complete the proof we compute:

$$
\begin{aligned}
H_{b^{\prime}}(g(x)) & \equiv H_{b_{u}}(v) \equiv H_{b_{u}}\left(\sigma_{1}\left(b_{(f(x))^{\prime}}, b_{u},(f(x))_{1}\right)\right) \\
& \left.\equiv H_{b_{(f(x))_{0}}}(f(x))_{1}\right) \equiv H_{b^{\prime}}(f(x)) \equiv H_{a^{\prime}}(x)
\end{aligned}
$$

Proof of Theorem 1. First assume that $a^{\prime}<b^{\prime}$, i.e., for some general recursive $f(n)$ we have $\left|a_{n}\right| \leqq\left|b_{f(n)}\right|$, all n. Since, for each $n, b_{f(n)}<{ }_{o} b_{f(n)+1}$, Lemma 3 yields

$$
H_{a_{n}}(x) \equiv H_{b_{f(n)+1}}\left(\sigma_{4}\left(a_{n}, b_{f(n)}, b_{f(n)+1}, x\right)\right)
$$

Hence

$$
H_{a^{\prime}}(x) \equiv H_{b^{\prime}}\left(2^{u(x)} \cdot 3^{v(x)}\right)
$$

with

$$
\begin{aligned}
u(x) & =f\left(\left(x_{0}\right)\right)+1 \\
v(x) & =\sigma_{4}\left(a_{(x)^{2}}, b_{f\left((x)_{0}\right)}, b_{f\left((x)_{0}\right)+1},(x)_{1}\right),
\end{aligned}
$$

which implies $H_{a^{\prime}}(x) \leqq \varliminf_{m} H_{b^{\prime}}(x)$; by Lemma 5 this is equivalent to $H_{a^{\prime}}(x) \leqq H_{b^{\prime}}(x)$.

To prove the converse assume that for all x

$$
\begin{equation*}
H_{a^{\prime}}(x) \equiv H_{b^{\prime}}(\{e\}(x)) \tag{12}
\end{equation*}
$$

with $\{e\}(x)$ general recursive. For fixed n we compute:

$$
\begin{align*}
H_{a_{n+2}}(x) & \equiv H_{a^{\prime}}\left(2^{n+2} \cdot 3^{x}\right) \equiv H_{b^{\prime}}\left(\{e\}\left(2^{n+2} \cdot 3^{x}\right)\right) \tag{13}\\
& \equiv H_{b_{x_{0}}}\left(x_{1}\right)
\end{align*}
$$

where

$$
\begin{align*}
& x_{0}=\left(\{e\}\left(2^{n+2} \cdot 3^{x}\right)\right)_{0}, \tag{14}\\
& x_{1}=\left(\{e\}\left(2^{n+2} \cdot 3^{x}\right)\right)_{1} \tag{15}
\end{align*}
$$

Now assume that for a fixed x

$$
\begin{equation*}
\left|b_{x_{0}}\right| \leqq\left|a_{n}\right| ; \tag{16}
\end{equation*}
$$

this implies that for each y

$$
\begin{equation*}
H_{b_{x_{0}}}(y) \equiv H_{a_{n+1}}\left(\sigma_{4}\left(b_{x_{0}}, a_{n}, a_{n+1}, y\right)\right) \tag{17}
\end{equation*}
$$

which for $y=x_{1}$ yields

$$
\begin{equation*}
H_{a_{n+2}}(x) \equiv H_{a_{n+1}}\left(\sigma_{4}\left(b_{x_{0}}, a_{n}, a_{n+1}, x_{1}\right)\right) \tag{18}
\end{equation*}
$$

Equivalence (18) however is impossible if

$$
\begin{equation*}
x=\sigma\left(a_{n+1}, a_{n+2}, \Lambda x \sigma_{4}\left(b_{x_{0}}, a_{n}, a_{n+1}, x_{1}\right)\right) \tag{19}
\end{equation*}
$$

by Lemma 4 , hence for this x the negation of (16) must be true. Thus to prove $a^{\prime} \prec b^{\prime}$ it is enough to set

$$
\begin{equation*}
f(n)=x_{0}, \tag{20}
\end{equation*}
$$

where x is given by (19) and x_{0} by (14).
3. Proof of Theorem 2. It is implicit in [4], Section 1.4, that if $P(x)$ is recursive in $Q(x)$, then $P^{\prime}(x) \leqq{ }_{1} Q^{\prime}(x)$. Thus if $|a|=|b|=$ $\eta+1$, Spector's Uniqueness Theorem implies that $H_{a}(x)$ and $H_{b}(x)$ are one-one reducible to each other and hence recursively isomorphic. The case $\left|a^{\prime}\right|=\left|b^{\prime}\right|=\eta+\omega$ is settled by the following Lemma in view of Theorem 1.

