RESTRICTED BIPARTITE PARTITIONS

L. Carlitz and D. P. Roselle

Let $\pi_{k}(n, m)$ denote the number of partitions

$$
\begin{aligned}
n & =n_{1}+n_{2}+\cdots+n_{k} \\
m & =m_{1}+m_{2}+\cdots+m_{k}
\end{aligned}
$$

subject to the conditions

$$
\min \left(n_{j}, m_{j}\right) \geqq \max \left(n_{j+1}, m_{j+1}\right) \quad(j=1,2, \cdots, k-1) .
$$

Put

$$
\xi^{(k)}(x, y)=\sum_{n, m=0}^{\infty} \pi_{k}(n, m) x^{n} y^{m} .
$$

We show that

$$
\begin{aligned}
& \xi^{(k)}(x, y)=\prod_{j=1}^{k} \frac{1-x^{2 j-1} y^{2 j-1}}{\left(1-x^{j} y^{j}\right)\left(1-x^{j} y^{j-1}\right)\left(1-x^{j-1} y^{j}\right)} \\
& \sum_{n, m=0}^{\infty} \pi(n, m ; \lambda) x^{n} y^{m}=1+(1-\lambda) \sum_{k=1}^{\infty} \lambda^{k} \xi^{(k)}(x, y) \\
& \sum_{n=0}^{\infty} \psi(n, m) x^{n} y^{m}=\sum_{n=0}^{\infty} x^{n} y^{n} \xi^{(n)}\left(x^{2}, y^{2}\right)
\end{aligned}
$$

where $\pi(n, m ; \lambda)$ denotes the number of "weighted" partitions of (n, m) and $\phi(n, m)$ is the number of partitions into odd parts (n_{j}, m_{j} all odd).

Consider partitions of the bipartite (n, m) of the type

$$
\begin{align*}
n & =n_{1}+n_{2}+n_{3}+\cdots \tag{1.1}\\
m & =m_{1}+m_{2}+m_{3}+\cdots
\end{align*}
$$

where the n_{j}, m_{j} are nonnegative integers subject to the conditions

$$
\begin{equation*}
\min \left(n_{j}, m_{j}\right) \geqq \max \left(n_{j+1}, m_{j+1}\right) \quad(j=1,2,3, \cdots) . \tag{1.2}
\end{equation*}
$$

For brevity we may write (1.2) in the form

$$
\left(n_{j}, m_{j}\right) \geqq\left(n_{j+1}, m_{j+1}\right) \quad(j=1,2,3, \cdots)
$$

and say that the "parts" of the partition (1.1) decrease.
Let $\pi(n, m)$ denote the number of partitions (1.1) that satisfy (1.2) and let $\rho(n, m)$ denote the numbers of partitions (1.1) that satisfy

$$
\begin{equation*}
\left(n_{j}, m_{j}\right)>\left(n_{j+1}, m_{j+1}\right) \quad(j=1,2,3, \cdots) \tag{1.3}
\end{equation*}
$$

By the inequality (1.3) is understood

$$
\min \left(n_{j}, m_{j}\right)>\max \left(n_{j+1}, m_{j+1}\right) \quad(j=1,2,3, \cdots) .
$$

The generating functions for $\pi(n, m)$ and $\rho(n, m)$ are given by [2]

$$
\begin{gather*}
\prod_{j=1}^{\infty}\left(1-x^{2 j} y^{2 j}\right)^{-1}\left(1-x^{j} y^{j-1}\right)^{-1}\left(1-x^{j-1} y^{j}\right)^{-1} \tag{1.4}\\
\frac{1-x y}{(1-x)(1-y)} \sum_{n=0}^{\infty}(x y)^{n(n+1) / 2} \prod_{j=1}^{n} \frac{1-x^{2 j+1} y^{2 j+1}}{\left(1-x^{j} y^{j}\right)\left(1-x^{j+1} y^{j}\right)\left(1-x^{j} y^{j+1}\right)} \tag{1.5}
\end{gather*}
$$

respectively.
For the case of unipartite (natural) numbers generating functions are known for partitions with parts restricted in various ways [3]. The notion of a part of the partition (1.1) implied by the conditions (1.2) suggests that these results can be extended to bipartite numbers. For example, we may think of $\rho(n, m)$ as the number of partitions of (n, m) with unequal parts. We shall find generating functions for bipartite partitions with at most k parts, weighted parts, and odd parts.
2. Partitions with at most k parts. We consider partitions of the type

$$
\begin{align*}
n & =n_{1}+n_{2}+\cdots+n_{k} \\
m & =m_{1}+m_{2}+\cdots+m_{k} \tag{2.1}
\end{align*}
$$

where the n_{j}, m_{j} are nonnegative integers subject to the conditions

$$
\begin{equation*}
\left(n_{j}, m_{j}\right) \geqq\left(n_{j+1}, m_{j+1}\right) \quad(j=1,2, \cdots, k-1) \tag{2.2}
\end{equation*}
$$

