TOEPLITZ OPERATORS ON H_{p}

Harold Widom

Abstract

A Toeplitz operator is an operator with a matrix representation $\left(\alpha_{m-n}\right)_{m, n=0}^{\infty}$ where the α_{n} are the Fourier coefficients of a bounded function φ. The operator may be considered as acting on any of the Hardy spaces $H_{p}(1<p<\infty)$ and it is the purpose of this note to show that the spectrum of any such operator is a connected set.

The Hardy space $H_{r}(1 \leqq r \leqq \infty)$ consists of those functions in $L_{r}(-\pi, \pi)$ whose Fourier coefficients corresponding to negative values of the index all vanish. If $f \in L_{p}(1<p<\infty)$ with

$$
f \sim \sum_{n=-\infty}^{\infty} c_{n} e^{i n \theta}
$$

then by a well-known theorem of M. Riesz the series

$$
\sum_{n=0}^{\infty} c_{n} e^{i n \theta}
$$

is the Fourier series of a function $P f$ belonging to L_{p} (and so to H_{p}), and moreover

$$
\|P f\|_{p} \leqq A_{p}\|f\|_{p}
$$

where A_{p} is a constant depending only on p. Thus P is a bounded projection from L_{p} to H_{p}.
(We use the following convention. When we speak of L_{r} or H_{r} then we assume only $1 \leqq r \leqq \infty$; but when we speak of L_{p} or H_{p} then we require $1<p<\infty$.)

Now let $\varphi \in L_{\infty}$. We define the Toeplitz operator T_{φ} on H_{p} by

$$
T_{\varphi} f=P(\varphi f)
$$

Clearly T_{φ} is a bounded operator with norm at most $A_{p}\|\varphi\|_{\infty}$. In a previous paper [3] it was shown that for $p=2$ the spectrum of T_{φ} is connected for all φ. The proof made use of a theorem of Helson and Szegö [2] which characterized those measures $d \mu$ with the property that P (restricted to the trigonometric polynomials) is bounded in the norm of $L_{2}(d \mu)$. It is not at present known whether the analogue of this theorem holds for $p \neq 2$, but we shall present here a new proof which avoids using the Helson-Szegö theorem and which holds for arbitrary p.

Here is an outline of the proof. It suffices to show that if C is
any simple closed curve in the complex plane which is disjoint from $\sigma\left(T_{\varphi}\right)$, the spectrum of T_{φ}, then $\sigma\left(T_{\varphi}\right)$ lies entirely inside or entirely outside C. For $\lambda \in C$ the equation $T_{\varphi} f=\lambda f+1$ has a solution $f=$ $f_{\lambda} \in H_{p}$ which can be shown to satisfy a differential equation whose solution is

$$
\begin{equation*}
f_{\lambda}=f_{\lambda_{0}} \exp \left(\int_{\lambda_{0}}^{\lambda} P \frac{1}{\varphi-\mu} d \mu\right) \tag{1}
\end{equation*}
$$

where λ_{0} is a fixed point of C. (This fact, in a somewhat different setting, was observed by Atkinson [1] and used by him to obtain very simply the solution of a large class of operator equations.) If one takes the path of integration to be the entire curve C then it can be shown very easily from (1) that $R(\varphi)$, the essential range of φ, lies either entirely inside or entirely outside C. In the latter case, say, (1) shows how to continue f_{λ} analytically to the inside of C. Now there is an explicit formula which gives the solution of the equation

$$
\begin{equation*}
T_{\varphi} h=\lambda h+k \tag{2}
\end{equation*}
$$

in terms of f_{λ} for $\lambda \notin \sigma\left(T_{\varphi}\right)$. But then this formula shows us how to continue $h=h_{\lambda}$ analytically to the inside of C and this continuation will provide the unique solution of (2). Thus we shall have shown that $\sigma\left(T_{\varphi}\right)$ lies entirely outside C.

The f_{λ} we have been speaking about is an analytic function of λ whose values are measurable functions, and we must develop a little bit of theory of such things.

