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QUASIMEASURES AND OPERATORS COMMUTING
WITH CONVOLUTION

G. I. GAUDRY

Let G be a Hausdorff locally compact abelian group. In
this paper we characterise completely those continuous linear
operators T from C0(G) (the space of continuous functions with
compact supports endowed with the inductive limit topology)
into M(G) (the space of measures with the vague topology of
measures) which commute with convolution: T(f*g) = (Tf)*g.
They are represented by convolution with a "quasimeasure".
As a corollary of this theorem, we have the result that the
space of multipliers from Lp(G)(p Φ oo) to Lq(G) is isomorphic
to a subspace of the space of quasimeasures.

The quasimeasures are defined as the elements of the dual
of a certain inductive limit of Banach spaces. We develop
some of the theory of pseudomeasures and of quasimeasures
and establish the structural relationship of quasimeasures to
pseudomeasures.

Throughout, G will denote a Hausdorff locally compact abelian
group, X its character group. M, Mbd, Mc will denote the spaces of
measures, bounded measures and measures with compact supports
respectively. Where necessary, we shall write M(G), M(X) etc. to
distinguish the spaces of measures etc. over G and X. We shall write
εα for the Dirac measure at the point a.

Several function spaces will be of importance:
C will be the space of continuous complex-valued functions. Cc

with denote the space of continuous functions with compact supports,
regarded topologically as the internal inductive limit of the spaces
Cc>κ (the space of continuous functions with support in K, K compact,
and the usual sup norm topology). The support of a function feC
will be denoted [/].

Lp(l ^ v ^ °°) will be the Lebesgue spaces determined by Haar
measure, the elements being equivalence classes as usual. The Haar
measures dx, dχ on (?, X respectively will be assumed normalised so
that PlanchereΓs Theorem holds.

A(G) will denote the space of Fourier transforms of functions
integrable over X. By virtue of the semi-simplicity of L\X), A(G)
is isomorphic to U(X). We define the topology of A(G) so as to
make it a Banach algebra under point wise multiplication as follows:

(feA(G))

AC(G) is the subspace of A(G) formed of functions whose supports are
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compact. Note that AC(G) is dense in A(G).
/ v will denote the reflection of a function /.

In this paper, we characterise completely those linear mappings
T: Cc —> M, continuous for the inductive limit topology on Cc and the
vague (σ(M, Cc)) topology of measures on M, which commute with
convolution:

T(f*g) = (Tf)*g (f,geCβ).

In order to do this, we introduce the concept of quasimeasure.
In Section 2, some of the basic properties of quasimeasures are
established.

1* Pseudomeasures and their properties* The concept of
pseudomeasure is already well-known (Kahane [9]). For completeness,
we set down the definition and derive several important properties of
pseudomeasures.

DEFINITION 1.1. We denote by P(G) the dual of A(G) (with its
topology as defined above). The elements of P(G) are called pseudo-
measures.

The Fourier transform of σ e P(G) is defined as follows: σ is the
continuous linear form on U(X) given by

(1.1.1) d{f) = <7(/v) (fe U{X)) .

Note that σ can be identified with an element of L°°(X). This will
often be done. We define the convolution of two pseudomeasures via
the Fourier transform:

(1.1.2) (tfi*tf2r = <?i 2̂ .

With this definition of multiplication and the topology as the strong
dual of A(G), P(G) is, under the Fourier transform, isometrically isomor-
phic to L°°(X).

Note further that Mbd(G)d P(G) and that we can easily define
multiplication of a pseudomeasure by a Fourier-Stieltjes transform of
a bounded measure:

(βσ)(f) = σφf) (σ e P(G), μ e AΓM(X)f fe A(G)) .

It is necessary to be able to define the support of a pseudomeasure
and in order to make this definition, we establish a lemma on partitions
of unity for A(G).

LEMMA 1.2. Suppose {Ωi\iei is a cover of G by open sets. Then
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there exists a locally finite family {fj}jej of functions in AC(G) such
that to each je J, there exists at least one ie I with [fd] c Ωi1 and
such that 0 S f3-(x) ^ 1, Σoejfj(χ) = 1 everywhere in G. (If the
original cover is a locally finite cover by open relatively compact
sets, J may be chosen the same as I and the f{ with [f{] c Ω{ etc.)

