MANY-ONE DEGREES OF THE PREDICATES $H_a(x)$

YIANNIS N. MOSCHOVAKIS

Spector proved in his Ph. D. Thesis that if |a| = |b|(a, $b \in O$), then $H_a(x)$ and $H_b(x)$ have the same degree of unsolvability; Davis had already shown that if $|a| = |b| < \omega^2$, then $H_a(x)$ and $H_b(x)$ are in fact recursively isomorphic, i.e.,

(1)
$$H_a(x) \equiv H_b(f(x))$$
,

where f(x) is a recursive permutation.

In this note we prove that if $|a| = |b| = \xi$, then $H_a(x)$ and $H_b(x)$ need not have the same many-one degree, unless $\xi = 0$ or is of the form $\eta + 1$ or $\eta + \omega$; if $\xi \neq 0$ is not of the form $\eta + 1$ or $\eta + \omega$, then the partial ordering of the many-one degrees of the predicates $H_a(x)$ with $|a| = \xi$ contains wellordered chains of length ω_1 as well as incomparable elements. The proof rests on a combinatorial result which relates the many-one degree of $H_{a'}(x) (a' = 3.5^a \in O)$ to the rate with which the sequence of ordinals $|a_n|$ approaches |a'|.

Summary of results. We denote the relations of many-one and one-one reducibility by \leq_m and \leq_1 . By a result of Myhill [5], if $P(x) \leq_1 Q(x)$ and $Q(x) \leq_1 P(x)$, then P(x) and Q(x) are recursively isomorphic.

Let $a' = 3.5^a$ and $b' = 3.5^b$ be names in O of the same limit ordinal $|a| = |b'| = \xi$. We say that a' is *recursively majorized* by b' and write $a' \prec b'$, if there is a recursive function f(n) such that for all n,

$$|a_n| \leq |b_{f(n)}|.$$

(Here $a_n \simeq \{a\}(n_o)$; in dealing with constructive ordinals and hyperarithmetic predicates we use without apologies and sometimes without reference the notations of Kleene's [2] and [3].) If a' < b' and b' < a', a' and b' are equivalent, $a' \sim b'$; if neither a' < b', nor b' < a', a' and b' are incomparable, $a' \mid b'$. Notations such as $a' \preceq b'$ are self-explanatory.

THEOREM 1. Let $a' = 3.5^a \in O$, $b' = 3.5^b \in O$, $|a'| = |b'| = \xi$. Then $H_{a'}(x) \leq_m H_{b'}(x)$ if and only if $H_{a'}(x) \leq_1 H_{b'}(x)$ if and only if a' < b'.

THEOREM 2. If ξ is of the form $\eta + 1$ or $\eta + \omega$ and $|a| = |b| = \xi$, then $H_a(x)$ and $H_b(x)$ are recursively isomorphic.

For each constructive ordinal ξ , let $\mathscr{L}(\xi)$ be the partial ordering of the many-one degrees of the predicates $H_{a'}(x)$ with $|a'| = \xi$.

THEOREM 3. If $\xi \neq 0$ is not of the form $\eta + 1$ or $\eta + \omega$, then $\mathscr{L}(\xi)$ contains well-ordered chains of length ω_1 .

THEOREM 4. If $\xi \neq 0$ is not of the form $\eta + 1$ or $\eta + \omega$, then $\mathscr{L}(\xi)$ contains incomparable elements.

2. Proof of Theorem 1.

LEMMA 1. (Kleene's Lemma 3 in [2]). There is a partial recursive function $\sigma_1(a, b, x)$, such that

(3)
$$if a \leq_o b$$
, then $H_a(x) \equiv H_b(\sigma_1(a, b, x))$.

Let P'(x) denote the *jump* of the predicate P(x),

(4)
$$P'(x) \equiv (Ey)T_1^P(x, x, y)$$
.

LEMMA 2. (a) There is a primitive recursive $\sigma_2(e, x)$ such that if Q(x) is recursive in P(x) with Gödel number e, then

(5)
$$Q(x) \equiv P'(\sigma_2(e, x)) .$$

(b) There is a primitive recursive $\sigma_3(e)$ such that

(6) if
$$t = \sigma_3(e)$$
 and $\{e\}(t)$ is defined,
then $P'(t) \not\equiv P(\{e\}(t))$.

(Both of these facts are implicit in Section 1.4 of [4] and the references given there to [1] and [6].)

LEMMA 3. There is a partial recursive $\sigma_4(a, b, c, x)$ such that for a, b, c in O,

(7) if
$$|a| \leq |b|$$
 and $b <_o c$, then $H_a(x) \equiv H_c(\sigma_4(a, b, c, x))$.

Proof. By Spector's Uniqueness Theorem in [7], if $|a| \leq |b|$, then $H_a(x)$ is recursive in $H_b(x)$ with Gödel number $\tau(a, b)$ (τ recursive). Since $b <_o c$ implies $2^b \leq_o c$, Lemma 1 together with Lemma 2(a) imply that

$$H_{a}(x) \equiv H_{ab}(\sigma_{2}(\tau(a, b), x)) \equiv H_{ab}(\sigma_{1}(2^{5}, c, \sigma_{2}(\tau(a, b), x)))$$

and we can define σ_4 as the argument of H_c in this equivalence.