Let Ω be an open set in the complex plane and assume that for each $\lambda \in \Omega$ there is associated a measurable function f_{λ} on a finite measure space E. (All functions considered will tacitly be assumed to be finite a.e.) We shall say that f is analytic in Ω if for each $\lambda_{0} \in \Omega$ there is a disc

$$
D\left(\lambda_{0}, \delta\right)=\left\{\lambda:\left|\lambda-\lambda_{0}\right|<\delta\right\}
$$

and a sequence a_{0}, a_{1}, \cdots of measurable functions such that for all $\lambda \in D\left(\lambda_{0}, \delta\right)$ the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(\lambda-\lambda_{0}\right)^{n} \tag{3}
\end{equation*}
$$

converges a.e. to f_{λ}. we shall say that f is L_{r}-analytic if each a_{n} belongs to L_{r} and for each $\lambda \in D\left(\lambda_{0}, \delta\right)$ the series (3) converges to f_{λ} in the norm of L_{r}.

Lemma 1. If f is L_{r} analytic then it is analytic.
Proof. Since L_{r}-analyticity implies L_{1}-analyticity we may assume
$r=1$. It suffices to show that if (3) converges L_{1} for all $\lambda \in D\left(\lambda_{0}, \delta\right)$ then it converges a.e. for all $\lambda \in D\left(\lambda_{0}, \delta\right)$. Suppose $\delta_{1}<\delta$. Then there is a constant A such that $\left\|a_{n}\right\|_{1} \leqq A \delta_{1}^{-n}$ for all n. Let $\delta_{2}<\delta_{1}$. Then if we set

$$
E_{n}=\left\{\theta:\left|a_{n}(\theta)\right| \geqq \delta_{2}^{-n}\right\}
$$

we have

$$
A \delta_{1}^{-n} \geqq \int_{E_{n}}\left|a_{n}(\theta)\right| d \theta \geqq \delta_{2}^{-n}\left|E_{n}\right|
$$

where $\left|E_{n}\right|$ denotes the measure of E_{n}. Thus

$$
\left|E_{n}\right| \leqq A\left(\frac{\delta_{1}}{\delta_{2}}\right)^{-n}
$$

and so $\sum\left|E_{n}\right|<\infty$. This shows that almost all θ belong to only finitely many E_{n}; that is, for almost all θ we have $\left|a_{n}(\theta)\right|<\delta_{2}^{-n}$ for sufficiently large n. Therefore for almost all θ the series (3) converges for each $\lambda \in D\left(\lambda_{0}, \delta_{2}\right)$. But δ_{2} was an arbitrary number smaller than δ. If we take for δ_{2} successively $\left(1-k^{-1}\right) \delta(k=1,2, \cdots)$ we deduce that for almost all θ the series (3) converges for all $\lambda \in D\left(\lambda_{0}, \delta\right)$.

The next lemma is a partial converse of Lemma 1.
Lemma 2. Suppose f is analytic in Ω. Then for any $\varepsilon>0$ there is a set E_{ε} whose complement in E has measure at most ε such that f, when restricted to E_{ε}, is L_{∞}-analytic in Ω.

Proof. First consider a disc $D\left(\lambda_{0}, \delta\right)$ throughout which (3) converges a.e. to f_{λ}. Then the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left(\frac{\delta}{2}\right)^{n} \tag{4}
\end{equation*}
$$

converges a.e. and so by Egoroff's theorem there is a set F_{ε} whose complement has measure at most ε on which (4) converges uniformly. There is a constant M such that for all $\theta \in F_{\varepsilon}$ and all n we have

$$
\begin{equation*}
\left|a_{n}(\theta)\right| \leqq\left(\frac{\delta}{2}\right)^{-n} M \tag{5}
\end{equation*}
$$

Now let λ_{1} be any point in the disc $D\left(\lambda_{0}, \delta / 2\right)$. Then (5) shows that for

$$
\lambda \in D\left(\lambda_{1}, \frac{\delta}{2}-\left|\lambda_{1}-\lambda_{0}\right|\right)
$$

the series (3), which converges a.e. to f_{λ}, may be rearranged into a
power series in $\lambda-\lambda_{1}$ which converges uniformly for $\theta \in F_{\varepsilon}$. This shows that f restricted to F_{ε} is L_{∞}-analytic in $D\left(\lambda_{0}, \delta / 2\right)$.