Proof. G is locally compact, so there exists a cover {Ω\r}veif of
G by open relatively compact sets such that for each if e Γ, there is
at least one ie I with Ω\, c Ω{. Again, every locally compact To group
is paracompact (Hewitt and Ross [7], Th. 8.13). Thus, we can find a
locally finite cover {Ωγ}jej of G by open sets such that, for each j e J,
there is at least one ir e Γ with Ω1/ c Ω\,. Then the sets Ωf are relatively
compact, and {Ωγ}jej is a locally finite cover of G by open relatively
compact sets. Now choose two further open covers of G, say {Ω]11}^^,
{flΠ ej such that

Ω]vaΊϊψcfifcflfcΰf (jeJ) .

This choice is certainly possible (Bourbaki [1], Section 4, Th. 3).
For each j e J, choose φd e A*(G) with φά = 1 on Ω1/', φά — 0 outside

Ω]11 (Rudin [lθ"|, Th. 2.6.2). Then the family {φ3)άej is locally finite.
Write fj — ψj/Σφj (Σφό > 0 since {£?JF}iej covers G). In order to show

fj e AC(G) it suffices to show 1/Σφd is, on Ω"1, the restriction of an
element of A(G). Ω1/1 is compact, and {φ3)$ej is locally finite; so there
are only a finite number, say φiv , φjn of members of {ψj}jej which
are not identically zero on Ω)n. Further, Σt=iφjv > 0 on Ω1/1, and
Σφh = φe A(G). Thus it suffices to show that, it K is a compact
subset of G, if φ e A(G) and if φ > 0 on K, then on K, 1/φ = f for
some f e A(G).

Consider then the quotient Banach algebra B = L^X)/^, where
Io is the closed ideal of functions in U(X) whose transforms vanish
on K. B is isomorphic to the algebra of restrictions to K of functions
in A(G). Its maximal ideal space is K. But φ > 0 on K, so φ \ K is
invertible, whence the desired result.

DEFINITION 1.3. We say a pseudomeasure σ is zero on an open
s e t f l c G if σ(f) = 0 for all feA(G) with [f]czΩ. Using 1.2 and
the above definition, we define the support of a pseudomeasure.

DEFINITION 1.4. The support of a pseudomeasure σ e P(G), denoted
[σ] is defined as the complement of the largest open set on which σ
vanishes.

Note that the support as defined in 1.4 coincides with the support
of a continuous function as usually defined, so there is no confusion
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in the notation [σ].
It is of interest to be able to characterise the pseudomeasures

with point support, and we have the expected result:

THEOREM 1.5. If σ is a pseudomeasure with point support {a},
then σ — λεα for some scalar λ.

Proof. Since σ is a pseudomeasure on G, we have

\σ(?)\^M\\f\\x (feU(X)).

Suppose [σ] = {0}. Now if /(0) = 0, ε > 0, there exists keL1 with [k]
in an arbitrarily small neighbourhood of 0, k = 1 on some neighbour-
hood of 0, || k ||x < 2 and | | / * k W, < ε/M (Rudin [10], Th. 2.6.3). Then
σ(fίc) = σ(f) since [σ] = {0}, and

\σ(fίc)\£M\\f*k\\ί<e.

Hence σ(/) = 0.
Consider the continuous linear form on A(G) defined by ε0: eo(/) =

/(0). Write iSΓ= {/eA(G):/(0) = 0}, the null space of ε0. By our
above argument, σ(N) = 0. Hence (Bourbaki [2], Section 4, Th. 1)
σ — λε0 for some scalar λ.

2* Quasimeasures and their properties*

DEFINITION 2.1. Suppose K a compact subset of G. We define
DK(G) as the following vector space of continuous functions with its
associated topology.

DK(G) = {ue CC(G): u = J^f^giffi9gie Ce,κ(G) and
Σ Γ I I Λ I U I I f l r * I U < <*>}

DK(G) is normed as follows:

Λ, Λ e C β Λ (G) and Σ IIΛ IU II ft IU < - } .