Lemma 6. If $\left|a^{\prime}\right|=\left|b^{\prime}\right|=\eta+\omega$, then $a^{\prime} \prec b^{\prime}$.
Proof. It is easy to define primitive recursive functions $L(x)$ and $N(x)$ so that for $x \in O$,

$$
\begin{equation*}
x=L(x)+{ }_{o} N(x), \tag{21}
\end{equation*}
$$

where $L(x)=1$ or $|L(x)|$ is a limit ordinal and $|N(x)|<\omega$ (with these requirements $L(x)$ and $N(x)$ are uniquely determined on members of O).

Let a^{0} and b^{0} be the uniquely determined elements of O such that

$$
\begin{equation*}
a^{0}<_{0} a^{\prime}, \quad\left|a^{0}\right|=\eta ; \quad b^{0}<_{o} b^{\prime}, \quad\left|b^{0}\right|=\eta . \tag{22}
\end{equation*}
$$

Set

$$
\begin{equation*}
f(n)=\mu y\left[b^{0}+{ }_{o} N\left(a_{n}\right) \leqq \leqq_{0} b_{y}\right] . \tag{23}
\end{equation*}
$$

That $f(n)$ is totally defined follows from the fact that if z is any ordinal notation for an integer (in particular if $z=N\left(a_{n}\right)$), then $b^{0}+{ }_{o} z<{ }_{o} b^{\prime}$ and hence there is a y so that $b^{\prime}+_{o} z \leqq \leqq_{o} b_{y}$. That $f(n)$ is recursive follows from the fact that \leqq_{0} is recursive on the $<_{0^{-}}$ predecesors of b^{\prime} (see [3], Section 21.).

If $\left|a_{n}\right| \leqq \eta$, then $\left|a_{n}\right| \leqq\left|b_{f(n)}\right|$, since for each $n,\left|b_{f(n)}\right| \geqq \eta$. If $\left|a_{n}\right|>\eta$, then $L\left(\alpha_{n}\right)=\alpha^{0}$, hence $\left|a_{n}\right|=\left|\alpha^{0}+{ }_{o} N\left(\alpha_{n}\right)\right|=\left|a^{0}\right|+\left|N\left(\alpha_{n}\right)\right|=$ $\left|b^{0}\right|+\left|N\left(a_{n}\right)\right|=\left|b^{0}+{ }_{o} N\left(a_{n}\right)\right| \leqq\left|b_{f(n)}\right|$, which completes the proof.
4. Proof of Theorem 3 for special ordinals. Call an ordinal ξ special if $\xi>\omega$ and whenever $\eta, \eta^{\prime}<\xi$, then $\eta+\eta^{\prime}<\xi$.

Lemma 7. There is a primitive recursive $\rho_{1}\left(\alpha^{\prime}\right)$ such that if $\alpha^{\prime} \in O$ and $\left|\alpha^{\prime}\right|$ is special, then $\rho_{1}\left(\alpha^{\prime}\right) \in O,\left|\rho_{1}\left(a^{\prime}\right)\right|=\left|a^{\prime}\right|$ and $\alpha^{\prime} \precsim \rho_{1}\left(\alpha^{\prime}\right)$.

Proof. Define $f(n, t)$ by the recursion

$$
\begin{align*}
f(n, 0) & \simeq \alpha_{n} \\
f(n, t+1) & \simeq \begin{cases}2 & \text { if } \\
\bar{T}_{1}(n, n, t+1) \\
a_{\{n\}(n)} & \text { otherwise }\end{cases} \tag{24}
\end{align*}
$$

It is clear that if $a^{\prime}=3.5^{a} \in O$, then $f(n, t)$ is general recursive and its range is a subset of O. Moreover:

$$
\sum_{t=0}^{\infty}|f(n, t)|=\left\{\begin{array}{l}
\left|a_{n}\right|+\omega \text { if }\{n\}(n) \text { is not defined } \tag{25}\\
\left|a_{n}\right|+\left|a_{i n\}(n)}\right|+\omega \text { if }\{n\}(n) \text { is defined } .
\end{array}\right.
$$

Put

$$
\begin{align*}
\xi_{0} & =\sum_{t=0}^{\infty}|f(0, t)| \\
\xi_{n+1} & =\xi_{n}+\sum_{t=0}^{\infty}|f(n+1, t)| \tag{26}
\end{align*}
$$

Since ξ is special, for each $n, \xi_{n}<\xi$; since for each $n,\left|a_{n}\right|<\xi_{n},\left\{\xi_{n}\right\}$ is a fundamental sequence converging to $\bar{\xi}$.

By an elementary construction one can define a primitive recursive $\rho\left(a^{\prime}\right)$ such that if $a^{\prime}=3.5^{a} \in O$, then $\rho\left(a^{\prime}\right)=b^{\prime}=3.5^{b} \in O$ and for each n, $\left|b_{n}\right|=\xi_{n}$.