LEMMA 4. There is a partial recursive $\sigma(a, b, e)$, such that if $a <_o b$, then $\sigma(a, b, e)$ is defined and

(8)
$$if t = \sigma(a, b, e) \text{ and } \{e\}(t) \text{ is defined},$$

then $H_b(t) \not\equiv H_a(\{e\}(t))$.

Proof is by induction on $b \in O$ for fixed $a \in O$ and the recursion theorem, utilizing Lemma 2 (b).

Case 1. $b = 2^{a}$. Set $\sigma(a, b, e) = \sigma_{3}(e)$.

Case 2. $b = 2^{c}$ and $c \neq a$. In this case, if $a <_{o} b$ we must have $a <_{o} c$ and the Ind. Hyp. applies to a and c. Put

(9)
$$y \simeq \sigma(a, c, Ax\{e\}(\sigma_1(c, b, x))),$$

and

(10)
$$\sigma(a, b, e) \simeq \sigma_1(c, b, y) .$$

(For a partial recursive $f(x_1, \dots, x_n, y)$, $Ayf(x_1, \dots, x_n, y)$ is a primitive recursive function of x_1, \dots, x_n and a Gödel number of f such that

$$\{Ayf(x_1, \cdots, x_n, y)\}(y) \simeq f(x_1, \cdots, x_n, y);$$

see [1], Section 65.)

Since $c <_o b$, $\sigma_1(c, b, x)$ is totally defined; since $a <_o c$, the induction hypothesis implies that y is defined, hence $\sigma(a, b, e)$ is defined. We now derive a contradiction from the assumption

(11) for
$$t = \sigma(a, b, e)$$
, $\{e\}(t)$ is defined and $H_b(t) \equiv H_a(\{e\}(t))$.

Since

$$H_{\mathfrak{c}}(y)\equiv H_{\mathfrak{b}}(\sigma_{\mathfrak{l}}(c,\,b,\,y))\equiv H_{\mathfrak{b}}(t)$$
 ,

we have

 $H_{e}(y) \equiv H_{a}(\{e\}(t));$

but

$$\{e\}(t) \simeq \{e\}(\sigma_1(c, b, y)) \simeq \{Ax\{e\}(\sigma_1(c, b, x))\}(y)$$
,

hence

$$H_{\mathfrak{a}}(y) \equiv H_{\mathfrak{a}}(\{ \Delta x \{ e \} (\sigma_{\mathfrak{l}}(c, b, x)) \}(y))$$

which by induction hypothesis is false if y is given by (9).

Case 3. $b = 3.5^{z}$. In this case $a <_{o} b$ implies $a \leq_{o} z_{\iota(a,z)}$, where $\iota(a, z)$ is partial recursive ([2], Lemma 2). Now the definition and proof of Case 2 apply if we substitute $\iota(a, z)$ for c throughout.

The proof is completed by securing via the recursion theorem a partial recursive function $\sigma(a, b, e)$ such that

$$\sigma(a, b, e) \simeq egin{cases} \sigma_{\mathfrak{s}}(e) & ext{if} \quad b = 2^a \ , \ \sigma_{\mathfrak{1}}((b)_{\mathfrak{0}}, b, \sigma(a, (b)_{\mathfrak{0}}, \varDelta x \{e\}(\sigma_{\mathfrak{1}}((b)_{\mathfrak{0}}, b, x)))) & ext{if} \quad b = 2^{(b)_{\mathfrak{0}}}, (b)_{\mathfrak{0}} \neq a \ , \ \sigma_{\mathfrak{1}}(\iota(a, (b)_{\mathfrak{2}}), b, \sigma(a, \iota(a, (b)_{\mathfrak{2}}), \varDelta x \{e\}(\sigma_{\mathfrak{1}}(\iota(a, (b)_{\mathfrak{2}}), b, x)))) & ext{if} \quad b = 3.5^{(b)_{\mathfrak{2}}}, \ \sigma_{\mathfrak{0}} & ext{otherwise} \ . \end{cases}$$

LEMMA 5. Let $a' = 3.5^a$, $b' = 3.5^b \in O$, |a'| = |b'|. If $H_{a'}(x) \leq_m H_{b'}(x)$, then $H_{a'}(x) \leq_1 H_{b'}(x)$.

Proof. Suppose that $H_{a'}(x) \equiv H_{b'}(f(x))$, with f(x) general recursive, possibly many-one. Put

$$g(x)=2^u3^v$$
 ,

where

$$u = 2^x 3^{(f(x))_0}, \quad v = \sigma_1(b_{(f(x))_0}, b_u, (f(x))_1)$$

and σ_i is the partial recursive function of Lemma 1. It is clear that g(x) is general recursive and one-one. To complete the proof we compute:

$$egin{aligned} H_{b'}(g(x)) &\equiv H_{b_u}(v) \equiv H_{b_u}(\sigma_{\scriptscriptstyle 1}(b_{\scriptscriptstyle (f(x))_0}, b_u, (f(x))_{\scriptscriptstyle 1}))) \ &\equiv H_{b(f(x))_0}((f(x))_{\scriptscriptstyle 1}) \equiv H_{b'}(f(x)) \equiv H_{a'}(x) \;. \end{aligned}$$

Proof of Theorem 1. First assume that a' < b', i.e., for some general recursive f(n) we have $|a_n| \leq |b_{f(n)}|$, all n. Since, for each $n, b_{f(n)} <_o b_{f(n)+1}$, Lemma 3 yields

$$H_{a_n}(x) \equiv H_{b_{f(n)+1}}(\sigma_4(a_n, b_{f(n)}, b_{f(n)+1}, x))$$
 .