Evidently, Dκ(G)(zCc,κ+κ{G) and | |w|U ̂  pκ \\U\\DK where ^ is the
measure of K.

DEFINITION 2.2. We define D(G) as the internal inductive limit of
the spaces DK(G).

DEFINITION 2.3. The elements of Df(G), the dual of D(G), are
called quasimeasures. (Thus, s is a quasimeasure on G if and only if
s is a linear form on D(G) and s | DK(G) is continuous for the topology
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of DK(G), as defined in 2.1, for each compact subset K of G.)

THEOREM 2.4. DK(G) is complete.

Proof. Suppose that (un)T is a Cauchy sequence in DK(G). It
will be sufficient to show that a subsequence of (un) converges to an
element of DK{G). Without loss of generality then, we may suppose
that || un+ι - un || Dκ £ 1/2- (w = 1, 2, . •). Write |[ ux \\ Dκ = C. We
may also write the following expansions:

n+1 n Σ/n+l.* * 9n+Uk (^ = 1, 2,

with

and

Σ I I A+i.* IUII 9n+uk IU < T^-r (n = l , 2,

2
Σ I I A+i.* IUII 9n+uk IU < T ^
A=l 2

Define

^ = /ll * flfll + /l2 * 012 + Λl * 021 + /si * 031 + * * *

Clearly, u e DK(G) since

| | / π l | c o | k 1 1 | U + | | / 1 2 | U | | 0 1 2 | | O o + . . . < C + 3 .

We now show that M % - + M in Dκ. Given ε > 0, choose a natural

number n0 such that Σ?=n ίβr~' < s (n > n0); if n > n0, then

u - ^ w + 1 = w — [ ( w n + 1 — w») + ••• + (w 2 - MO + u j
= Jn + 2,l * g%+2,l ~i~ Jn+2,2 * 0ίl+2,2 ~Γ / w + 3,l * 0W+3,1 +

and

1

< Σ -^zr < ε

So ww—>^ in DK(G).
We may now prove the following theorem.

THEOREM 2.5. D(G)czAc(G),D(G) is dense in Ae(G), hence is
dense in A(G), and the topology of D(G) is stronger than that induced
by A{G).
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Σ
Proof. Suppose that u e DK{G), u = Σ /;*#*> /*> 0<e £*>*

IIΛIUIIί/ίlU< °° Write 8n = Σ Γ Λ * Λ , so that s w eA,(G), and
sn—>u in DK(G). Also sn-+u uniformly.

It follows from Theorem 1.6.3 of Rudin [10] that sne A(G). Now

Σ 11Λ I It 11 ft I It (by Holder's inequality)
n+1

Σ II fi lit IIΛ lit (Plancherel ' s Theorem)

where λ^ is a constant. So || sm - sw || 4 ( f f ) S Xκ Σϊ+i ll/< IU lk< IU and
(sw)Γ is a Cauchy sequence in A(G). Hence sn—>v say in A(G) since
A(G) is complete; so sn —> v uniformly. Hence u ~ v. Since the
elements of D(G) have compact supports, we have shown that
D(G) c A C ( G ) . F u r t h e r , || u \\Λ{σ) = l i m || sn \\Λ{m ^ XKJ^T \\A IU II Λ I U ,
and we have then that ||w|U#) ^ λ^ || u \\Dκ^)m. this implies that the
topology of D(G) is stronger than that induced by A(G).

To prove that D(G) is dense in AC(G), suppose t h a t / G AC(G) with
[/] = K, a compact set. Write (φβ) for an approximate identity in
U(G) with ||<pβ||i = 1, φβe CC,KQ for all β and consider f—φβ*f.
Note that φβ*feD(G) since φβ,feCc(G). Then since feL\X),
| | Φ β | | c o ^ l , and φβ—>1 uniformly on compact sets we have that
| | / - φβ*f\\MΘ) = | | / - ^/B/||Z1(X) tends to zero. This completes the
proof of the theorem.