Since, for each $n,\left|a_{n}\right|<\Sigma_{t}|f(n, t)|<\xi_{n}$, it is trivial that $a^{\prime}<b^{\prime}$. To show that the converse is impossible assume that for all $n\left|b_{n}\right|=$ $\xi_{n} \leqq\left|a_{\{m\}(n)}\right|$; this is absurd for $n=m$, since

$$
\xi_{m}=\xi_{m-1}+\Sigma_{t}|f(m, t)|=\xi_{m-1}+\left|a_{m}\right|+\left|a_{\{m\}(m)}\right|+\omega>\left|a_{\{m\}(m)}\right|
$$

This lemma already shows that for each a^{\prime} with $\left|a^{\prime}\right|=\omega^{2}$ there is a $b^{\prime},\left|b^{\prime}\right|=\omega^{2}$ such that the many-one degree of $H_{b^{\prime}}(x)$ is strictly greater than the many-one degree of $H_{a^{\prime}}(x)$.

Lemma 8. Let $a^{\prime}=3.5^{a} \in O,\left|a^{\prime}\right|$ be special. There is a primitive recursive $\rho_{2}(e)$ such that if for each $t,\{e\}(t) \in O$ and $|\{e\}(t)|=\left|a^{\prime}\right|$, then $\rho_{2}(e) \in O,\left|\rho_{2}(e)\right|=\left|a^{\prime}\right|$ and for each $t,\{e\}(t) \prec \rho_{2}(e)$.

Proof. If e satisfies the hypothesis, then for each $t,\{e\}(t)=3.5^{m(t)}$ and $\left|m(t)_{0}\right|,\left|m(t)_{1}\right|, \cdots$, is a fundamental sequence converging to $\left|a^{\prime}\right|$. Put

$$
\begin{aligned}
f(0)= & m(0)_{0} \\
f(t+1)= & f(t)+_{o} m(0)_{t+1}+{ }_{o} m(1)_{t+1}+{ }_{o} \cdots+{ }_{c} m(t)_{t+1} \\
& \quad+_{o} m(t+1)_{0}+{ }_{o} m(t+1)_{1}+{ }_{o} \cdots+{ }_{o} m(t+1)_{t+1}
\end{aligned}
$$

where the association is to the left; since by [3], XVII if $x \in O$ and $y>_{o} 1$, then $x<_{o} x+{ }_{o} y$, we have for each t,

$$
f(t)<_{o} f(t+1) .
$$

Since $\left|a^{\prime}\right|$ is special, for each $t,|f(t)|<\left|a^{\prime}\right|$; since for each $t\left|m(0)_{t}\right| \leqq$ $|f(t)|$, the sequence $|f(0)|,|f(1)|, \cdots$, is fundamental and converges to $\left|a^{\prime}\right|$.

It is easy to construct a primitive recursive $\rho_{2}(e)$ such that if the hypotheses are fulfilled then $\rho_{2}(e)=3.5^{b}$ and for each $t, b_{t}=f(t)$. Now $\rho_{2}(e) \in O,\left|\rho_{2}(e)\right|=\left|a^{\prime}\right|$ and for each t, n

$$
\left|m(t)_{n}\right| \leqq\left|m(t)_{n+t}\right| \leqq|f(n+t)|=\left|b_{n+t}\right|
$$

which proves that $\{e\}(t)<3.5^{b}$.
Lemma 9. Let $a^{\prime}=3.5^{a} \in O,\left|a^{\prime}\right|$ be special. There is a primitive recursive $\rho(x)$ such that
(i) $\rho(1)=a^{\prime}$
(ii) if $x \in O$, then $\rho(x) \in O$ and $|\rho(x)|=\left|a^{\prime}\right|$,
(iii) if $x<_{o} y$, then $\rho(x) \lessgtr \rho(y)$.

Proof. Using the recursion theorem we obtain a $\rho(x)$ satisfying:

$$
\begin{aligned}
\rho(1) & =a^{\prime} \\
\rho\left(2^{x}\right) & =\rho_{1}(\rho(x)), \\
\rho\left(3.5^{z}\right) & =\rho_{2}\left(\operatorname{At} \rho\left(z_{t}\right)\right)
\end{aligned}
$$

Proof that $\rho(x)$ is the required function is by induction on $x \in O$. To
treat the case $x=3.5^{z}$-here the induction hypothesis is that for each $t, \rho\left(z_{t}\right) \in O,\left|\rho\left(z_{t}\right)\right|=\left|a^{\prime}\right|$ and $\rho\left(z_{t}\right) \precsim \rho\left(z_{t+1}\right)$. Lemma 8 assures us that for each $t \rho\left(z_{t}\right) \prec \rho\left(3.5^{z}\right)$; if for some $t \rho\left(3.5^{z}\right) \prec \rho\left(z_{t}\right)$, the transitivity of \prec would imply that $\rho\left(z_{t+1}\right) \prec \rho\left(z_{t}\right)$, violating the induction hypothesis.

