ON THE LATTICE OF CLOSED SUBSPACES OF HILBERT SPACE

Neal Zierler

Abstract

The purpose of this note is to answer two questions which have arisen in connection with the lattice-theoretic characterization of the set of closed subspaces of a Hilbert space of countably infinite dimension which appears in "Axioms for nonrelativistic quantum mechanics," Pacific Journal of Mathematics, Vol. 11, No. 3, 1961, pages 1151-1169.

The material in this section is to replace [$2, \mathrm{p} .1165$, lines $10-32$]. Up to that point it has been shown that the lattice under each finite element of P is isomorphic to the lattice of subspaces of a Hilbert space over a field D which is either real or complex. The orthocomplementation induced in a Hilbert space by such an isomorphism gives rise to an involution of D (vide infra). In this section we show that such an involution is continuous, thereby closing a gap brought to our attention by a comment of M. D. Maclaren.

Let $a \in P_{f}$ with $n=\operatorname{dim} a>0$. Choose pairwise orthogonal points A_{0}, \cdots, A_{n} in (a) and in each line $l_{i}=A_{0} \vee A_{i}, i=1, \cdots, n$, choose, a point E_{i} different from A_{0} and A_{i}. Clearly the points $A_{0}, E_{1}, \cdots, E_{n}$ are independent and the choice of $A_{1} \vee \cdots \vee A_{n}$ as improper hyperplane, A_{0} as origin and E_{1}, \cdots, E_{n} as unit points leads to the unique introduction of homogeneous coordinates in (a) in standard fashion. In particular, the proper points of l_{1} are precisely those with homogeneous coordinates $(1, \lambda, 0, \cdots, 0)$ which we abbreviate as $(1, \lambda)-\lambda$, of course, being any member of the field D that has been constructed. The topology for D is obtained as follows: The subset N of D is a neighborhood of 0 if $\{(1, \nu): \nu \in N\}$ is a neighborhood of A_{0} in l_{1}. Under this topology, D is either the real or complex field (cf. [2, Lemma 2.11 et seq., p. 1164]).

It is shown in [1] that there then exist an involution σ of D and numbers ($=$ members of D) $\eta_{0}, \cdots, \eta_{n}$ such that
(1) $\eta_{i}^{\sigma}=\eta_{i}$,
(2) $\sum x_{i} \eta_{i} x_{i}^{\sigma}=0$ if and only if all $x_{i}=0$,
(3) If $\left(x_{0}, \cdots, x_{n}\right) \in(a)_{0}$, then $a\left(x_{0}, \cdots, x_{n}\right)^{\prime}$ (the complement of $\left(x_{0}, \cdots, x_{n}\right)$ in $\left.(a)\right)=\vee\left\{\left(y_{0}, \cdots, y_{n}\right) \in(a)_{0}: \sum y_{i} \eta_{i} x_{i}^{\sigma}=0\right\}$

Note that by (2), no η_{i} is 0 and that $1, \eta_{1} / \eta_{0}, \cdots, \eta_{n} / \eta_{0}$ defines the same orthomorplementation as $\eta_{0}, \cdots, \eta_{n}$; i.e., we may assume that $\eta_{0}=1$.

Again confining our attention to l_{1}, observe that if $\lambda \neq 0$ and $l_{1}(1, \lambda)^{\prime}$ (the point of l_{1} orthogonal to the point $(1, \lambda)$) has coordinates
$(1, \mu)$, then $\mu=-1 / \eta_{1} \lambda^{\sigma}$. Hence if $\lambda_{m} \rightarrow 1$ and is never $0,\left(1, \lambda_{m}\right) \rightarrow$ $(1,1)$ by definition (of the topology for D) so $\left(1, \lambda_{m}\right)^{\prime} \rightarrow(1,1)^{\prime}=\left(1,-1 / \eta_{1}\right)$ by [2, Lemma 2.8]. But $\left(1, \lambda_{m}\right)^{\prime}=\left(1, \mu_{m}\right)$ with $\mu_{m}=-1 / \eta_{1} \lambda_{m}^{\sigma}$. Then $\left(1, \mu_{m}\right) \rightarrow\left(1,-1 / \eta_{1}\right)$ which implies $\mu_{m} \rightarrow-1 / \eta_{1}$; i.e., $-1 / \eta_{1} \lambda_{m}^{\sigma} \rightarrow-1 / \eta_{1}$ so $\lambda_{m}^{\sigma} \rightarrow 1$. Thus, σ is continuous at 1 and hence is continuous (if $\lambda_{m} \rightarrow 0$ then $\lambda_{m}+1 \rightarrow 1$ so $\left(\lambda_{m}+1\right)^{\sigma}=\lambda_{m}^{\sigma}+1 \rightarrow 1$ so $\lambda_{m}^{\sigma} \rightarrow 0$). Of course, this result was automatic in the real case. It follows that σ is either the identity or, in the complex case, conjugation. It follows now from (2) that $\eta_{1}, \cdots, \eta_{n}$ are positive real numbers. If D is the complex numbers, σ is conjugation, for otherwise ($1, i \eta_{1}^{-1 / 2}, 0, \cdots, 0$) would be self-orthogonal.