COROLLARY 2.6. D(G) is a dense vector subspace of CC(G) and if

fεCc,κ, then f— X\muβ where uβeDKo for some fixed Ko.

COROLLARY 2.7. M{G)cD\G) and P(G)<zD'(G).

We now prove a theorem which gives a characterisation of those
quasimeasures which are measures.

THEOREM 2.8. A quasimeasure s is a measure if and only if
for every compact subset K of G, s\ DK(G) is continuous for the sup-
norm topology on DK(G).

Proof. The necessity is obvious. The sufficiency may be proved

as follows: if s | DK(G) is continuous for the sup-norm topology, then

8 I DK(G) has a unique continuous extension to the closure DK(G) of
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DK(G) in CC,K+K(G). Now \JκDjG) = CC(G) by Corollary 2.6. We
have only to show that if φ e CC(G) and if φ = lim un with un e DKl(G),
and φ — lim vn with vneDK2(G), then lims(wΛ) = lims(vΛ). Without
loss of generality, suppose that 0eKi()K2. Then uneDKl+K2(G) and
vn e DKi+K2(G) for all w. It follows immediately that s(un — vn) —> 0 since
w» — vn —> 0 uniformly.

The definition of the convolution of a quasimeasure and a function
in CC(G) proceeds in the natural way via the tensor product. In order
to show this again gives a quasimeasure, we prove:

LEMMA 2.9. For a given feCc(G), the mapping T: g -+fv*g is
continuous from D(G) into D(G).

Proof. Since geD(G), geCc(G) and fv*geD(G). T thus maps
into D(G).

To see that T is continuous, observe that if we restrict T to a
given DK(G), the restriction is certainly continuous. For suppose that
Qi —> g in DK{G)\ then g{ —> g uniformly over K + K, and / v * gt —>/v * 0
in Z?(G).

The proof is now complete.

Note next that / v * g(ζ) = \ f{η)g{ξ + η)dη for f,ge CC(G); so it is

natural to define s*f£D'(G) as follows

(2.9.1) s * f(g) = 8(/v * flr) (flr

We now study the continuity of the map /—*s*/ . The result we
obtain will be improved in Section 3.

LEMMA 2.10. The mapping f—+s*f from CC(G) into D'(G) is
continuous for the inductive limit topology on CC(G) and the weak
σ(D', D) topology on D'(G).

Proof. Suppose geD(G), (/<) a net converging to zero in Cc,κ

(K a fixed compact subset of G). Write K' = (~K) U {0}, KQ =
Kf + ([g]D{0}). Then fiv*geDKo and / i v *0-*O in D ^ . So 8*/^) — 0 .
Thus the restriction of the map f—+s*f to each CC)jS: is continuous,
and it follows that the mapping / — > s * / is continuous from CC(G)
into D'(G).

As for measures and pseudomeasures, we need the concept of the
support of a quasimeasure. For this we need:
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LEMMA 2.11. If μeMbd(X), and u = Σ / < * Qi ^s a n element of
DK(G), then

(2.11.1) H = \r1udμ{χ) = Σ [jl^fi) * (ΓWμiχ)

is an element of DK(G), and for all xeG,

(2.11.2) H(x) = Σ A*) •/, * *(*) = β(x)u(x) .

(Note that the integrals appearing here are vector-valued integrals.)

Proof. It is clear that χ~'u = ΣίZ"1/*) * (JΓ1^) ί s a n element of
DK{G). Consider then the mapping χ—*χ~ιu from X into DK(G).
This mapping is certainly uniformly bounded; we show that it is, in
addition, continuous. If χ, χ o e X , then

tir7i) * (χ-'Qi) - (xόVi) * to1*)

is an element of DK(G), and

II(r'fi)* (χ-1^) - (XoVi)* (χo-1 *̂) 11^

It follows that

I I r ι n - i ό ι n \ \ D κ g Σ [ I I ( Z - Z o ) / < I U I I ^ I I - + I I Λ I I - II (X - x*)9iII-].