Theorem 3 for special ordinals follows from Lemma 9 by letting A be a subset of O, linearly ordered under $<_{o}$ and containing a notation for each constructive ordinal and considering $\rho(A)$.
5. Proof of Theorem 4 for special ordinals. Let $\xi=\left|3.5^{a}\right|$ be a special ordinal. In the proof of Lemma 6 we constructed a notation $b^{\prime}=3.5^{b}$ of ξ determined by a fundamental sequence $\left\{\xi_{n}\right\}$ which was in turn defined from a double sequence $f(n, t)$ by equations (26). Here we will define two such double sequences, $f(n, t)$ and $g(n, t)$, such that the notations $b^{\prime}=3.5^{b}$ and $c^{\prime}=3.5^{c}$ for sequences $\left\{\xi_{n}\right\}$ and $\left\{\zeta_{n}\right\}$ determined as in equations (26) from $f(n, t)$ and $g(n, t)$ respectively will be incomparable.

We define the functions $f(n, t)$ and $g(n, t)$ in stages; at stage $2 s$ we will define $f(n, t)$ for $n, t \leqq s$ and at stage $2 s+1$ we will define $g(n, t)$ for $n, t \leqq s$. At each stage s we will also define finite sets F_{s} and G_{s} of pairs $\langle m, k\rangle$ of integers which will determine partial functions -i.e., if $\langle m, k\rangle \in F_{s}$ and $\left\langle m, k^{\prime}\right\rangle \in F_{s}$, then $k=k^{\prime}$, and similarly for G_{s}. We give the definitions informally, but it is a routine matter to derive Herbrand-Gödel-Kleene equations for f and g from our instructions.

Basis 0. $s=0$. Put $f(0,0)=a_{0} ; F_{0}=\{\langle 0,0\rangle\} ; G_{0}=\{\langle 0,0\rangle\}$.
Basis 1. $s=1$. Put $g(0,0)=a_{0} ; F_{1}=F_{0} \cup\{\langle 1,1\rangle\} ; G_{1}=G_{0} \cup\{\langle 1,1\rangle\}$. Even Induction Step $2 s+2$.

Case 1. For every pair $\langle m, k\rangle \in F_{2 s+1}$ and for every $y \leqq 2 s+1$, $\bar{T}_{1}(m, k, y)$. In this case set:

$$
\begin{cases}f(n, s+1)=2 & (n \leqq s) \tag{27}\\ f(s+1,0)=a_{s+1}, & \\ f(s+1, t)=2 & (1 \leqq t \leqq s+1)\end{cases}
$$

Put $F_{2 s+2}=F_{2 s+1} \cup\left\{\left\langle 2 s+2, k^{\prime}\right\rangle\right\}$ where k^{\prime} is the smallest integer larger than all the second members of the pairs in $F_{2 s+1}$; put $G_{2 s+2}=$ $G_{2 s+1} \cup\left\{\left\langle 2 s+2, k^{\prime}\right\rangle\right\}$ where k^{\prime} is the smallest integer larger than all the second members of the pairs in $G_{2 s+1}$.

Case 2. Otherwise. Let m be the smallest integer such that some $k,\langle m, k\rangle \in F_{2 s+1}$ and for some $y \leqq 2 s+1, T_{1}(m, k, y)$; let k and y be the corresponding (unique) k and y.

Subcase 2a. $\quad U(y)=z \leqq s$.

For any stage (in particular $2 s+1$) and any $x \leqq s$ (in particular z) consider the array of values of $g(u, v)$ with $u \leqq x$ and $v \leqq s$. Put

$$
J_{g}(x, s)=\left\{\begin{array}{l}
g(0,0)+{ }_{o} g(0,1)+{ }_{o} \cdots+{ }_{o} g(0, s)+{ }_{o} \omega_{o} \tag{28}\\
+{ }_{o} g(1,0)+{ }_{o} g(1,1)+{ }_{o} \cdots+{ }_{o} g(1, s)+{ }_{o} \omega_{o} \\
+{ }_{o} \cdots \\
\cdots \\
+{ }_{o} g(x, 0)+{ }_{o} g(x, 1)+{ }_{o} \cdots+{ }_{o} g(x, s)+{ }_{o} \omega_{0}
\end{array}\right.
$$

where ω_{o} is some fixed ordinal notation of ω and the association in the sum is to the left. It is clear that if all the values of $g(u, v)$ for $u \leqq x, v \leqq x$ are elements of O, then so is $J_{g}(x, s)$. Put

$$
\begin{cases}f(n, s+1)=2 & (n \leqq s, n \neq k) \tag{29}\\ f(k, s+1)=J_{g}(z, s), & \\ f(s+1,0)=a_{s+1}, & (1 \leqq t \leqq s+1) \\ f(s+1, t)=2 & \end{cases}
$$

Put $F_{2 s+2}=F_{2 s+1}-\{\langle m, k\rangle\} \cup\left\{\left\langle 2 s+2, k^{\prime}\right\rangle\right\}$, where k^{\prime} is the smallest integer larger than all the second members of the pairs in $F_{2 s+1}$.