Now we can find a countable set of $\operatorname{dises} D\left(\lambda_{j}, \delta_{j}\right)(j=1,2, \cdots)$ of the type just considered and such that

$$
\Omega=\bigcup_{j=1}^{\infty} D\left(\lambda_{j},\left(\frac{\delta_{j}}{2}\right)\right.
$$

For each j there is a set $F_{s, j}$ whose complement has measure at most $2^{-j} \varepsilon$ and such that f restricted to $F_{\varepsilon, j}$ is L_{∞}-analytic in

$$
D\left(\lambda_{j}, \frac{\delta_{j}}{2}\right)
$$

But then

$$
E_{\varepsilon}=\bigcap_{j=1}^{\infty} F_{\varepsilon, j}
$$

has complement of measure at most ε and f restricted to E_{ε} is L_{∞} analytic throughout Ω.

Lemma 3. Let C be a simple closed curve contained in a simply connected open set Ω. Suppose f is analytic in Ω and

$$
\sup _{\mu \in O}\left\|f_{\mu}\right\|_{r}=M<\infty
$$

Then f is L_{r}-analytic inside C and for all λ inside C we have

$$
\left\|f_{\lambda}\right\|_{r} \leqq M
$$

Proof. Let λ_{0} be inside C and let δ be so small that $D\left(\lambda_{0}, \delta\right)$ is entirely inside C and

$$
f_{\lambda}=\sum_{n=0}^{\infty} a_{n}\left(\lambda-\lambda_{0}\right)^{n}
$$

a.e. for each $\lambda \in D\left(\lambda_{0}, \delta\right)$. The beginning of the proof of Lemma 2 showed that if we restrict ourselves to an appropriate set E_{ε}, with complement of measure at most ε, the series in (6) converges uniformly as long as $\lambda \in D\left(\lambda_{0}, \delta / 2\right)$. Take any $g \in L_{\infty}$. Then we can conclude

$$
\int_{E_{\varepsilon}} f_{\lambda} g d \theta=\sum_{n=0}^{\infty}\left(\int_{E_{\varepsilon}} a_{n} g d \theta\right)\left(\lambda-\lambda_{0}\right)^{n} \quad \lambda \in D\left(\lambda_{0}, \frac{\delta}{2}\right) .
$$

It follows from the Cauchy inequalities that

$$
\left|\int_{E_{\varepsilon}} a_{n} g d \theta\right| \leqq\left(\frac{\delta}{2}\right)^{-n} \max _{\left|\lambda-\lambda_{0}\right|=\delta / 2}\left|\int_{E_{\varepsilon}} f_{\lambda} g d \theta\right| .
$$

But since f restricted to E_{ε} is L_{∞}-analytic in Ω,

$$
\int_{E_{\varepsilon}} f_{\lambda} g d \theta
$$

is a complex-valued analytic function in Ω, and so for any λ inside C we have

$$
\begin{equation*}
\left|\int_{E_{\varepsilon}} f_{\lambda} g d \theta\right| \leqq \max _{\mu \in \sigma}\left|\int_{E_{\varepsilon}} f_{\mu} g d \theta\right| \leqq M\|g\|_{s}, \tag{7}
\end{equation*}
$$

where $s=r /(r-1)$. Consequently

$$
\left|\int_{E_{\varepsilon}} a_{n} g d \theta\right| \leqq\left(\frac{\delta}{2}\right)^{-n} M\|g\|_{s}
$$

for all $g \in L_{\infty}$, and so

$$
\left\{\int_{E_{\varepsilon}}\left|a_{n}\right|^{r} d \theta\right\}^{1 / r} \leqq\left(\frac{\delta}{2}\right)^{-n} M
$$

Since $\varepsilon>0$ was arbitrary it follows that

$$
\left\|a_{n}\right\|_{r} \leqq\left(\frac{\delta}{2}\right)^{-n} M
$$

and so the series in (6) converges in L_{r} for each $\lambda \in D\left(\lambda_{0}, \delta / 2\right)$. Thus f is L_{r}-analytic inside Ω. Finally (7), with E_{ε} replaced by E, gives $\left\|f_{\lambda}\right\|_{r} \leqq M$.

We shall have to deal later with the derivative of analytic function. If f is analytic in Ω we define f^{\prime} as follows: if f_{λ} is given a.e. as the sum of the series (3) for $\lambda \in D\left(\lambda_{0}, \delta\right)$ then we set

$$
f_{\lambda}^{\prime}=\sum_{n=0}^{\infty} n a_{n}\left(\lambda-\lambda_{0}\right)^{n-1} \quad \lambda \in D\left(\lambda_{0}, \delta\right) .
$$

We leave as exercises for the reader the verification that for each $\lambda \in D\left(\lambda_{0}, \delta\right)$ the above series converges a.e. and that if

$$
\lambda \in D\left(\lambda_{0}, \delta_{0}\right) \cap D\left(\lambda_{1}, \delta_{1}\right)
$$

then the two possible interpretations of f_{λ}^{\prime} agree a.e., so that f_{λ}^{\prime} is well defined and, of course, analytic. We also leave it to the reader to show that if f is L_{r}-analytic then the same is true of f^{\prime}.