But χ —> χ0 in X if and only if χ~*χ0 uniformly on compact subsets
of G; and fi9 g{ e CC)K(G); so if χ -> Zo, χ^u -* χo-% in D^(G), and we
have established the continuity of the map X—^X^u from X into

The measure μ is bounded and DK(G) is complete. Hence

( χ-'udμiχ) is an element of DK(G) (Edwards [4], (8.14.14)). The

series for χ~xu is uniformly convergent in DK(G) and its partial sums
are uniformly bounded. The second assertion of (2.11.1) follows.

(2.11.2) follows since the evaluation functionals are continuous on
DK(G) (see Edwards [4], 8.14.1). This completes the proof of the
theorem.

DEFINITION 2.12. We say a quasimeasure s vanishes on an open
subset Ω of G if s(f) = 0 for all fe D(G) with support in Ω. We say
two quasimeasures are equal on Ω if their difference vanishes on Ω.

LEMMA 2.13. If {Ωi} is a family of open subsets of G and if
s — 0 on Ωι for all i, then s = 0 on Ω = ( J A
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Proof. Suppose fe D(G) with [/] c Ω. Since [/] = K is compact,
there exists a finite number of members of {Ωt}, say Ωil9 , Ωin which
form a cover of K. Then, by Lemma 1.2, there exist fl9 • • • , /»€ A(G)
with [/,] c Ωijf fj ^ 0, (i - 1, , n) and Σ ? Λ = 1 on if.

Since / y has the form I χ^dμiχ) for some μ e Mjd(JSΓ) and / e DKo(G)

for some ϋΓ0, Lemma 2.11 implies that fsfe DKQ(G) C D(G) and [//] c fl<r

Hence s(fj) = 0 since s - O o n flijβ But / = Σ ? ( Λ / ) s o s ( / ) = °
and we have, since / was arbitrary, s = 0 on Ω.

Now we are in a position to make our definition.

DEFINITION 2.14. The support of a quasimeasure is the complement
relative to G of the largest open set on which it vanishes.

REMARK. It is easy to see that for pseudomeasures, this definition
of support coincides with that given in 1.4. Similarly for measures,
the usual definition and the new definition of support coincide. We
shall write [s] for the support of a quasimeasure s.

Later we shall need to be able to write down a quasimeasure
which has compact support, and which is equal to a given quasimeasure
on a given open relatively compact set. To be able to do this, we
define what is meant by βs for μe Mbd(X), s e D'(G).

LEMMA 2.15. If μ^Mhd(X), the mapping u—>βu is continuous
from DK(G) into D(G).

Proof. By Lemma 2.11, the mapping is certainly into D(G). If
u e DK{G) and χ e X, then

I l χ - ^ I U * ^ I I M I U * . SO,

DK

i" I

Continuity follows immediately.
We can now make our definition.

DEFINITION 2.16. If μ e Mhd(X), s e D'(G), we define βs e D'(G) by

(2.16.1) βs(u) = s(βu) (u e D{G)) .

Some of the most important properties of quasimeasures, in
particular their structural relationship with pseudomeasures, are
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deduced in Section 4 as corollaries of theorems proved in Section 3 and
other known results.

3* Operators commuting with convolution* The problem of
characterising those continuous linear maps from one space to another
which commute with translations or convolution is well-known. (See
for example Edwards [3], [5], Hδrmander [8].) We give a complete
characterisation in terms of convolution with quasimeasures, of those
linear operators T\ Cc-^ M which are continuous for the natural
(inductive limit) topology on Cc and the vague topology of measures
on M, and which commute with convolution. For brevity, we shall
call such operators T multipliers from Cc into M. We first prove a
useful lemma.

LEMMA 3.1. Suppose that T is a multiplier from Cc into M.
Then there exists a net (Tβ) of multipliers from Cc into M with the
following properties:

( i ) Each Tβ is defined by a measure μβ\

Tβf=μβ*f (feC.).

(ii) If K is compact subset of G, there exists a constant Cκ > 0
independent of β such that

I (Tβf) * 0(0) I =g cκ H/IU II9IL (/, g e C,,κ).

(iii) If f,g 6 C, (Tβf) * ff(0) - (Tf) * 0(0).