To define $G_{2 s+2}$, first remove from $G_{2 s+1}$ all pairs $\left\langle m^{\prime}, k^{\prime}\right\rangle$ with $m^{\prime} \geqq m$; then introduce one pair $\left\langle m^{\prime}, k^{\prime}\right\rangle$ for each $m^{\prime}, m \leqq m^{\prime} \leqq 2 s+2$ in some systematic way, so that if $m^{\prime} \neq m^{\prime \prime}$, then $k^{\prime} \neq k^{\prime \prime}$, and all the second members of the new pairs are larger than all the second members of the pairs in $G_{2 s+1}$ and also larger than z.

Subcase 2 b . $U(y)=z>s$. Give exactly the same definitions as in Subcase 2a, except for the second equation of (29) for which we substitute

$$
\begin{equation*}
f(k, s+1)=J_{g}(s, s)+{ }_{o} a_{s+1}+{ }_{o} \omega_{o}+{ }_{o} \alpha_{s+2}+{ }_{o} \omega_{o}+_{o} \cdots+{ }_{o} \alpha_{z}+{ }_{o} \omega_{o} \tag{30}
\end{equation*}
$$

(Remark: the last conditions on the definition of $G_{2 s+2}$, that all new second members be larger than z, will be utilized for this subcase.)

Odd Induction Step $2 s+3$. The definitions are symmetric to those in the Even Ind. Step, except for the following differences:
(i) In Subcase 2a we put $J_{g}(z, s+1)$ where complete symmetry would suggest $J_{f}(z, s)$.
(ii) In Subcase 2 b we put $g(k, s+1)=J_{f}(s+1, s+1)+{ }_{o} \omega_{o}+{ }_{o} \cdots$ $+{ }_{o} a_{z}+{ }_{o} \omega_{o}$.
(iii) In Case 2 we define $F_{2 s+3}$ by removing from and reintroducing in $F_{2 s+2}$ all pairs with first members $m^{\prime}>m$ (rather than $m^{\prime} \geqq m$).

It is easy to prove by induction on s that for all $n, t f(n, t)$, $g(n, t) \in O$ and $|f(n, t)|<\xi,|g(n, t)|<\xi$. Put

$$
\begin{align*}
\xi_{0} & =\sum_{t=0}^{\infty}|f(0, t)|, & \zeta_{0} & =\sum_{t=0}^{\infty}|g(0, t)| \\
\xi_{n+1} & =\xi_{n}+\sum_{t=0}^{\infty}|f(n+1, t)|, & \zeta_{n+1} & =\zeta_{n}+\sum_{t=0}^{\infty}|g(n+1, t)| \tag{31}
\end{align*}
$$

By a routine construction numbers $b^{\prime}=3.5^{b}$ and $c^{\prime}=3.5^{c}$ can be defined such that $b^{\prime} \in O, c^{\prime} \in O$ and for all n,

$$
\left|b_{n}\right|=\xi_{n}, \quad\left|c_{n}\right|=\zeta_{n}
$$

We will prove that $\left|b^{\prime}\right|=\left|c^{\prime}\right|=\xi$ and that b^{\prime} and c^{\prime} are incomparable.
Say that $m F$-joins k at stage s if $\langle m, k\rangle \in F_{s}$ but $\langle m, k\rangle \notin F_{s-1}$; $m F$-leaves k at stage s if $\langle m, k\rangle \notin F_{s}$ but $\langle m, k\rangle \in F_{s-1}$. (Similarly with G in place of F throughout.)

Clearly at each stage s, some $m F$-joins some k. Using this we can show by an induction on s that if $m F$-joins k at stage s, then k is larger than all the second members of all the pairs in F_{t}, with $t<s$. This in turn implies that for a fixed k and in the course of the whole computation there is at most one stage s at which some m Fjoins k, and consequently at most one stage s at which some $m F$ leaves k. Hence for each k there is a t_{0} such that for $t \geqq t_{0}, f(k, t)=$ 2 , since only if $t=0$ or some $m F$-leaves k at stage t is $f(k, t) \neq 2$, and we have

$$
\begin{equation*}
\sum_{t=0}^{\infty}|f(k, t)|=\left|f\left(k, t_{0}\right)\right|+\omega<\xi \tag{32}
\end{equation*}
$$

since ξ is special. Now a simple induction on n shows that for each $n, \xi_{n}<\xi$, and since clearly $\left|a_{n}\right|<\xi_{n}$, we have proved that $\lim \xi_{n}=$ $\left|b^{\prime}\right|=\xi$.
(Exactly the same considerations for g prove that $\left|c^{\prime}\right|=\xi$.)
We prove by induction the following proposition depending on m : $m F$-joins only finitely many k 's, and G-joins only finitely many k 's.