Let $\pi_{k}(n, m)$ denote the number of partitions (2.1) subject to the conditions (2.2) and let $\pi_{k}(n, m \mid a, b)$ denote the numbers of these partitions that also satisfy

$$
\begin{equation*}
(a, b) \geqq\left(n_{1}, m_{1}\right) \tag{2.3}
\end{equation*}
$$

Note that $\pi(n, m)$ defined in $\S 1$ satisfies

$$
\begin{equation*}
\pi(n, m)=\lim _{k=\infty} \pi_{k}(n, m) \tag{2.4}
\end{equation*}
$$

We define the rational function $\xi_{a b}^{(k)}$ of x and y by the recurrence

$$
\begin{equation*}
\xi_{a b}^{(0)}=1, \quad \xi_{a b}^{(k)}=\sum_{r, s=0}^{\min (a, b)} x^{r} y^{s} \xi_{r s}^{(k-1)} \quad(k \geqq 1) . \tag{2.5}
\end{equation*}
$$

If we put

$$
\begin{equation*}
\xi^{(k)}=\xi_{\infty \infty}^{(k)}, \tag{2.6}
\end{equation*}
$$

then in the limit (2.5) becomes

$$
\begin{equation*}
\xi^{(k)}=\sum_{r=0}^{\infty} x^{r} y^{s} \xi_{r s}^{(k-1)} \quad(k \geqq 1) \tag{2.7}
\end{equation*}
$$

It is clear from (2.5) that $\xi_{a b}^{(k)}$ is the generating function for $\pi_{k}(n, m \mid a, b)$. Thus it follows from (2.6) that $\xi^{(k)}$ is the generating function for $\pi_{k}(n, m)$. Explicitly, we have

$$
\begin{gather*}
\xi_{a b}^{(k)}=\sum_{n, m=0}^{\infty} \pi_{k}(n, m \mid a, b) x^{n} y^{m} \tag{2.8}\\
\xi^{(k)}=\sum_{n, m=0}^{\infty} \pi_{k}(n, m) x^{n} y^{m} \tag{2.9}
\end{gather*}
$$

We define the generating functions

$$
\begin{align*}
F_{k}(u, v) & =\sum_{r, s=0}^{\infty} u^{r} v^{s} \xi_{r s}^{(k-1)} \tag{2.10}\\
F_{k}^{(u)} & =\sum_{n=0}^{\infty} u^{n} \xi_{n n}^{(k-1)} \tag{2.11}
\end{align*}
$$

so that

$$
\begin{equation*}
F_{k}(x, y)=\xi^{(k)} \tag{2.12}
\end{equation*}
$$

Using (2.10), (2.11) and

$$
\begin{equation*}
\xi_{r r}^{(k)}=\xi_{a b}^{(k)} \quad(r=\min (a, b)), \tag{2.13}
\end{equation*}
$$

we get

$$
\begin{aligned}
F_{k}(u, v) & =\sum_{r \geq s} u^{r} v^{s} \xi_{s s}^{(k-1)}+\sum_{s \geq r} u^{r} v^{s} \xi_{r r}^{(k-1)}-\sum_{r=0}^{\infty} u^{r} v^{r} \xi_{r r}^{(k-1)} \\
& =\left(\frac{1}{1-u}+\frac{1}{1-v}-1\right) F_{k}(u v) .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
F_{k}(u, v)=\frac{1-u v}{(1-u)(1-v)} F_{k}(u v) . \tag{2.14}
\end{equation*}
$$

On the other hand, using (2.5), (2.11), and (2.13), we get

$$
\begin{aligned}
F_{k}(u) & =\sum_{n=0}^{\infty} u^{n} \sum_{r, s=0}^{n} x^{r} y^{s} \xi_{r s}^{(k-2)} \\
& =\frac{1}{1-u}\left(\sum_{r \geq s} u^{r} x^{r} y^{s} \xi_{s s}^{(k-1)}+\sum_{s \geq r} u^{s} y^{s} x^{r} \xi_{r r}^{(k-1)}-\sum_{r=0}^{\infty}(x y u)^{r} \xi_{r r}^{(k-1)}\right) \\
& =\frac{1}{1-u}\left(\frac{1}{1-u x}+\frac{1}{1-u y}-1\right) F_{k-1}(x y u)
\end{aligned}
$$

which implies

$$
\begin{equation*}
F_{k}(u)=\frac{1-x y u^{2}}{(1-u)(1-x u)(1-y u)} F_{k-1}(x y u) \quad(k \geqq 1) . \tag{2.15}
\end{equation*}
$$