Hence

$$H_{a'}(x) \equiv H_{b'}(2^{u(x)} \cdot 3^{v(x)}) \; ,$$

with

$$egin{aligned} u(x) &= f((x_0)) + 1 \ , \ v(x) &= \sigma_4(a_{(x)_0}, \, b_{f((x)_0)}, \, b_{f((x)_0)^{+1}}, \, (x)_1) \ , \end{aligned}$$

which implies $H_{a'}(x) \leq_m H_{b'}(x)$; by Lemma 5 this is equivalent to $H_{a'}(x) \leq_1 H_{b'}(x)$.

To prove the converse assume that for all x

(12)
$$H_{a'}(x) \equiv H_{b'}(\{e\}(x)) ,$$

with $\{e\}(x)$ general recursive. For fixed n we compute:

(13)
$$H_{a_{n+2}}(x) \equiv H_{a'}(2^{n+2} \cdot 3^x) \equiv H_{b'}(\{e\}(2^{n+2} \cdot 3^x))$$
$$\equiv H_{b_{x_0}}(x_1) ,$$

where

(14)
$$x_0 = (\{e\}(2^{n+2} \cdot 3^x))_0,$$

(15)
$$x_1 = (\{e\}(2^{n+2} \cdot 3^x))_1$$

Now assume that for a fixed x

$$(16) |b_{x_0}| \leq |a_n|;$$

this implies that for each y

(17)
$$H_{b_{x_0}}(y) \equiv H_{a_{n+1}}(\sigma_4(b_{x_0}, a_n, a_{n+1}, y)),$$

which for $y = x_1$ yields

(18)
$$H_{a_{n+2}}(x) \equiv H_{a_{n+1}}(\sigma_4(b_{x_0}, a_n, a_{n+1}, x_1)) .$$

Equivalence (18) however is impossible if

(19)
$$x = \sigma(a_{n+1}, a_{n+2}, Ax\sigma_4(b_{x_0}, a_n, a_{n+1}, x_1))$$

by Lemma 4, hence for this x the negation of (16) must be true. Thus to prove $a' \prec b'$ it is enough to set

$$(20) f(n) = x_0,$$

where x is given by (19) and x_0 by (14).

3. Proof of Theorem 2. It is implicit in [4], Section 1.4, that if P(x) is recursive in Q(x), then $P'(x) \leq_1 Q'(x)$. Thus if $|a| = |b| = \eta + 1$, Spector's Uniqueness Theorem implies that $H_a(x)$ and $H_b(x)$ are one-one reducible to each other and hence recursively isomorphic. The case $|a'| = |b'| = \eta + \omega$ is settled by the following Lemma in view of Theorem 1.

LEMMA 6. If $|a'| = |b'| = \eta + \omega$, then $a' \prec b'$.

Proof. It is easy to define primitive recursive functions L(x) and N(x) so that for $x \in O$,

(21)
$$x = L(x) +_o N(x)$$
,

where L(x) = 1 or |L(x)| is a limit ordinal and $|N(x)| < \omega$ (with these requirements L(x) and N(x) are uniquely determined on members of O).

Let a° and b° be the uniquely determined elements of O such that

(22)
$$a^{\scriptscriptstyle 0} <_o a'$$
, $|a^{\scriptscriptstyle 0}| = \eta$; $b^{\scriptscriptstyle 0} <_o b'$, $|b^{\scriptscriptstyle 0}| = \eta$.

Set

(23)
$$f(n) = \mu y [b^{\circ} + o N(a_n) \leq b_y].$$

That f(n) is totally defined follows from the fact that if z is any ordinal notation for an integer (in particular if $z = N(a_n)$), then $b^0 +_o z <_o b'$ and hence there is a y so that $b' +_o z \leq_o b_y$. That f(n) is recursive follows from the fact that \leq_o is recursive on the $<_o$ -predecesors of b' (see [3], Section 21.).

If $|a_n| \leq \gamma$, then $|a_n| \leq |b_{f(n)}|$, since for each n, $|b_{f(n)}| \geq \gamma$. If $|a_n| > \gamma$, then $L(a_n) = a^0$, hence $|a_n| = |a^0 + {}_o N(a_n)| = |a^0| + |N(a_n)| = |b^0| + |N(a_n)| = |b^0 + {}_o N(a_n)| \leq |b_{f(n)}|$, which completes the proof.