If $m=0$ this is trivial since $\{0\}(x)$ is the totally undefined function.
If $m F$-joins k at stage s either $m=s$ or there is an $m^{\prime}<m$ such that $m^{\prime} G$-leaves some k^{\prime} at stage s; by ind. hyp. each $m^{\prime}<m G$-joins some k^{\prime} only for finitely many x,s, hence each $m^{\prime}<m G$-leaves some k^{\prime} only for finitely many s^{\prime}, which completes the proof of half the induction step.

If $m G$-joins k at stage s, either $m=s$ or there is an $m^{\prime} \leqq m$ such that $m^{\prime} F$-leaves some k^{\prime} at stage s; we now use the ind. hyp. and the first half of the ind. step which has been already proved to see that this can only happen finitely often.

For a fixed m, let k be the largest integer such that $m F$-joins k and assume that $\{m\}(k) \simeq z$ is defined. An easy induction on m shows that there must be some stage $2 s+2$ where Case 2 applies with this
m and k, and $z=U(y)$. We prove that $\xi_{k}>\zeta_{z}$.
Subcase 2a. Since $f(k, s+1)=J_{g}(z, s), \xi_{k}>\left|J_{g}(z, s)\right|$. We assert that if $u \leqq z, v>s$, then $g(u, v)=2$. Because if $g(u, v) \neq 2$, then some $m^{\prime} G$-leaves u at stage $2 v+1>2 s+2$; since at stage $2 s+2$ each $m^{\prime \prime} \geqq m G$-joins some $k^{\prime \prime}>z$, we must have $m^{\prime}<m$; but this implies that $m F$-joins some $k^{\prime}>k$, contrary to hyp. that k is the largest integer that $m F$-joins.

Now the above implies that $\zeta_{z}=\left|J_{g}(z, s)\right|<\xi_{k}$.
Subcase 2b. Now we can prove that if $u \leqq s$ and $v>s$ or $s<u \leqq z$ and $v>0$, then $g(u, v)=2$, by exactly the same argument. Hence $\zeta_{z}=|f(k, s+1)|<\xi_{k}$.

For a fixed m let k be the largest integer such that $m G$-joins k and assume that $\{m\}(k) \simeq z$ is defined. As before there must be some stage $2 s+3$ where case 2 applies for this m and this k. We give one of the cases of the proof that $\zeta_{k}>\xi_{z}$.

Subcase 2a. We assert that if $u \leqq z, v>s+1$, then $f(u, v)=2$. Because if $f(u, v) \neq z$, then some $m^{\prime} F$-leaves u at stage $2 v>2 s+3$; since at stage $2 s+3$ each $m^{\prime \prime}>m F$-joins some $k^{\prime \prime}>z$, we must have $m^{\prime} \leqq m$; but this implies that $m G$-joins some $k^{\prime}>k$, contrary to hyp. that k is the largest integer that $m G$-joins.

The above remarks complete the proof that b^{\prime} and c^{\prime} are incomparable. Because if $b^{\prime}<c^{\prime}$, then there is an m such that for each k, $\left|b_{k}\right| \leqq\left|c_{\{m\}(k)}\right|$, i.e., $\xi_{k}<\zeta_{\{m\}(k)}$, which we showed to be false if k is the largest integer that $m F$-joins, and similarly for $c^{\prime} \prec b^{\prime}$.
6. Reduction of the general to the special case. In this section we prove that if $\xi=\eta+\zeta(\zeta \neq 0)$, then $\mathscr{L}(\xi)$ and $\mathscr{L}(\zeta)$ are similar and that if ξ is $\neq 0$ and not of the form $\eta+1$ or $\eta+\omega$, then there is a unique special ordinal ζ such that for some $\eta, \xi=\eta+\zeta$.

Lemma 10. There is a primitive recursive $\delta(a, b)$ such that if $a \leqq o b$, then $\delta(a, b) \in O$ and

$$
\begin{equation*}
|a|+|\delta(a, b)|=|b| \tag{33}
\end{equation*}
$$

Proof. We obtain via the recursion theorem a primitive recursive $\delta(a, b)$ satisfying the following conditions:

$$
\begin{array}{rlrl}
\delta(a, a) & =1, \\
\delta\left(a, 2^{b}\right) & =2^{(a, b)}, & \\
\delta\left(a, 3.5^{z}\right) & =3.5^{y}, & & \text { where for each } t, y_{t} \simeq \delta\left(a, z_{\iota(a, z)+t}\right), \\
\delta(a, x) & =0 \quad & & \text { otherwise }
\end{array}
$$

(recall that $\iota(a, z)$ is partial recursive and such that if $a<{ }_{o} 3.5^{z}$, then $\left.a \leqq{ }_{o} z_{\iota(a, z)}\right)$.

