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ON CLOSED MAPPINGS, BICOMPACT SPACES,
AND A PROBLEM OF P. ALEKSANDROV

A. ARHANGEL'SKΠ

The purpose of this paper is to show, under very general
circumstances, that if f:X-*Y is a closed map, then f~ιy
must be bicompact for "most" yeY. Two theorems of this
sort are obtained, one of which is then used to answer a
question of P. Alexandroff on the effect of closed maps on
countable-dimensional spaces.

If /: X —> Y is a closed map, then it is known that, under suitable
assumptions, f^y has a bicompact boundary for all yeY (see I.
Vaϊnsteϊn [19], A. H. Stone [18], and K. Morita and S. Hanai [12]),
and f~*y itself is bicompact for "most" yeY (see K. Morita [11] and
the author [4]). In §§ 1 and 2 of this paper, we prove two theorems
of the latter kind, whose main feature is that they require minimal
restrictions on X and no restriction at all (other than being T\) on Ym

In §3, we give some applications of the results from §2. The
most interesting among them is the following, which gives a complete
answer to a question of P. Alexandroff, (Terminology is defined below).

THEOREM (3.1). Let X be a countable-dimensional space with a
countable net, and let f; X—+ Y be a closed mapping of X onto some
uncountable-dimensional space Y. Then Yx — {ye Y\ card (f^y) ^ c}
is uncountable-dimensional.

Observe that Theorem 3.1 is new even in case X is compact
metric. In that case, E. Skljarenko [15] has shown that Yx is not
void, but his proof gives no further information about Yu Our proof
is based on entirely different ideas.

Let me say here that I am very grateful to P. Alexandroff for
valuable discussions about this question and to E. Michael for helping
with the translation of this paper.

Notation and terminology. All spaces are completely regular
(often is it sufficient to suppose TΊ); all mappings are continuous, and
all coverings are open. We call a family 7 = {S} of sets S £ X&net
in X, if, for every x e X and each open U containing x, there exists
an Se y with xe S £ U (see [3]). We write card A for the cardinal-
ity of A, and c for the cardinality of the continuum. If 7 is a family
of subsets of a space X, and if xe X, then jx denotes the union of
all elements of 7 containing x. As usual, we call a space countable-
dimensional if it is a countable union of subspaces with dim = 0;
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otherwise, we call the space uncountable-dimensional. We write βX
for the Stone-Cech bicompactification of X, and we call X a Gδ-space
if it is a 6rδ in βX. We call X point-paracompact if every (open)
covering of X has an (open) point-finite refinement. Finally, X is
called a k-space if a subset [ / g l is open whenever its intersection
with every compact K §Ξ X is open in if.

1* Closed mappings of point-paracompact Gg-spaces*

THEOREM (1.1). Let X be a point-paracompact G8-space, and let
f: X—> Y be a closed map. Then

where Yn is discrete in Y for all n, and f~lfy is bicompact for all

yeY0.

For the proof of this theorem, we need

LEMMA (1.2). Let X be a k-space, let 7 be a point-finite covering
of X, and let f: X—+Y be a closed mapping of X onto some Y.
Then

N—{yeY\ no finite 7' S 7 covers f~ίry)

is discrete in Y.

Proof. Suppose that some y e Y is an accumulation point for N.
Then the set iS^ = N\y is not closed. Since X is a &-space and
/ a closed mapping, 7 is a fc-space [8]. Therefore there exists a
bicompact F g Y such that F Π Nx is not closed, and hence is infinite.
Let {yn} be a sequence of distinct points from F Π Nx. Since F is
bicompact, there exists an accumulation point y' for this sequence,
which we may suppose different from all yn. We let An — f~xyn for
n = 1, 2, . Next we shall define a sequence {xn}, with xn e An, where
for x1 we take any point from Alm Suppose the points xk are defined
for all k < m. We take for xm any point of the set An\Γ\?Ji ΎXΪ, this
set is not empty by the very definition of N.