Let us return to our Toeplitz operators T_{φ} acting on L_{p}. We denote by $\rho\left(T_{\varphi}\right)$ the resolvent set of T_{φ}, that is, the complement of $\sigma\left(T_{\varphi}\right)$. Recall that the essential range of φ is denoted by $R(\varphi)$.

Lemma 4. $\sigma\left(T_{\varphi}\right)$ contains $R(\varphi)$.
Proof. Suppose $\lambda \in \rho\left(T_{\varphi}\right)$. Then for some constant A we have

$$
\|P(\varphi-\lambda) f\|_{p} \geqq A\|f\|_{p}
$$

for all $f \in H_{p}$, so with another constant A^{\prime} we have

$$
\|(\varphi-\lambda) f\|_{p} \geqq A^{\prime}\|f\|_{p}
$$

If g is an arbitrary trigometric polynomial we shall have $f=e^{i m \theta} g \in H_{p}$ for some m. Then

$$
\left\|(\varphi-\lambda) e^{i m \theta} g\right\|_{p} \geqq A^{\prime}\left\|e^{i m \theta} g\right\|_{p}
$$

and of course this is exactly

$$
\|(\varphi-\lambda) g\|_{p} \geqq A^{\prime}\|g\|_{p} .
$$

It follows that $|\varphi-\lambda| \geqq A^{\prime}$ almost everywhere.
Lemma 5. If $\lambda \in \rho\left(T_{\varphi}\right)$ then $T_{(\varphi-\lambda)^{-1}}$, as an operator on $H_{q}(q=p / p-1)$, is invertible.

Proof. The adjoint of $T_{\varphi}-\lambda I$ is the operator $T_{\overline{\varphi-\lambda}}$ acting on H_{q}. (Here we use the identification of H_{q} with H_{p}^{*} obtained by identifying the function $g \in H_{q}$ with the linear functional $f \rightarrow \int f \bar{g} d \theta$ on H_{p}.) Therefore $T_{\overline{\varphi-\lambda}}$ is invertible on H_{q}. Let

$$
u=\exp (-2 P \log |\varphi-\lambda|)
$$

Then $c|\varphi-\lambda|^{-2}=u \bar{u}$ for some constant c, and since by Lemma 4 $|\varphi-\lambda|^{-1} \in L_{\infty}$ both u and u^{-1} belong to H_{∞}. For $g \in H_{q}$ we have

$$
\begin{aligned}
c(\varphi-\lambda)^{-1} g & =\overline{\varphi-\lambda} u \bar{u} g \\
& =\bar{u} P \overline{\varphi-\lambda} u g+\bar{u} \bar{v} \quad v \in H_{q}^{\circ}
\end{aligned}
$$

(H_{r}° denotes the H_{r} functions with mean zero) and so

$$
c P(\varphi-\lambda)^{-1} g=P(\bar{u} P \overline{\bar{\varphi}-\lambda} u g) .
$$

This shows that

$$
\begin{equation*}
c T_{(\varphi-\lambda)^{-1}}=T_{\bar{u}} T_{\overline{\varphi-\lambda}} T_{u} \tag{8}
\end{equation*}
$$

We have seen that $T_{\overline{\varphi-\lambda}}$ is invertible on H_{q}. Since $u^{-1} \in H_{\infty}$ the same is true of T_{u}. Since similarly T_{u} is invertible on H_{p}, its adjoint $T_{\bar{u}}$ is invertible on H_{q}. Thus the three operators on the right of (8) are all invertible and the lemma is established.

For any $\lambda \in \rho\left(T_{\varphi}\right)$ we shall denote by f_{λ}, g_{λ} the unique solutions of

$$
\begin{equation*}
T_{(\varphi-\lambda)} f_{\lambda}=1, \quad T_{(\varphi-\lambda)^{-1}} g_{\lambda}=1 \tag{9}
\end{equation*}
$$

in H_{p}, H_{q} respectively. The existence and uniqueness of g_{λ} are guaranteed by Lemma 5.