We prove by induction on $b \in O$ the following statement: if $a \leqq{ }_{o} b$, then $\delta(a, b) \in O$ and for each x, if $a \leqq_{o} x<_{o} b$, then $\delta(a, x)<_{o} \delta(a, b)$. The following cases arise: (1) $b=a$, (2) $b=2^{a}$, (3) $b=2^{c}$ and $a<{ }_{o} c$ and (4) $b=3.5^{z}$ and for some $t, a \leqq{ }_{o} z_{t}$.

Case 3. By Ind. Hyp. $\delta(a, c) \in O$, hence $\delta(a, b)=2^{\delta(a, c)} \in O$. If $x<_{o} b$, either $x=c$ or $x<_{o} c$; in the first case it is clear that $\delta(a, c)<_{o} \delta(a, b)$, while in the second case the Ind. Hyp. implies that $\delta(a, x)<{ }_{o} \delta(a, c)$, hence $\delta(a, x)<_{o} \delta(a, b)$.

Case 4. Since $a<{ }_{0} 3.5^{z}, \iota(a, z)$ is defined and for each $t, a<{ }_{o} z_{\iota(a, z)+t}$. Thus the Ind. Hyp. implies that for each t, y_{t} is defined, $y_{t} \in O$ and $y_{t}<_{o} y_{t+2}$, hence $\delta(a, b) \in O$. If $x<_{o} 3.5^{z}$, then for some $t, x<_{o} z_{\iota(a, z)+t}$, hence by Ind. Hyp. $\delta(a, x)<_{o} \delta\left(a, z_{\iota(a, z)+t}\right)=y_{t}<_{o} \delta(a, b)$.

Equation (33) is proved easily by induction on $|b|$, using the continuity of ordinal addition, e.g.,

$$
\begin{aligned}
|a|+\left|\delta\left(a, 3.5^{z}\right)\right| & =|a|+\lim _{t}\left|\delta\left(a, z_{\iota(a, z)+t}\right)\right| \\
& =\lim _{t}\left(|a|+\left|\delta\left(a, z_{\iota(a, z)+t}\right)\right|\right) \\
& =\lim _{t}\left|z_{\iota(a, z)+t}\right| \\
& =\left|3.5^{z}\right|
\end{aligned}
$$

This lemma allows us to represent a constructive limit ordinal as an infinite sum of smaller ordinals,

$$
\left|3.5^{z}\right|=\left|z_{0}\right|+\left|\delta\left(z_{0}, z_{1}\right)\right|+\left|\delta\left(z_{1}, z_{2}\right)\right|+\cdots
$$

Lemma 11. Assume that $\xi=\eta+\zeta$, where ζ is a limit ordinal. Then $\mathscr{L}(\xi)$ and $\mathscr{L}(\zeta)$ are similar.

Proof. Let u be a fixed notation in O for η. For each $\alpha^{\prime}=$ $3.5^{a} \in O$ we define by induction

$$
\begin{aligned}
g(0) & =u+{ }_{o} a_{0} \\
g(n+1) & =g(n)+{ }_{o} \delta\left(a_{n}, a_{n+1}\right) .
\end{aligned}
$$

A routine construction yields a primitive recursive $\tau\left(\alpha^{\prime}\right)$ such that if $\alpha^{\prime}=3.5^{a} \in O$, then $\tau\left(\alpha^{\prime}\right)=3.5^{x} \in O$ and for each $n, x_{n}=g(n)$. Notice that by the definition of δ,

$$
\begin{equation*}
\left|x_{n}\right|=\eta+\left|\alpha_{n}\right| \tag{34}
\end{equation*}
$$

It is clear that if $\left|a^{\prime}\right|=\zeta$, then $\left|x^{\prime}\right|=\lim _{n}\left|x_{n}\right|=\eta+\zeta=\xi$.
Assume that $\left|b^{\prime}\right|=\zeta$ and $a^{\prime} \prec b^{\prime}$, i.e., there is a general recursive
$f(n)$ such that for each $n,\left|a_{n}\right| \leqq\left|b_{f(n)}\right|$. Now if $\tau\left(b^{\prime}\right)=3.5^{y}$,

$$
\left|x_{n}\right|=\eta+\left|a_{n}\right| \leqq \eta+\left|b_{f(n)}\right|=\left|y_{f(n)}\right|,
$$

hence $\tau\left(a^{\prime}\right) \prec \tau\left(b^{\prime}\right)$.
Assume that $\tau\left(a^{\prime}\right)<\tau\left(b^{\prime}\right)$, i.e., there is a general recursive $f(n)$ such that for each $n,\left|x_{n}\right| \leqq\left|y_{f(n)}\right|$. Then $\eta+\left|a_{n}\right| \leqq \eta+\left|b_{f(n)}\right|$, i.e., $\left|a_{n}\right| \leqq\left|b_{f(n)}\right|$ which proves that $a^{\prime}<b^{\prime}$.