Now we prove that the sequence {xn} is discrete. Consider any
point x e X. We only have to consider the case where yx Π {xn} ^ 0 .
Let xmejx; then x e yxm and U — jxm is a neighborhood of x; by the
definition of xn, this U can contain only points xn with n ^ m. Thus
the discreteness of {xn} is proved.

It follows that P={Jζ=1xn is closed, while the set Q = fp=z
\Jn=i Vn is not (since y' e Q\Q). This contradiction completes the proof
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of the lemma.
We now proceed to the

Proof of (1.1). Let {Gn} be a countable family of open subsets
of βX such that X — Π~=i Gn. We write yn for some covering of
X(by open sets in X) such that the closure in βX of each element
of 7 is contained in Gn. We take a point-finite refinement λn of yn.
For n = 1,2, •••, let

yw — {y e YI n o finite λ* £ λn covers Z"1 /̂} .

It is known [5] that every (?δ-space is a &-space. Thus, by Lemma
(1.2), Yn is discrete in Y. We write Yo = Y\\J^i Yn.

We now prove that f~xy is bicompact for every y e Yo. For each
n there exists a finite \f

n g λw, say λi = {T̂ n | i = 1, , &(w)}, such
that /-1!/ £ U*=*i ̂ " τ h e n ^n, the closure of \J\^ V? in βX, is
bicompact, and f~ιy £ ^ C GΛ. Therefore

where F is bicompact. As Z"1?/ is closed in X, it follows that f~xy
is bicompact too. This completes the proof of (1.1).

REMARK. AS the proof shows, a result analogous to (1.1) could
be obtained for /c-spaces X which, for some cardinal r, are Gδ(r)-spaces
(i.e. an intersection of τ open subsets of βX). In particular, taking
τ = 1, we conclude: If f: X —» Y is a closed mapping, and if X is
point-par acompact and locally bicompact, then the set of all yeY
such that f~xy is not bicompact is discrete in Y. This is a slight
generalization of a theorem of K. Morita [11], whose proof needs the
assumption that X is paracompact and locally bicompact.

In case X is, a Lindelof space, the conclusion in (1.1) can be
simplified.

COROLLARY (1.3). If X is a Lindelof Gh-space, and if f\ X—> Y
is a closed map, then f~ιy is bicompact for all but countably many
yeY.

Proof. Since a (regular) Lindelof space is paracompact, and hence
surely point-paracompact, Theorem (1.1) is applicable. Now Y, as the
continuous image of the Lindelof space X, is itself Lindelof, and hence
all its discrete subsets are countable. Hence the set (J»=i Y* m (l l)
is countable, and that proves the corollary.

2* Closed mappings of spaces with countable net* The class
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of spaces with countable net (see the introduction for definition of net)
contains all separable metric spaces and all their continuous images.
Spaces with countable net are Lindelδf, and hence paracompact.

The main result of this section (Theorem (2.1)) is similar to
Corollary (1.3), but the hypotheses are different. Note that the
hypotheses of (1.3) are satisfied by complete separable metric spaces,
while the hypotheses of (2.1) are satisfied by all separble metric
spaces.1}

THEOREM (2.1). If X is a space with countable net, and f:X-+Y
is a closed mapping, then f~lry is bicompact for all but countably
many yeY.

The proof is based on Lemma (2.2) below, which will also be used
in the proof of Theorem (2.3). We will use the following terminology:
If X is a space with a net 7, and if xe X, then an x-sequence is a
sequence {Sn(x)}, with x e Sn(x) e 7 for all n, such that any sequence
{xn} with xn e Sn(x) for all n has an accumulation point in X.

LEMMA (2.2). Let f:X—>Y be a closed mapping of a normal
space X with net 7, such that for each yeY there exists an xe f~λy
possessing an x-sequence {Sn(x)}. Let Yt be the set of all yeY such
that f~γy is not countably compact. Then card Yx ^ card 7.