Taking the Hilbert space of $n+1$ tuples of D as H_{a}, the mapping $\left(x_{0}, \cdots, x_{n}\right) \rightarrow\left\{\lambda\left(x_{0}, \cdots, x_{n}\right): \lambda \in D\right\}$ clearly induces a continuous isomorphism φ_{a} of (a) on the lattice L_{a} of subspaces of H_{a} such that the orthocomplementation induced by φ_{a} in L_{a} is obtained from the inner product $(x, y)=\sum x_{i} \eta_{i} \bar{y}_{i}$ for H_{a}.
2. The following is a replacement for [$2, \mathrm{p} .1165$, lines 33 to 41]. Its purpose is to insure that all the isometries $\psi_{b, a}$ are linear rather than conjugate linear. I am indebted to V. S. Varadarajan for calling my attention to this omission.

Let $a \leqq b$ be finite and suppose that, in accordance with what has preceded, we have selected a Hilbert space H_{a} over D of dimension $1+\operatorname{dim} a$ and a continuous isomorphism φ_{a} of (α) on the lattice L_{a} of subspaces of H_{a} which is orthogonality-preserving in the sense that

$$
\begin{equation*}
\varphi_{a}(c) \perp \varphi_{a}(d) \text { if and only if } c \perp d . \tag{13}
\end{equation*}
$$

Suppose that H_{b}, φ_{b}, have been similarly chosen for b.
Now $\varphi_{b} \varphi_{a}^{-1}$ is a continuous, orthogonality-preserving isomorphism of L_{a} in L_{b}. Hence, as is well-known and not difficult to show, there exists a continuous automorphism σ of D and a σ-isometry $\psi_{b, a}$, unique up to multiplication by a number of modulus one, providing $\operatorname{dim} a>0$ (see below), such that $\psi_{b, a}$ induces $\varphi_{b} \varphi_{a}^{-1}$ in the sense that $\varphi_{b} \varphi_{a}^{-1}[v]=$ [$\psi_{b, a} v$] for all $v \in H_{a}$, where [v] denotes the linear subspace generated by v. A σ-isometry ψ of H is a mapping of H in itself with the following three properties:

$$
\begin{array}{ll}
\text { Additivity: } & \psi(u+v)=\psi(u)+\psi(v) \\
\sigma \text {-linearty: } & \psi(\lambda u)=\lambda^{\sigma} \psi(u) \tag{14}\\
\sigma \text {-isometry: } & (\psi(u), \psi(v))=(u, v)^{\sigma}
\end{array}
$$

A σ-isometry is said to be linear or conjugate-linear when σ is the identity or conjugation respectively.

If D is the real field, the automorphism σ is the identity, while
in the complex case, in view of its continuity, σ may be either the identity or conjugation. Observe that if $\operatorname{dim} a=0$ and u, v are unit vectors in $H_{a}, \varphi_{b}(\alpha)$ respectively, then $\lambda u \rightarrow \lambda v$ and $\lambda u \rightarrow \bar{\lambda} v$ both induce the mapping $\varphi_{b} \varphi_{a}^{-1}$ of L_{a} in L_{b}. In other words, $\psi_{b, a}$ may be chosen both linear and conjugate-linear when $\operatorname{dim} a=0$, independent of the choice of H_{a}, φ_{a} and H_{b}, φ_{b}. In general, the linearity of $\psi_{b, a}$ may be achieved through the proper choice of H_{b}, φ_{b} as follows. Suppose that $\psi_{b, a}$ inducing $\varphi_{b} \varphi_{a}^{-1}$ is conjugate-linear. Let $\left\{v_{i}\right\}$ be a complete orthonormal set for H_{b} and define $\gamma: H_{b} \rightarrow H_{b}$ by: $\gamma\left(\sum \lambda_{i} v_{i}\right)=\sum \bar{\lambda}_{i} v_{i}$. Let φ denote the automorphism of L_{b} induced by γ and let $\bar{\varphi}_{b}=\varphi \circ \varphi_{b}$. Then $\bar{\varphi}_{b}$ is a continuous, orthogonality-preserving isomorphism of (b) on L_{b} which is induced by the linear isometry $\bar{\psi}_{b, a}=\gamma \circ \psi_{b, a}$.