We have shown that $\tau\left(a^{\prime}\right)$ induces a mapping from $\mathscr{L}(\zeta)$ into $\mathscr{L}(\xi)$ which is a similarity imbedding. To complete the proof we must show that this mapping is onto, i.e., that given $y^{\prime},\left|y^{\prime}\right|=\xi$, there is an a^{\prime}, $\left|a^{\prime}\right|=\zeta$, such that if $\tau\left(a^{\prime}\right)=x^{\prime}$, then $x^{\prime} \sim y^{\prime}$.

If $\left|y^{\prime}\right|=\xi$, there is a unique $v<_{o} y^{\prime}$ such that $|v|=\eta$, and some t such that $v<_{o} y_{t}$. Put

$$
\begin{aligned}
h(0) & =\delta\left(v, y_{t}\right) \\
h(n+1) & =h(n)+_{o} \delta\left(y_{t+n}, y_{t+n+1}\right)
\end{aligned}
$$

and choose $a^{\prime}=3.5^{a}$ so that for each $n, a_{n}=h(n)$. Surely $a^{\prime} \in O$ and since for each $n, \eta+\left|a_{n}\right|=\left|y_{t+n}\right|$, we have $\left|a^{\prime}\right|=\lim _{n}\left|a_{n}\right|=\zeta$. If $x^{\prime}=\tau\left(a^{\prime}\right)$, then for each n we have

$$
\left|x_{n}\right|=\eta+\left|a_{n}\right|=\left|y_{t+n}\right|
$$

which implies $x^{\prime} \sim y^{\prime}$, which completes the proof.
Lemma 12. Let $\xi>0$ be given and assume that ξ is not of the form $\eta+1$ or $\eta+\omega$. Then there is a unique special ordinal ζ such that for some $\eta, \xi=\eta+\zeta$.

Proof. Let ζ be the smallest nonzero ordinal for which there is an η such that $\xi=\eta+\zeta$. Our assumptions imply that $\zeta>\omega$. If ζ is not special, there exist $\zeta_{1}, \zeta_{2}<\zeta$ such that $\zeta_{1}+\zeta_{2} \geqq \zeta$. The continuity of ordinal addition implies that there exist $\zeta_{1}, \zeta_{2}<\zeta$ such that $\zeta_{1}+\zeta_{2}=\zeta$ (hence $\zeta_{2} \neq 0$); but this is turn implies that $\xi=\eta+\zeta_{1}+\zeta_{2}$ with $0<\zeta_{2}<\zeta$, which violates the defining condition of ζ.

To prove that ζ is unique assume that $\xi=\eta_{1}+\zeta_{1}=\eta_{2}+\zeta_{2}$ and without loss of generality further assume $\eta_{1} \leqq \eta_{2}$. Then there is a θ such that $\eta_{1}+\theta=\eta_{2}$ which implies $\eta_{1}+\zeta_{1}=\eta_{1}+\theta+\zeta_{2}$, i.e., $\zeta_{1}=$ $\theta+\zeta_{2}$. Now if ζ_{1} is special we must have $\zeta_{1}=\zeta_{2}$, which completes the proof.
7. Open problems. We do not have answers for the following questions:

1. Is $\mathscr{L}(\xi)$ for special ξ an upper semi-lattice, a lower semi-lattice or a lattice?
2. Does $\mathscr{L}(\xi)$ have a minimum for each special ξ ? It is easy to show that $\mathscr{L}\left(\omega^{2}\right)$ has a minimum; we conjecture that $\mathscr{L}\left(\omega^{3}\right)$ does not.
3. If ξ and ζ are special and $\xi \neq \zeta$, is it possible that $\mathscr{L}(\xi)$ and $\mathscr{L}(\zeta)$ are similar? We conjecture that it is not.

References

1. S. C. Kleene, Introduction to metamathematics, Van Nostrand, New York and Toronto, North-Holland, Amsterdam, and Noordhoff, Groningen, 1952.
2. , Arithmetical predicates and function quantifiers, Trans. Amer. Math. Soc. 79 (1955), 312-340.
3. On the forms of the predicates in the theory of constructive ordinals (second paper), Amer. J. Math. 77 (1955), 405-428.
4. S. C. Kleene and E. L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. (2) 59 (1954), 379-407.
5. John Myhill, Creative se:s, Z. Math. Logik Grundlagen Math. 1 (1955), 97-108.
6. E. L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284-316.
7. C. Spector, Recursive well-orderings, J. Symb. Logic 20 (1955), 151-163.

Received December 26, 1964.
University of California, Los Angeles