4. Proof of Theorem 3 for special ordinals. Call an ordinal ξ special if $\xi > \omega$ and whenever $\eta, \eta' < \xi$, then $\eta + \eta' < \xi$.

LEMMA 7. There is a primitive recursive $\rho_1(a')$ such that if $a' \in O$ and |a'| is special, then $\rho_1(a') \in O$, $|\rho_1(a')| = |a'|$ and $a' \leq \rho_1(a')$.

Proof. Define f(n, t) by the recursion

(24)
$$f(n, 0) \simeq a_n$$
$$f(n, t+1) \simeq \begin{cases} 2 & \text{if } \bar{T}_1(n, n, t+1) \\ a_{n}(n) & \text{otherwise } . \end{cases}$$

It is clear that if $a' = 3.5^a \in O$, then f(n, t) is general recursive and its range is a subset of O. Moreover:

(25)
$$\sum_{t=0}^{\infty} |f(n,t)| = \begin{cases} |a_n| + \omega & \text{if } \{n\}(n) & \text{is not defined ,} \\ |a_n| + |a_{(n)(n)}| + \omega & \text{if } \{n\}(n) & \text{is defined} \end{cases}$$

Put

(26) $\hat{\xi}_0 = \sum_{t=0}^{\infty} |f(0, t)|,$ $\hat{\xi}_{n+1} = \hat{\xi}_n + \sum_{t=0}^{\infty} |f(n+1, t)|.$

Since ξ is special, for each n, $\xi_n < \xi$; since for each n, $|a_n| < \xi_n$, $\{\xi_n\}$ is a fundamental sequence converging to ξ .

By an elementary construction one can define a primitive recursive $\rho(a')$ such that if $a' = 3.5^a \in O$, then $\rho(a') = b' = 3.5^b \in O$ and for each n, $|b_n| = \xi_n$.

Since, for each $n, |a_n| < \Sigma_t |f(n, t)| < \hat{\varepsilon}_n$, it is trivial that a' < b'. To show that the converse is impossible assume that for all $n |b_n| = \hat{\varepsilon}_n \leq |a_{(m)(n)}|$; this is absurd for n = m, since

$$\xi_m = \xi_{m-1} + \Sigma_t |f(m, t)| = \xi_{m-1} + |a_m| + |a_{\{m\}(m)}| + \omega > |a_{\{m\}(m)}|.$$

This lemma already shows that for each a' with $|a'| = \omega^2$ there is a b', $|b'| = \omega^2$ such that the many-one degree of $H_{b'}(x)$ is strictly greater than the many-one degree of $H_{a'}(x)$.

LEMMA 8. Let $a' = 3.5^a \in O$, |a'| be special. There is a primitive recursive $\rho_2(e)$ such that if for each t, $\{e\}(t) \in O$ and $|\{e\}(t)| = |a'|$, then $\rho_2(e) \in O$, $|\rho_2(e)| = |a'|$ and for each t, $\{e\}(t) < \rho_2(e)$.

Proof. If e satisfies the hypothesis, then for each t, $\{e\}(t) = 3.5^{m(t)}$ and $|m(t)_0|, |m(t)_1|, \cdots$, is a fundamental sequence converging to |a'|. Put

$$egin{aligned} f(0) &= m(0)_{0} \ f(t+1) &= f(t) +_{o} m(0)_{t+1} +_{o} m(1)_{t+1} +_{o} \cdots +_{c} m(t)_{t+1} \ &+_{o} m(t+1)_{0} +_{o} m(t+1)_{1} +_{o} \cdots +_{o} m(t+1)_{t+1} \,, \end{aligned}$$

where the association is to the left; since by [3], XVII if $x \in O$ and $y >_o 1$, then $x <_o x +_o y$, we have for each t,

$$f(t) <_{o} f(t+1)$$
.

Since |a'| is special, for each t, |f(t)| < |a'|; since for each $t |m(0)_t| \le |f(t)|$, the sequence $|f(0)|, |f(1)|, \cdots$, is fundamental and converges to |a'|.

It is easy to construct a primitive recursive $\rho_2(e)$ such that if the hypotheses are fulfilled then $\rho_2(e) = 3.5^b$ and for each $t, b_t = f(t)$. Now $\rho_2(e) \in O, |\rho_2(e)| = |a'|$ and for each t, n

$$|m(t)_n| \leq |m(t)_{n+t}| \leq |f(n+t)| = |b_{n+t}|,$$

which proves that $\{e\}(t) < 3.5^{\circ}$.

LEMMA 9. Let $a' = 3.5^{a} \in O$, |a'| be special. There is a primitive recursive $\rho(x)$ such that

(i) $\rho(1) = a'$ (ii) if $x \in O$, then $\rho(x) \in O$ and $|\rho(x)| = |a'|$, (iii) if $x <_o y$, then $\rho(x) \preceq \rho(y)$.