It follows from (2.5), (2.11), and (2.15) that

$$
\begin{equation*}
F_{k}(u)=\frac{1}{1-u} \prod_{j=0}^{k-2} \frac{1-x^{2 j+1} y^{2 j+1} u^{2}}{\left(1-x^{j+1} y^{j+1} u\right)\left(1-x^{j} y^{j+1} u\right)\left(1-x^{j+1} y^{j} u\right)} \tag{2.16}
\end{equation*}
$$

Thus, using (2.12) and (2.14), we have evidently proved
Theorem 1. If $\xi^{(k)}$ is defined by (2.9) then

$$
\begin{equation*}
\xi^{(k)}=\prod_{j=1}^{k} \frac{1-x^{2 j-1} y^{2 j-1}}{\left(1-x^{j} y^{j}\right)\left(1-x^{j} y^{j-1}\right)\left(1-x^{j-1} y^{j}\right)} . \tag{2.17}
\end{equation*}
$$

We may now write (1.5) in the form

$$
\begin{equation*}
\sum_{n=1}^{\infty}(x y)^{n(n-1) / 2}\left(1-x^{n} y^{n}\right) \xi^{(n)}(x, y) \tag{2.18}
\end{equation*}
$$

which is analogous to the well-known identity

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1+x^{n}\right)=\sum_{n=1}^{\infty} x^{n(n-1) / 2} \prod_{j=1}^{n-1}\left(1-x^{j}\right)^{-1} \tag{2.19}
\end{equation*}
$$

3. A q-identity. If we put

$$
\begin{equation*}
\xi=\xi^{(\infty)}, \quad \xi_{a b}=\xi_{a b}^{(\infty)}, \tag{3.1}
\end{equation*}
$$

then it follows from (2.4) and (2.9) that ξ is the generating function for $\pi(n, m)$. Moreover, it is clear from (2.14) and (2.16) that

$$
\begin{equation*}
F(u, v)=\sum_{r, s=0}^{\infty} u^{r} v^{s} \xi_{r s}=\frac{1-u v}{(1-u)(1-v)} F(u v) \tag{3.2}
\end{equation*}
$$

$$
\begin{align*}
F(u) & =\sum_{n=0}^{\infty} u^{n} \xi_{n n} \tag{3.3}\\
& =e(u, x y) e(x u, x y) e(y u, x y) \prod_{j=0}^{\infty}\left(1-x^{2 j+1} y^{2 j+1} u^{2}\right)
\end{align*}
$$

where

$$
\begin{align*}
& e(t)=e(t, q)=\prod_{0}^{\infty}\left(1-q^{n} t\right)^{-1}=\prod_{0}^{\infty} \frac{t^{n}}{(q)_{n}} \tag{3.4}\\
& (q)_{n}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)
\end{align*}
$$

We define the polynomial

$$
H_{n}(x)=H_{n}(x, q)=\sum_{r=0}^{n}\left[\begin{array}{l}
n \tag{3.5}\\
r
\end{array}\right] x^{r},
$$

where

$$
\left[\begin{array}{l}
n \\
r
\end{array}\right]=\frac{(q)_{n}}{(q)_{r}(q)_{n-r}} .
$$

It has been shown [1] that

$$
\begin{equation*}
\sum_{0}^{\infty} \frac{H_{k}(x) H_{k}(y)}{(q)_{k}} t^{k}=\frac{e(t) e(x t) e(y t) e(x y t)}{e\left(x y t^{2}\right)} \tag{3.6}
\end{equation*}
$$

Using (3.3), (3.4), and (3.6), we then have

$$
\sum_{0}^{\infty} u^{n} \xi_{n n}=\sum_{0}^{\infty} \frac{H_{k}(x) H_{k}(y)}{(x y)_{k}} u^{k} \sum_{0}^{\infty}(-1)^{r} \frac{x^{r} y^{r} u^{r}}{(x y)_{r}}
$$

Comparing coefficients of u^{n}, we get

$$
\xi_{n n}=\frac{1}{(x y)_{n}} \sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \tag{3.7}\\
k
\end{array}\right] x^{n-k} y^{n-k} H_{k}(x) H_{k}(y)
$$