Proof. Write (hβ) for an approximate identity in &{G), each hβ

being continuous and with support in a fixed compact set Ko and with
11^11! = 1. Define Tβf=hβ*(Tf) (feCc). Since T commutes with
convolution, and hβe Ce, we have Tβf— (Thβ) */— μβ*f say. This
establishes (i).

Now each Tβ is linear, commutes with convolution, and maps Cc

into M. If g 6 Cc,

(3.1.1) <Tβf, g> = hβ* Tf* flrv(0) - <Γ/, (hβ * ̂ v) v>

and hβ*gweCc. Hence Tβ is continuous, and each Tβ is a multiplier
from Cc into M.

Suppose next that K is a fixed compact set, and consider the

S r
d\Tf\ f r o m Cc i n t o R . T h e m a p p i n g /—• I d\Tf\is

K lκ

a lower semi-continuous semi-norm on Ce, hence is continuous since

Cc is barrelled. So in particular, if K is compact, /—> I d\ Tf\ is a
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continuous semi-norm on Ce,κ, and there exists a constant λ^ > 0 with

\ d\Tf\£Xκ\\f\U (feCc,κ). Thus, if f,geCCtK,
J — K

| (Γ/)*fr(O) |= \\g{-y)dTf{y)

( 3 # 1 > 2 ) s\_κ\g{-y)\d\Tf{y)\

d\Tf\

In order to prove (ii), we have, for /, g e Cc,κ,

\(Tβf)*g(0)\ = \hp*(Tf)*g(0)\

and hβ*geCΰ>κ, say, where KczK' and if' is independent of β. By
(3.1.2),

where cκ is a constant independent of β. This completes the proof
of (ii).

(iii) follows immediately once we note that, g being in Cc, the
functions hβ * g are continuous and have their supports in a fixed
compact set independent of /9, and hβ*g—>g uniformly. Then (3.1.1)
gives the desired result.

We now proceed to prove our representation theorem.

THEOREM 3.2. ( i ) Suppose that T is a multiplier from Cc into
M. Then there exists a quasimeasure s with

(3.2.1) Tf=s*f (/eC.)

(ii) Conversely, suppose seD', and define the operator
Ts: Tsf = s * / (fe Cc). Then Ts maps Cc into Mand is a multiplier
from Ce into M.

Proof. ( i ) Suppose that T is a multiplier from Cΰ into M. If
u = Σfi*9i w i t h A, gi£Cc,K, Σ II/* Ik Halloo < ̂  is an element of
Dκ, it follows immediately from (3.1.2) that Σ(^Y<) * ffiΦ) converges.
We define t(u) = Σί^/ i ) * ̂ *(0) This is a meaningful definition only
if Σ / ί * ̂  = 0 a n d Σ IIΛ IU II 9i IU < oo with ft, gi e CCfK together imply
that Σ(Γ/ ί)*flr i(0) = 0. Choose a net (Tβ) of multipliers satisfying
conditions (i)-(iii) of Lemma 3.1, and consider, for each β, the series
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Λ) * flί4(O). We have that

Thus, the series sβ are convergent, uniformly with respect to β. But
by property (iii) of Lemma 3.1, Tβfi* g^O)—* Tft* g^Q) for each i.
Hence limβ Σ ; (Tβfi) * 04(O) = Σ i (Tf,) * ̂ (0). Now each Tβ is defined
by a measure μβ and

/4 * Λ(0) = ί /4 * ffί

The series Σ / ί * # ; ^s a uniformly convergent series of continuous
functions each with support contained in K + K. It follows that

* 0 i ( -* 9i(0) =

= 0

since Σ/i*S fi = ° We have then that Σ(Tfi)*gi(O) = 0, and t is
well-defined, t is clearly a linear form on D, and from (3.1.2),

%(Tfi)*gi{0)
i

Hence \t(u)\ ^ ^κ\\u\\Dκ and t\Dκ is a continuous linear form on Dκ

for each compact subset K of G, i.e., t is a quasimeasure. We now
show that Tf=ty*f(fe Cβ).