Proof. Using the recursion theorem we obtain a $\rho(x)$ satisfying:

$$egin{aligned} &
ho(1) = a' \;, \ &
ho(2^x) =
ho_1(
ho(x)) \;, \ &
ho(3.5^z) =
ho_2(arLambda t
ho(z_t)) \;. \end{aligned}$$

Proof that $\rho(x)$ is the required function is by induction on $x \in O$. To

treat the case $x = 3.5^{z}$ —here the induction hypothesis is that for each $t, \rho(z_{t}) \in O, |\rho(z_{t})| = |a'|$ and $\rho(z_{t}) \preceq \rho(z_{t+1})$. Lemma 8 assures us that for each $t, \rho(z_{t}) \prec \rho(3.5^{z})$; if for some $t, \rho(3.5^{z}) \prec \rho(z_{t})$, the transitivity of \prec would imply that $\rho(z_{t+1}) \prec \rho(z_{t})$, violating the induction hypothesis.

Theorem 3 for special ordinals follows from Lemma 9 by letting A be a subset of O, linearly ordered under $<_o$ and containing a notation for each constructive ordinal and considering $\rho(A)$.

5. Proof of Theorem 4 for special ordinals. Let $\xi = |3.5^{a}|$ be a special ordinal. In the proof of Lemma 6 we constructed a notation $b' = 3.5^{b}$ of ξ determined by a fundamental sequence $\{\xi_{n}\}$ which was in turn defined from a double sequence f(n, t) by equations (26). Here we will define two such double sequences, f(n, t) and g(n, t), such that the notations $b' = 3.5^{b}$ and $c' = 3.5^{c}$ for sequences $\{\xi_{n}\}$ and $\{\zeta_{n}\}$ determined as in equations (26) from f(n, t) and g(n, t) respectively will be incomparable.

We define the functions f(n, t) and g(n, t) in stages; at stage 2s we will define f(n, t) for $n, t \leq s$ and at stage 2s + 1 we will define g(n, t) for $n, t \leq s$. At each stage s we will also define finite sets F_s and G_s of pairs $\langle m, k \rangle$ of integers which will determine partial functions —i.e., if $\langle m, k \rangle \in F_s$ and $\langle m, k' \rangle \in F_s$, then k = k', and similarly for G_s . We give the definitions informally, but it is a routine matter to derive Herbrand-Gödel-Kleene equations for f and g from our instructions.

Basis 0. s = 0. Put $f(0, 0) = a_0$; $F_0 = \{\langle 0, 0 \rangle\}$; $G_0 = \{\langle 0, 0 \rangle\}$. Basis 1. s = 1. Put $g(0, 0) = a_0$; $F_1 = F_0 \cup \{\langle 1, 1 \rangle\}$; $G_1 = G_0 \cup \{\langle 1, 1 \rangle\}$. Even Induction Step 2s + 2.

Case 1. For every pair $\langle m, k \rangle \in F_{2s+1}$ and for every $y \leq 2s + 1$, $\overline{T}_1(m, k, y)$. In this case set:

(27) $\begin{cases} f(n, s+1) = 2 & (n \leq s) ,\\ f(s+1, 0) = a_{s+1} ,\\ f(s+1, t) = 2 & (1 \leq t \leq s+1) . \end{cases}$

Put $F_{2s+2} = F_{2s+1} \cup \{\langle 2s + 2, k' \rangle\}$ where k' is the smallest integer larger than all the second members of the pairs in F_{2s+1} ; put $G_{2s+2} = G_{2s+1} \cup \{\langle 2s + 2, k' \rangle\}$ where k' is the smallest integer larger than all the second members of the pairs in G_{2s+1} .

Case 2. Otherwise. Let m be the smallest integer such that some $k, \langle m, k \rangle \in F_{2s+1}$ and for some $y \leq 2s+1$, $T_1(m, k, y)$; let k and y be the corresponding (unique) k and y.

Subcase 2a. $U(y) = z \leq s$.

For any stage (in particular 2s + 1) and any $x \leq s$ (in particular z) consider the array of values of g(u, v) with $u \leq x$ and $v \leq s$. Put

$$(28) \quad J_{g}(x,s) = \begin{cases} g(0, 0) +_{o} g(0, 1) +_{o} \cdots +_{o} g(0, s) +_{o} \omega_{o} \\ +_{o} g(1, 0) +_{o} g(1, 1) +_{o} \cdots +_{o} g(1, s) +_{o} \omega_{o} \\ +_{o} \cdots \\ & \cdots \\ +_{o} g(x, 0) +_{o} g(x, 1) +_{o} \cdots +_{o} g(x, s) +_{o} \omega_{o} \end{cases},$$

where ω_o is some fixed ordinal notation of ω and the association in the sum is to the left. It is clear that if all the values of g(u, v) for $u \leq x, v \leq x$ are elements of O, then so is $J_g(x, s)$. Put

(29)
$$\begin{cases} f(n, s+1) = 2 & (n \leq s, n \neq k) ,\\ f(k, s+1) = J_g(z, s) ,\\ f(s+1, 0) = a_{s+1} ,\\ f(s+1, t) = 2 & (1 \leq t \leq s+1) . \end{cases}$$

Put $F_{2s+2} = F_{2s+1} - \{\langle m, k \rangle\} \cup \{\langle 2s + 2, k' \rangle\}$, where k' is the smallest integer larger than all the second members of the pairs in F_{2s+1} .