Proof. Without loss of generality, we may suppose that S1f]S2e 7
for every pair Su S2e 7. We define YQ as the set of all yeY such
that y = Π {/(£) I Se 7'} for some finite subcollection 7' ϋ 7. Clearly
card YQ S card 7 (if 7 is infinite). Consider any point ye Y\Y0. Our
purpose is to show that f~ιy is countably compact. Then the conclu-
sion of the theorem will follow.

Let x e f~xy be a point with an a -sequence {Sn(x)}. Suppose that
F = f~xy is not countably compact, and pick xux2 is F such that
xt is discrete. By an obvious induction (using the normality of X), we
can construct a discrete sequence {Ut} of open sets such that x{e Z7<.
Now, again by induction, we define three sequences {xn}, {xr

n}, and
{0nx}, where xn, x'neX and 0nx is a neighborhood of x, such that
(a) for n > k, 0kx contains xn;
(b) for n £ k, X\(0kx)- 3 f^fx%;
(c) for all n, xneSn(x);
(d) for all n > 1, x'ne Un;
(e) for all n, fxn = fx'n .
We take xλ to be any point of X\F, and for 0^ any neighborhood of

1 For separable metric X, (2.1) also follows from a recent result of N. Lashnev.
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x which satisfies (b) (with n — k = 1). Suppose that xn, x'n, and 0nx
are already defined for n Sk so as to satisfy (a)-(e). Since 7 is a
net, there exist S, S' e 7 such that # fc+16 S £ 0Λa? and % + 1 G S ' £ Uk+1.
Let S* = S n S4+I(α>). Then S* e 7 and (/S* n fS')\yΦ<Z).

Let #Λ + 1 e S*, a?J.+1 e S' be points such that /a?fc+1 = /#i+i =£ y.
Finally, we take for 0k+1x some neighborhood of x such that

x e 0A+1a? S (Ot+1aj)-

Clearly conditions (a)-(e) are satisfied, and we can go further in our
induction.

Since {Sn(x)} is an ^-sequence, the set P — {xn} has in X an
accumulation point, say α?*. The conditions imply that x*$f~1fP.
Then fx* e (/P)"\/P, and hence / P is not closed. On the other hand,
fP — fQ9 where Q = {x'n}. Since α£e Ϊ7Λ, and the family Un is discrete,
Q is closed in X. Thus /Q is closed in Y, and we have a contradic-
tion which completes the proof of (2.2).

Proof of (2.1). In a space X with a countable net 7, every a e l
has an α -sequence, namely all elements of 7 containing x. Also, as
observed earlier, such an X is paracompact, and hence it is normal
and all closed, countably compact subsets are bicompact. We therefore
see that (2.1) follows from (2.2).

In the following theorem, a space X is of point-countable type
(see [5]) if it is the union of bicompact subsets K having a countable
base of neighborhoods {Un} (i.e., if V^K is open, then KξΞ: ?7W §Ξ V
for some n).2) All first-countable spaces, and all p-spaces (in the sense
of [5]) are spaces of point-countable type.

THEOREM (2.3). Let X be a normal point-paracompact space of
point-countable type, with a net 7 of cardinality ^ τ. If f: X—+ Y
is a closed mapping, and

Yi — {yε Y\ f~xy is not bicompact} ,

then card Y± S τ.

Proof. Let us show that every xe X has a 7-sequence {Sn(x)},
so that (2.2) applies. Pick a compact K£ X such that xe K and K
has a countable base of neighborhoods {Un}. Clearly, if we pick Sn(x)
so that xeSn(x) £ Un, then {Sn(x)} is an a -sequence. Applying (2.2),
we have the conclusion of the theorem since, in a point-paracompact
space, closed countably compact subsets are bicompact.

2 For point-paracompact spaces, the spaces of point-countable type are the same
as the q-spaces in the sense of E. Michael [10].
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3* An application*

THEOREM (3.1). If X is a countable-dimensional space with
countable net 7, and f: X—> Y is a closed mapping onto an un-
countable-dimensional space Y, then

Y1 = {ysY\ card (f^y) ̂  c}

is uncountable dimensional.