From (2.9.1), if fe CC{G) and g e D(G),

= (Γ/V)*f/(O)

Hence t*f=(Tfv)v where (Tfv)v(g) — (Tfw)(gw), or equivalently,
(ί * /v)v = 21/. But, by easy manipulations of convolutions and reflec-
tions, (ί */v)v(flO = (tv*f)(g), and we get finally that Tf= t v * / (/e C.)
by the denseness of -D in Cc.

(ii) The mapping Ts clearly commutes with convolution. Firstly,
we know that s *feD' if fe Co. In order to establish that s*feM,
all we need do is show that s*f\Dκ is continuous on Dκ for the
topology induced by CClK+κ. For geD,s*f(g) = s(fv*g). If gι&Dκ
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and g{ —• 0 uniformly over K + K, then / v * g{ —> 0 in D / f, say, for

some compact Kr. Hence s(fv *g{) — s*f(g{) —> 0 and s*feM.
Continuity of Ts. We show firstly that

(3.2.2) s*f(g) = s(fv*g) (f,geCc).

By Corollary 2.6, we have that if geCc, then g = l im^ in C0,KQ for
some compact Ko, where ^ e l ) , But s*feM, so s *f(g{)—> s*f(g).
Also, since ^ -> # in CC,KQ, fv*gi~+fv*gm D. Hence s(/v * gt) -> s(/v * g)
and we have (3.2.2).

In order to show that the mapping /—> s */is continuous, we need
only show that its restriction to each Ce,κ is continuous. By virtue
of (3.2.2), this is evident.

Note. It follows from (3.2.2) and the definition of D(G), that
the space of multipliers from Cc into M is isomorphic to the space of
quasimeasures over G, both being regarded as vector spaces.

4* Structural properties of quasimeasures* All the results of
this section depend directly on Theorem 2 of Edwards [5], We state
this as:

THEOREM 4.1. The continuous linear operators T from Cc (induc-
tive limit topology) into Mc (vague topology of measures) which
commute with convolution are precisely those of the form

(4.1.1) Tf=s*f

where s is a pseudomeasure with compact support.

Note. Theorem 2 of Edwards [5] is stated in terms of operators
commuting with translations. 4.1 is equivalent to the theorem in its
original form since operators T, continuous from Cc into Me, commute
with convolution if and only if they commute with translations.

Form Theorem 4.1 we deduce immediately:

THEOREM 4.2. Every quasimeasure with compact support is a
pseudomeasure.

Proof. If s is a quasimeasure with compact support, consider the
mapping Ts: Ts(f) = s *f (fe Cc) from Cΰ into M. In fact Ts is linear,
maps Cc into Mc and commutes with convolution. By Theorem 3.2, it
is continuous. Again, by Theorem 4.1

(4.2.1) T9(f) = t*f=8*f (feC.)
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where ί is a pseudomeasure with compact support. This implies s = t.
For if f,geCc

(4.2.2) s * f(g) - s(/ v * g) - t ( / v * 0)

and if s Φ t, we can choose φ — fv * g e D with s(<p) =£ £(<p). This is
clearly impossible by (4.2.2) and hence s = t.

COROLLARY 4.3. Every quasimeasure with point support is a
scalar multiple of the Dirac measure at that point.

Proof. This follows from Theorem 1.5.
The principal structure theorem follows almost immediately from

Theorem 4.2.

THEOREM 4.4. ( i ) Every quasimeasure is a locally finite sum
of pseudomeasures (with compact supports).

(ii) Conversely, if T is a locally finite sum of pseudomeasures,
then T is a quasimeasure.

Proof. ( i ) Let {Ωi}ίel be a locally finite cover of G by open
relatively compact sets, and {/ Kei a partition of unity subordinated
to this cover as described in Lemma 1.2.

If seD'(G), fase D'(G), and [fiS] is compact and contained in Ωi%

Write ύi = f{s where o{ is the corresponding pseudomeasure (Theorem

4.2). Then s — ΣiieiGi a n d the sum is locally finite since the family

{fihei is.
(ii) The proof of the converse follows from the fact (established

during the proof of Theorem 2.5) that if K is a compact subset of (?,
then the topology of DK(G) is stronger than that induced by A(G).