To define G_{2s+2} , first remove from G_{2s+1} all pairs $\langle m', k' \rangle$ with $m' \ge m$; then introduce one pair $\langle m', k' \rangle$ for each $m', m \le m' \le 2s + 2$ in some systematic way, so that if $m' \ne m''$, then $k' \ne k''$, and all the second members of the new pairs are larger than all the second members of the pairs in G_{2s+1} and also larger than z.

Subcase 2b. U(y) = z > s. Give exactly the same definitions as in Subcase 2a, except for the second equation of (29) for which we substitute

$$(30) \quad f(k,s+1) = J_g(s,s) + {}_o a_{s+1} + {}_o \omega_o + {}_o a_{s+2} + {}_o \omega_o + {}_o \cdots + {}_o a_z + {}_o \omega_o.$$

(Remark: the last conditions on the definition of G_{2s+2} , that all new second members be larger than z, will be utilized for this subcase.)

Odd Induction Step 2s + 3. The definitions are symmetric to those in the Even Ind. Step, except for the following differences:

(i) In Subcase 2a we put $J_g(z, s + 1)$ where complete symmetry would suggest $J_f(z, s)$.

(ii) In Subcase 2b we put $g(k, s+1) = J_f(s+1, s+1) + {}_o \omega_o + {}_o \cdots + {}_o a_z + {}_o \omega_o$.

(iii) In Case 2 we define F_{2s+3} by removing from and reintroducing in F_{2s+2} all pairs with first members m' > m (rather than $m' \ge m$).

It is easy to prove by induction on s that for all n, t f(n, t), $g(n, t) \in O$ and $|f(n, t)| < \xi$, $|g(n, t)| < \xi$. Put

YIANNIS N. MOSCHOVAKIS

(31)
$$\begin{split} \xi_0 &= \sum_{t=0}^{\infty} |f(0,t)|, \qquad \qquad \zeta_0 &= \sum_{t=0}^{\infty} |g(0,t)|, \\ \xi_{n+1} &= \xi_n + \sum_{t=0}^{\infty} |f(n+1,t)|, \qquad \qquad \zeta_{n+1} &= \zeta_n + \sum_{t=0}^{\infty} |g(n+1,t)|. \end{split}$$

By a routine construction numbers $b' = 3.5^{b}$ and $c' = 3.5^{c}$ can be defined such that $b' \in O$, $c' \in O$ and for all n,

$$|b_n| = \xi_n$$
, $|c_n| = \zeta_n$.

We will prove that $|b'| = |c'| = \xi$ and that b' and c' are incomparable.

Say that m *F-joins* k at stage s if $\langle m, k \rangle \in F_s$ but $\langle m, k \rangle \notin F_{s-1}$; m *F-leaves* k at stage s if $\langle m, k \rangle \notin F_s$ but $\langle m, k \rangle \in F_{s-1}$. (Similarly with G in place of F throughout.)

Clearly at each stage s, some m F-joins some k. Using this we can show by an induction on s that if m F-joins k at stage s, then k is larger than all the second members of all the pairs in F_t , with t < s. This in turn implies that for a fixed k and in the course of the whole computation there is at most one stage s at which some m F-joins k, and consequently at most one stage s at which some m F-leaves k. Hence for each k there is a t_0 such that for $t \ge t_0$, f(k, t) = 2, since only if t = 0 or some m F-leaves k at stage t is $f(k, t) \neq 2$, and we have

(32)
$$\sum_{t=0}^{\infty} |f(k,t)| = |f(k,t_0)| + \omega < \xi$$
 ,

since ξ is special. Now a simple induction on n shows that for each $n, \xi_n < \xi$, and since clearly $|a_n| < \xi_n$, we have proved that $\lim \xi_n = |b'| = \xi$.

(Exactly the same considerations for g prove that $|c'| = \xi$.)

We prove by induction the following proposition depending on m: m F-joins only finitely many k's, and G-joins only finitely many k's.

If m = 0 this is trivial since $\{0\}(x)$ is the totally undefined function.

If m F-joins k at stage s either m = s or there is an m' < m such that m' G-leaves some k' at stage s; by ind. hyp. each m' < m G-joins some k' only for finitely many x's, hence each m' < m G-leaves some k' only for finitely many s's, which completes the proof of half the induction step.

If m G-joins k at stage s, either m = s or there is an $m' \leq m$ such that m' F-leaves some k' at stage s; we now use the ind. hyp. and the first half of the ind. step which has been already proved to see that this can only happen finitely often.

For a fixed m, let k be the largest integer such that m F-joins k and assume that $\{m\}(k) \simeq z$ is defined. An easy induction on m shows that there must be some stage 2s + 2 where Case 2 applies with this

m and k, and z = U(y). We prove that $\xi_k > \zeta_z$.

Subcase 2a. Since $f(k, s + 1) = J_g(z, s), \xi_k > |J_g(z, s)|$. We assert that if $u \leq z, v > s$, then g(u, v) = 2. Because if $g(u, v) \neq 2$, then some m' G-leaves u at stage 2v + 1 > 2s + 2; since at stage 2s + 2 each $m'' \geq m$ G-joins some k'' > z, we must have m' < m; but this implies that m F-joins some k' > k, contrary to hyp. that k is the largest integer that m F-joins.