Suppose now that $\operatorname{dim} a>0$, that H_{a}, φ_{a} have been chosen arbitrarily and that for every finite $b>a, H_{b}, \varphi_{b}$ has been chosen as above so that $\varphi_{b} \varphi_{a}^{-1}$ is "linear" in the sense that every isometry of H_{a} in H_{b} which induces it is linear. For each finite $c \ngtr a$ let $H_{c}=\varphi_{a \vee c}(c)$ and let $\varphi_{c}=\varphi_{a V_{c}} \mid(c)$. Then $\varphi_{a \vee c} \varphi_{c}^{-1}$ is linear, for it is induced by the projection in $H_{a V_{c}}$ of its subspace H_{c}.

Now that H_{c}, φ_{c} have been assigned to every finite c, it remains to show that $\varphi_{c_{1}} \varphi_{c_{2}}^{-1}$ is in fact linear whenever $c_{2}<c_{1}$. The type of argument we shall use involves the introduction of $c_{3}<c_{2}$ for which both $\varphi_{c_{1}} \varphi_{c_{3}}^{-1}$ and $\varphi_{c_{2}} \varphi_{c_{3}}^{-1}$ are known to be linear. The linearity of $\varphi_{c_{1}} \varphi_{c_{2}}^{-1}$ then follows from the equation $\varphi_{c_{1}} \varphi_{c_{3}}^{-1}=\left(\varphi_{c_{1}} \varphi_{c_{2}}^{-1}\right)\left(\varphi_{c_{2}} \varphi_{c_{3}}^{-1}\right)$.

Given finite $c_{2}<c_{1}$, let $b_{i}=c_{i} \vee a, i=1$, 2. Now $b_{2} \leqq b_{1}$ and $\varphi_{b_{1}} \varphi_{b_{2}}^{-1}$ is linear, for $\varphi_{b_{i}} \varphi_{a}^{-1}, i=1,2$ are linear by construction and $\varphi_{b_{1}} \varphi_{a}^{-1}=\left(\varphi_{b_{1}} \varphi_{b_{2}}^{-1}\right)\left(\varphi_{b_{2}} \varphi_{a}^{-1}\right)$. Since $\varphi_{b_{1}} \varphi_{b_{2}}^{-1}$ is linear and $\varphi_{b_{2}} \varphi_{c_{2}}^{-1}$ is linear by construction, $\varphi_{b_{1}} \varphi_{c_{2}}^{-1}=\left(\varphi_{b_{1}} \varphi_{b_{2}}^{-1}\right)\left(\varphi_{b_{2}} \varphi_{c_{2}}^{-1}\right)$ is linear. Finally, since $\varphi_{b_{1}} \varphi_{c_{2}}^{-1}$ is linear and $\varphi_{b_{1}} \varphi_{c_{i}}^{-1}$ is linearby construction, the linearity of $\varphi_{c_{1}} \varphi_{c_{2}}^{-1}$ follows from the equation $\varphi_{b_{1}} \varphi_{c_{2}}^{-1}=\left(\varphi_{b_{1}} \varphi_{c_{1}}^{-1}\right)\left(\varphi_{c_{1}} \varphi_{c_{2}}^{-1}\right)$.

Thus, each finite c has been provided with H_{c}, φ_{c} in such a way that $c<d$ implies $\varphi_{d} \varphi_{c}^{-1}$ may be induced by a linear isometry $\psi_{d, c}$ of H_{c} in H_{d} which is unique up to multiplication by a number of modulus one. Our next task is to show that these arbitrary multipliers may be chosen consistently; i.e., so that

$$
\begin{equation*}
a<b<c \text { implies } \psi_{c, a}=\psi_{c, b} \psi_{b, a} . \tag{15}
\end{equation*}
$$

3. Erratum, page 1167, line 4 from bottom. For " $\sum_{i=1}^{n} \lambda_{i}(u) \psi_{b_{n}, a_{i}}$ " read " $\sum_{i=1}^{n} \lambda_{i}(u) \psi_{b_{n}, a_{i}} u_{i}$ ".

References

1. G. Birkhoff and J. von Neumann, The logic of quantum mechanics, Ann. of Math. 37 (1936), 823-843.
2. N. Zierler, Axioms for nonrelativistic quantum mechanics, Pacific J. Math. 11 (1961), 1151-1169.

Received April 29, 1965.
Institute for Defense Analyses
Princeton, New Jersey