REMARK. Theorem 4.4 should be compared with Theoreme XXI,
Chapitre 3, of Schwartz [11].

Finally, we show that the apparently weak hypothesis that a
continuous linear operator, commuting with convolution, maps Cc into
M implies the much stronger result that it maps L\ into L?oc, where
LI and L]oc are the spaces of square-integrable functions vanishing a.e.
outside compact sets and locally square-integrable functions respectively.

THEOREM 4.5. Suppose T is a multiplier from Cc into M. Then
T can be extended to map L\ into L]oc.

Proof. Let s be the quasimeasure defined by T as in Theorem
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3.2. For fe LI we define Tf — s * / — Σ σ* * / where s = Σ <?< is an
expression of s as a locally finite sum of pseudomeasures. Then Tf is
a locally finite sum of pseudomeasures, hence (Theorem 4.4) a quasi-
measure. We show that s*feL\0C if feL2

c.
Suppose fe LI and that / = 0 a.e. outside A, where A is an open

relatively compact subset of G. Let B be any open relatively compact
subset of G. We show that s *f\Be L2(B). This will clearly imply
that s*/e L\oc.

The behaviour of s * / on B is unaffected by the behaviour of s
outside (— A) + B. For if s = s' on (— A) + B, we can show that
s *f = s' * / on 5. In order to do this, suppose g e D(G) with [#] c B;
then [/„ * flr] c ( - A) + 5 and s*f(g) = s(/v * </) = s'(/v * <?) - s'*f(g).
Hence s*f=s'*fonB.

Now choose φe A(G) with φ = 1 on (— A) + B and [φ] compact
(Rudin [10], Th. 2.6.2). Then φseD'(G) and s = φs on ( - A) + B.
Hence s * / = (φs)*f on J5. But (φs)*feL2(G) since <ps is a pseudo-
measure, /eLJ, and (φs*fy = (φsyfeL2(X). Thus s * / | S G L2(S),
and the theorem is proved.

5* Multipliers of type (p, q). Suppose that p,qG[l,°°] and
denote by L% the linear space of bounded operators from LP(G) into
Lq(G) which commute with translations. The elements of L% are called
multipliers of type (p, q). Hormander [8] has shown that if G = Rn

and oo > p > g, then Z4 ~ {0} while if p ^ g and ^7^ <>o 1 L% is isomor-
phic to a certain space of tempered distributions, the operator T
corresponding to the tempered distribution d being defined by

Tf=d*f (feS)

where S is the space of rapidly-decreasing C°° functions.
For a general LCA group G, Hormander's proof goes through

without change to show that L% — {0} if 00 > p > q and G is noncompact.
We shall now show, as a corollary of Theorem 3.2, that his characterisa-
tion of L% for p ^ q can be established with the subspace of the
tempered distributions being replaced by a certain subspace of the
quasimeasures. For p = q, this subspace becomes a subspace of the
pseudomeasures.

THEOREM 5.1. Suppose p ^ q,p,qe [1, <*>] and that T is a mul-
tiplier of type (p, q). Then there exists a quasimeasure s such that

(5.1.1) Tf=s*f (feC.)

If p Φ oo f Lq

p is isomorphic to a vector subspace of D\
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Proof. T\CC is an operator from Cc into Mwhich commutes with
convolution. Furthermore, since T is continuous from Lp into L\
TI Cc is certainly continuous for the inductive limit and vague topologies
on Cc and M respectively. Hence, by Theorem 3β2, there exists a
quasimeasure s with (5.1.1) holding.

Note. If p = q, the multipliers of type (p, q) are defined by
convolution with the elements of a subspace of the pseudomeasures.
This may be established by use of the Riesz Convexity Theorem and
the fact that L\ = P(G). Another known result (Wendel [12]) is that
U = Mbd.

5.2. In a recent research announcement [6], Figa-Talamanca has
given a characterisation of L% as the dual of a certain space of
continuous functions which tend to zero at infinity. It is possible to
deduce this result from Theorem 5.1.
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