Now the above implies that $\zeta_z = |J_g(z,s)| < \xi_k$.

Subcase 2b. Now we can prove that if $u \leq s$ and v > s or $s < u \leq z$ and v > 0, then g(u, v) = 2, by exactly the same argument. Hence $\zeta_z = |f(k, s + 1)| < \xi_k$.

For a fixed m let k be the largest integer such that m G-joins k and assume that $\{m\}(k) \simeq z$ is defined. As before there must be some stage 2s + 3 where case 2 applies for this m and this k. We give one of the cases of the proof that $\zeta_k > \xi_z$.

Subcase 2a. We assert that if $u \leq z$, v > s + 1, then f(u, v) = 2. Because if $f(u, v) \neq z$, then some m' F-leaves u at stage 2v > 2s + 3; since at stage 2s + 3 each m'' > m F-joins some k'' > z, we must have $m' \leq m$; but this implies that m G-joins some k' > k, contrary to hyp. that k is the largest integer that m G-joins.

The above remarks complete the proof that b' and c' are incomparable. Because if b' < c', then there is an m such that for each k, $|b_k| \leq |c_{(m)(k)}|$, i.e., $\xi_k < \zeta_{(m)(k)}$, which we showed to be false if k is the largest integer that m F-joins, and similarly for c' < b'.

6. Reduction of the general to the special case. In this section we prove that if $\xi = \eta + \zeta \ (\zeta \neq 0)$, then $\mathscr{L}(\xi)$ and $\mathscr{L}(\zeta)$ are similar and that if ξ is $\neq 0$ and not of the form $\eta + 1$ or $\eta + \omega$, then there is a unique special ordinal ζ such that for some η , $\xi = \eta + \zeta$.

LEMMA 10. There is a primitive recursive $\delta(a, b)$ such that if $a \leq_0 b$, then $\delta(a, b) \in O$ and

(33)
$$|a| + |\delta(a, b)| = |b|$$
.

Proof. We obtain via the recursion theorem a primitive recursive $\delta(a, b)$ satisfying the following conditions:

$$\begin{array}{l} \delta(a, a) = 1 , \\ \delta(a, 2^b) = 2^{(a,b)} , \\ \delta(a, 3.5^z) = 3.5^y , \quad \text{where for each } t, y_t \simeq \delta(a, z_{\iota(a,z)+t}) , \\ \delta(a, x) = 0 \qquad \text{otherwise} \end{array}$$

(recall that $\iota(a, z)$ is partial recursive and such that if $a <_o 3.5^z$, then $a \leq_o z_{\iota(a,z)}$).

We prove by induction on $b \in O$ the following statement: if $a \leq_o b$, then $\delta(a, b) \in O$ and for each x, if $a \leq_o x <_o b$, then $\delta(a, x) <_o \delta(a, b)$. The following cases arise: (1) b = a, (2) $b = 2^a$, (3) $b = 2^c$ and $a <_o c$ and (4) $b = 3.5^z$ and for some $t, a \leq_o z_t$.

Case 3. By Ind. Hyp. $\delta(a, c) \in O$, hence $\delta(a, b) = 2^{\delta(a,c)} \in O$. If $x <_o b$, either x = c or $x <_o c$; in the first case it is clear that $\delta(a, c) <_o \delta(a, b)$, while in the second case the Ind. Hyp. implies that $\delta(a, x) <_o \delta(a, c)$, hence $\delta(a, x) <_o \delta(a, b)$.

Case 4. Since $a <_o 3.5^z$, $\iota(a, z)$ is defined and for each $t, a <_o z_{\iota(a,z)+t}$. Thus the Ind. Hyp. implies that for each t, y_t is defined, $y_t \in O$ and $y_t <_o y_{t+2}$, hence $\delta(a, b) \in O$. If $x <_o 3.5^z$, then for some $t, x <_o z_{\iota(a,z)+t}$, hence by Ind. Hyp. $\delta(a, x) <_o \delta(a, z_{\iota(a,z)+t}) = y_t <_o \delta(a, b)$.

Equation (33) is proved easily by induction on |b|, using the continuity of ordinal addition, e.g.,

This lemma allows us to represent a constructive limit ordinal as an infinite sum of smaller ordinals,

$$|3.5^{z}| = |z_{0}| + |\delta(z_{0}, z_{1})| + |\delta(z_{1}, z_{2})| + \cdots$$

LEMMA 11. Assume that $\xi = \eta + \zeta$, where ζ is a limit ordinal. Then $\mathcal{L}(\xi)$ and $\mathcal{L}(\zeta)$ are similar.