Note that $x y=q$ in the right member of (3.7).
It is clear from (3.7) that

$$
\begin{equation*}
P_{n}(x, y)=(x y)_{n} \xi_{n n} \tag{3.8}
\end{equation*}
$$

is a polynomial in x, y with integral coefficients which satisfies

$$
\begin{aligned}
& P_{n}(x, y)=P_{n}(y, x) \\
& P_{n}(x, 0)=\frac{1-x^{n+1}}{1-x} \\
& x^{n} P_{n}\left(x, \frac{1}{x}\right)=\left(x^{2}+x+1\right)^{n}
\end{aligned}
$$

Also it follows from (2.15) that $P_{n}(x, y)$ satisfies the recurrence

$$
\begin{align*}
P_{n} & -(1+x+y) P_{n-1}+[n-1]\left(x+y+x y+x^{n-1} y^{n-1}\right) P_{n-2} \tag{3.9}\\
& -x y[n-1][n-2] P_{n-3}=0
\end{align*}
$$

where $[j]=1-x^{j} y^{j}$.
4. Weighted partitions. We define $\pi(n, m ; \lambda)$, the number of weighted partitions of the bipartite (n, m), by the relation

$$
\begin{equation*}
\pi(n, m ; \lambda)=\sum_{k=0}^{\infty} \lambda^{k} \sum 1 \tag{4.1}
\end{equation*}
$$

where the inner sum is extended over all partitions of the form (2.1) subject to the conditions (2.2) and the additional condition $\max \left(n_{k}, m_{k}\right)>$ 0 ; that is, over all partitions with exactly k parts. It follows from the definition of $\pi_{k}(n, m)$ that we may write (4.1) in the form

$$
\begin{equation*}
\pi(n, m ; \lambda)=\sum_{k=0}^{\infty} \lambda^{k}\left(\pi_{k}(n, m)-\pi_{k-1}(n, m)\right) \tag{4.2}
\end{equation*}
$$

It should be remarked that the sum in (4.2) is finite, the upper bound for k being $\max (n, m)$.

Multiplying both members of (4.2) by $x^{n} y^{m}$ and summing over n, m it follows from (2.9) and (2.17) that we have established

Theorem 2. We have

$$
\begin{equation*}
\sum_{n, m=0}^{\infty} \pi(n, m ; \lambda) x^{n} y^{m}=1+(1-\lambda) \sum_{k=1}^{\infty} \lambda^{k} \xi^{(k)}(x, y) \tag{4.3}
\end{equation*}
$$

Note that (4.3) is a direct analogue of the well-known identity

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-\lambda x^{n}\right)^{-1}=\sum_{n=0}^{\infty} \lambda^{n} x^{n} \sum_{j=1}^{n}\left(1-x^{j}\right)^{-1} \tag{4.4}
\end{equation*}
$$

We remark that (4.3) may be proved in a different manner. If we put

$$
\begin{equation*}
\xi_{a b}(\lambda)=1+\lambda \sum_{r, s=0}^{\min (a, b)} x^{r} y^{s} \xi_{r s} \tag{4.5}
\end{equation*}
$$

where the prime denotes that we sum over all r, s in the indicated range except $r=s=0$, then it follows from (4.1) that

$$
\begin{equation*}
\xi(\lambda)=\xi_{\infty \infty}(\lambda) \tag{4.6}
\end{equation*}
$$

is the generating function for $\pi(n, m ; \lambda)$. We may then evaluate $\xi(\lambda)$ by the methods of $\S 2$.
5. Partitions into odd parts. We shall say that the j-th part of the partition (1.1) is odd if each of n_{j}, m_{j} is odd.

Let $\psi(n, m)$ denote the number of partitions of the form (1.1) with parts odd and subject to the conditions (1.2). Let $\psi(n, m \mid a, b)$ denote the number of these partitions that satisfy the additional condition

$$
\begin{equation*}
(2 a+1,2 b+1) \geqq\left(n_{1}, m_{1}\right) . \tag{5.1}
\end{equation*}
$$

We define the rational function $\beta_{2 a+1,2 b+1}$ of x, y by the relation

$$
\begin{equation*}
\left.\beta_{2 a+1,2 b+1}=1+\sum_{r, s=0}^{\min (a} b\right) x^{2 r+1} y^{2 s+1} \beta_{2 r+1,2 s+1} \tag{5.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
\beta_{2 r+1,2 r+1}=\beta_{2 a+1,2 b+1} \quad(r=\min (a, b)) . \tag{5.3}
\end{equation*}
$$