The proof is based on two lemmas.

LEMMA (3.2). Let f: X—*Ybe a closed mapping of a space X
with a countable net 7 = {Si} such that, for each yεY, the set f~xy
contains a point which is isolated in f~λy. Then Y is a countable
sum of subspaces, each of which is homeomorphic to a subspace of
X.

Proof. Without loss of generality, we may suppose that all S{ e
7 are closed in X. For each i, let ft = f\ S«, and let

Let Yt = fXif and let us show that X* is homeomorphic to F< and

Y=U7-iY<
Since / is closed, so is its restriction ft to the closed set Si#

Now X, = fΓ1 Yi, so if /,: X, — Y{ is defined by /« = f?\ Xif then /,
is also closed. Since /< is clearly continuous and one-to-one, it is a
homeomorphism.

It remains to show that Y — U£i Y% Let | / e 7 , and let x be
an isolated point of f^y. Then Ox = X^f^y^) is a neighborhood of
x. Since 7 is a net in X, there exists an Sfc e 7 such that x e S ^ g Ox.
Then x = Sfc Π Z"1?/, and thus x e Xk. It follows that

y = fxefkXk= Γ f c g U r ^ .

This completes the proof of (3.2).

LEMMA (3.3). If f\X—>Y is a closed mapping of a space X
with a countable net 7, such that card (f~λy) < c for all y&Y, then
Y is a countable sum of subspaces each of which is homeomorphic
to a subspace of X.

Proof. By (2.1), Y = Yo U Yly where Yo is countable and f~"y is
bicompact for each yeYlm Consider /i = /|-3Γi, where X1 = f~1Y1.
It ye Ylf then card /r 1^ < c, so frιy has an isolated point. Thus Xlr
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/i satisfy the condition of (3.2), and hence Yλ is a countable sum of
subspaces which are homeomorphic to subspaces of Xt £ X. But Yo

is a countable sum of points, and hence the conclusion follows.

Proof of (3.1). Let Yo = {ye Y\ card f~xy < c}. Consider /0 =
/ | Xo, where XQ = Z " 1 ^ . The map /0: Xo~> Γo satisfies all the condi-
tions of (3.3). Since X is a space with a countable net, X is
hereditarily Lindelδf. Hence every subspace of X is countable-
dimensional [17]. By (3.3), Yo is thus also countable-dimensional.
Therefore Y\Y0 is uncountable-dimensional, and the proof of (3.1) is
complete.

Theorem (3.1) is new even for compact metric X, where it can
be rephrased as follows:

COROLLARY (3.4). If f: X—> Y is a mapping of a countable-
dimensional compact metric space X onto an uncountable-dimensional
space Y, then {yeY\ card f~ιy — c} is uncountable-dimensional.

REMARK 1. Another application of (2.2): A space is called dyadic
[14] if there exists a dyadic bicompact extension of this space. We
call a dyadic space nowhere countable if there are no nonempty
countable open sets in it.

THEOREM (3.5). If a nowhere countable dyadic space Y is a
closed image of a separable metric space, then there exists a countable
base in Y.

Proof. By (3.1), there exists a countable set 7 0 £ 7 such that,
if r l = Y\Y0, Xλ^f-ιYu and f1:X1^Y1 is defined by/ 1 = /|-X'1,
then fλ is a perfect map. Hence Y1 is a space with countable base.
Since Y is nowhere countable, YΊ is dense in Y. Hence Y is
metrizable, by a theorem of B. Efimov [7] This completes the proof .3)

REMARK 2. The following generalization of a theorem of
J. Nagata [13] could also be proved.

THEOREM (3.6). Let X be a compact metric space, and f: X—• Y
a map such that f~ιy is finite for all ye Y. Then, for each
countable-dimensional X' S X, the space Yf = fXf is countable-
dimensional.

This theorem shows a simple way for constructing nondyadic spaces.
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