Proof. Let u be a fixed notation in O for η . For each $\alpha' = 3.5^a \in O$ we define by induction

$$g(0) = u + {}_o a_{\scriptscriptstyle 0} \ g(n+1) = g(n) + {}_o \, \delta(a_{\scriptscriptstyle n}, a_{\scriptscriptstyle n+1}) \; .$$

A routine construction yields a primitive recursive $\tau(a')$ such that if $a' = 3.5^a \in O$, then $\tau(a') = 3.5^a \in O$ and for each $n, x_n = g(n)$. Notice that by the definition of δ ,

$$|x_n| = \eta + |a_n|.$$

It is clear that if $|a'| = \zeta$, then $|x'| = \lim_n |x_n| = \eta + \zeta = \xi$. Assume that $|b'| = \zeta$ and a' < b', i.e., there is a general recursive f(n) such that for each $n, |a_n| \leq |b_{f(n)}|$. Now if $\tau(b') = 3.5^y$,

 $|x_n| = \eta + |a_n| \le \eta + |b_{{}^{f(n)}}| = |y_{{}^{f(n)}}|$,

hence $\tau(a') \prec \tau(b')$.

Assume that $\tau(a') < \tau(b')$, i.e., there is a general recursive f(n) such that for each $n, |x_n| \leq |y_{f(n)}|$. Then $\eta + |a_n| \leq \eta + |b_{f(n)}|$, i.e., $|a_n| \leq |b_{f(n)}|$ which proves that a' < b'.

We have shown that $\tau(a')$ induces a mapping from $\mathscr{L}(\zeta)$ into $\mathscr{L}(\xi)$ which is a similarity imbedding. To complete the proof we must show that this mapping is onto, i.e., that given $y', |y'| = \xi$, there is an $a', |a'| = \zeta$, such that if $\tau(a') = x'$, then $x' \sim y'$.

If $|y'| = \xi$, there is a unique $v <_o y'$ such that $|v| = \eta$, and some t such that $v <_o y_t$. Put

$$h(0) = \delta(v, y_t) \; , \ h(n+1) = h(n) +_o \delta(y_{t+n}, y_{t+n+1})$$

and choose $a' = 3.5^a$ so that for each $n, a_n = h(n)$. Surely $a' \in O$ and since for each $n, \eta + |a_n| = |y_{t+n}|$, we have $|a'| = \lim_n |a_n| = \zeta$. If $x' = \tau(a')$, then for each n we have

$$|x_n|=\eta+|a_n|=|y_{t+n}|$$

which implies $x' \sim y'$, which completes the proof.

LEMMA 12. Let $\xi > 0$ be given and assume that ξ is not of the form $\eta + 1$ or $\eta + \omega$. Then there is a unique special ordinal ζ such that for some $\eta, \xi = \eta + \zeta$.

Proof. Let ζ be the smallest nonzero ordinal for which there is an η such that $\xi = \eta + \zeta$. Our assumptions imply that $\zeta > \omega$. If ζ is not special, there exist $\zeta_1, \zeta_2 < \zeta$ such that $\zeta_1 + \zeta_2 \ge \zeta$. The continuity of ordinal addition implies that there exist $\zeta_1, \zeta_2 < \zeta$ such that $\zeta_1 + \zeta_2 = \zeta$ (hence $\zeta_2 \ne 0$); but this is turn implies that $\xi = \eta + \zeta_1 + \zeta_2$ with $0 < \zeta_2 < \zeta$, which violates the defining condition of ζ .

To prove that ζ is unique assume that $\xi = \eta_1 + \zeta_1 = \eta_2 + \zeta_2$ and without loss of generality further assume $\eta_1 \leq \eta_2$. Then there is a θ such that $\eta_1 + \theta = \eta_2$ which implies $\eta_1 + \zeta_1 = \eta_1 + \theta + \zeta_2$, i.e., $\zeta_1 = \theta + \zeta_2$. Now if ζ_1 is special we must have $\zeta_1 = \zeta_2$, which completes the proof.

7. Open problems. We do not have answers for the following questions:

1. Is $\mathcal{L}(\xi)$ for special ξ an upper semi-lattice, a lower semi-lattice or a lattice?

YIANNIS N. MOSCHOVAKIS

2. Does $\mathscr{L}(\xi)$ have a minimum for each special ξ ? It is easy to show that $\mathscr{L}(\omega^2)$ has a minimum; we conjecture that $\mathscr{L}(\omega^3)$ does not.

3. If ξ and ζ are special and $\xi \neq \zeta$, is it possible that $\mathscr{L}(\xi)$ and $\mathscr{L}(\zeta)$ are similar? We conjecture that it is not.

References

1. S. C. Kleene, *Introduction to metamathematics*, Van Nostrand, New York and Toronto, North-Holland, Amsterdam, and Noordhoff, Groningen, 1952.

2. _____, Arithmetical predicates and function quantifiers, Trans. Amer. Math. Soc. **79** (1955), 312-340.

3. ____, On the forms of the predicates in the theory of constructive ordinals (second paper), Amer. J. Math. 77 (1955), 405-428.

4. S. C. Kleene and E. L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. (2) 59 (1954), 379-407.

5. John Myhill, Creative sets, Z. Math. Logik Grundlagen Math. 1 (1955), 97-108.

6. E. L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284-316.

7. C. Spector, Recursive well-orderings, J. Symb. Logic 20 (1955), 151-163.

Received December 26, 1964.

UNIVERSITY OF CALIFORNIA, LOS ANGELES