If we put

$$
\begin{equation*}
\beta=\beta_{\infty \infty}, \tag{5.4}
\end{equation*}
$$

then in the limit (5.2) becomes

$$
\begin{equation*}
\beta=1+\sum_{r, s=0}^{\infty} x^{2 r+1} y^{2 s+1} \beta_{2 r+1,2 s+1} \tag{5.5}
\end{equation*}
$$

It follows from (5.2) that

$$
\begin{equation*}
\beta_{2 a+1,2 b+1}=\sum_{n, m=0}^{\infty} \psi(n, m \mid a, b) x^{n} y^{m} \tag{5.6}
\end{equation*}
$$

Thus, using (5.5), we get

$$
\begin{equation*}
\beta=\sum_{n, m=0}^{\infty} \psi(n, m) x^{n} y^{m} \tag{5.7}
\end{equation*}
$$

We define the generating functions

$$
\begin{align*}
H(u, v) & =\sum_{r, s=0}^{\infty} u^{r} v^{s} \beta_{2 r+1,2 s+1} \tag{5.8}\\
H(u) & =\sum_{n=0}^{\infty} u^{n} \beta_{2 n+1,2 n+1} \tag{5.9}
\end{align*}
$$

so that

$$
\begin{equation*}
\beta=1+x y H\left(x^{2}, y^{2}\right) \tag{5.10}
\end{equation*}
$$

Using (5.3), (5.8) and (5.9), we have

$$
\begin{equation*}
H(u, v)=\frac{1-u v}{(1-u)(1-v)} H(u v) \tag{5.11}
\end{equation*}
$$

The proof of (5.11) is exactly like that of (2.14).
On the other hand, it follows from (5.2), (5.3), and (5.9) that

$$
\begin{aligned}
H(u) & =\sum_{n=0}^{\infty} u^{n}\left(1+\sum_{r, s=0}^{n} x^{2 r+1} y^{2 s+1} \beta_{2 r+1,2 s+1}\right) \\
& =\frac{1}{1-u}+\frac{x y}{1-u} \sum_{r, s=0}^{\infty} x^{2 r} y^{2 s} u^{\max (r, s)} \beta_{2 r+1,2 s+1} \\
& =\frac{1}{1-u}+\frac{x y}{1-u}\left(\frac{1}{1-x^{2} u}+\frac{1}{1-y^{2} u}-1\right) H\left(x^{2} y^{2} u\right)
\end{aligned}
$$

which implies

$$
\begin{equation*}
H(u)=\frac{1}{1-u}\left(1+\frac{1-x^{2} y^{2} u^{2}}{\left(1-x^{2} u\right)\left(1-y^{2} u\right)} H\left(x^{2} y^{2} u\right)\right) \tag{5.12}
\end{equation*}
$$

Repeated applications of (5.12) yield
(5.13) $\quad H(u)=$

$$
\frac{1}{1-u} \sum_{n=0}^{\infty} x^{n} y^{n} \prod_{j=1}^{n} \frac{1-x^{4 j+2} y^{4 j+2} u^{2}}{\left(1-x^{2 j+2} y^{2 j+2} u\right)\left(1-x^{2 j} y^{2 j+2} u\right)\left(1-x^{2 j+2} y^{2 j} u\right)}
$$

Thus, using (5.10), (5.11), and (2.17), we may state
Theorem 3. If $\psi(n, m)$ denotes the number of partitions of (n, m) with odd parts, then

$$
\begin{equation*}
\sum_{n, m=0}^{\infty} \psi(n, m) x^{n} y^{m}=\sum_{n=0}^{\infty} x^{n} y^{n} \xi^{(n)}\left(x^{2}, y^{2}\right) \tag{5.14}
\end{equation*}
$$

where $\xi^{(n)}(x, y)$ is defined by (2.17).
The fact that (2.18) and (5.14) are analogous to well-known identities for unipartite numbers leads one to conjecture that $\rho(n, m)=$ $\psi(n, m)$. There are, however, counterexamples to this conjecture. For example, it is easily verified that

$$
\rho(5,4)=6 \neq 4=\psi(5,4) .
$$

It would be of interest to know whether generally

$$
\rho(n, m) \geqq \psi(n, m)
$$

References

1. L. Carlitz, Some polynomials related to theta functions, Annali di Mathematica 41 (1955), 359-73.
2. L. Carlitz, A problem in partitions, Duke Math. J. 30 (193), 202-13.
3. G. H. Hardy and E. M. Wright, The Theory of Numbers, 3rd edition, Oxford, 1954.

Received March 20, 1965.
Duke University
AND
University of Maryland