In the following lemma we shall be integrating $P(\varphi-\mu)^{-1}$ over a path lying in $\rho\left(T_{\varphi}\right)$. It follows from Lemma 4 that $(\varphi-\mu)^{-1}$ is L_{p}-continuous on this path and consequently the same is true of $P(\varphi-\mu)^{-1}$. Therefore there is no difficulty making sense of the integral. We shall interpret it as a weak integral.

Lemma 6. Let Γ be a rectifiable curve lying in $\rho\left(T_{\varphi}\right)$ and having initial and terminal points λ_{0}, λ respectively. Then

$$
\begin{align*}
& f_{\lambda}=f_{\lambda_{0}} \exp \left\{\int_{\Gamma} P(\varphi-\mu)^{-1} d \mu\right\}, \tag{10}\\
& g_{\lambda}=g_{\lambda_{0}} \exp \left\{-\int_{\Gamma} P(\varphi-\mu)^{-1} d \mu\right\} \tag{11}
\end{align*}
$$

Proof. It follows from (9) that

$$
\begin{array}{lc}
(\varphi-\lambda) f_{\lambda}=1+\bar{u}_{\lambda} & u_{\lambda} \in H_{p}^{\circ} \\
(\varphi-\lambda)^{-1} g_{\lambda}=1+\bar{v}_{\lambda} & v_{\lambda} \in H_{q}^{\circ} \tag{13}
\end{array}
$$

Therefore $f_{\lambda} g_{\lambda}=1+\bar{w}$ where $w \in H_{1}^{\circ}$. But since $f_{\lambda} g_{\lambda} \in H_{1}$ we conclude

$$
\begin{equation*}
f_{\lambda} g_{\lambda}=1 \tag{14}
\end{equation*}
$$

Now f_{λ} is L_{p}-analytic since, as is well-known, $\left(T_{\varphi}-\lambda I\right)^{-1}$ is analytic in $\rho\left(T_{\varphi}\right)$. Therefore \bar{u}_{λ} is also L_{p}-analytic and differentiation of both sides of (12) gives

$$
(\varphi-\lambda) f_{\lambda}^{\prime}-f_{\lambda}=\bar{u}_{\lambda}^{\prime}
$$

If we multiply both sides of this identity by $(\varphi-\lambda)^{-1} g_{\lambda}$ and use (13) and (14) we obtain

$$
\begin{equation*}
(\varphi-\lambda)^{-1}=g_{\lambda} f_{\lambda}^{\prime}-\left(1+\bar{v}_{\lambda}\right) \bar{u}_{\lambda}^{\prime} \tag{15}
\end{equation*}
$$

It is easy to see that if h_{λ} is L_{r}-analytic and h_{λ} belongs to a certain closed subspace of L_{r} for all λ then h_{λ}^{\prime} belongs to the same subspace. Therefore f_{λ}^{\prime} belongs to H_{p} and so $g_{\lambda} f_{\lambda}^{\prime} \in H_{1}$. Similarly $\bar{u}_{\lambda}^{\prime} \in \overline{H_{p}^{0}}$ and so (1 $\left.+\bar{v}_{\lambda}\right) \bar{u}_{\lambda}^{\prime} \in \overline{H_{1}{ }^{\circ}}$. Consequently (15) gives

$$
P(\varphi-\lambda)^{-1}=g_{\lambda} f_{\lambda}^{\prime}
$$

and so by (14)

$$
\begin{equation*}
f_{\lambda}^{\prime}=f_{\lambda} P(\varphi-\lambda)^{-1} \tag{16}
\end{equation*}
$$

Now consider a disc $D\left(\lambda_{0}, \delta\right)$ inside of which we have series representations

$$
\begin{gathered}
f_{\lambda}=\sum_{n=0}^{\infty} a_{n}\left(\lambda-\lambda_{0}\right)^{n} \\
P(\varphi-\lambda)^{-1}=\sum_{n=0}^{\infty} b_{n}\left(\lambda-\lambda_{0}\right)^{n}
\end{gathered}
$$

For each $\lambda \in D\left(\lambda_{0}, \delta\right)$ the two series converge a.e. and this implies that for all θ not belonging to some null set N the series converge for all $\lambda \in D\left(\lambda_{0}, \delta\right)$. Let us write $U(\theta, \lambda), V(\theta, \lambda)$ for the sums of the two series; U and V are defined for $\theta \notin N, \lambda \in D\left(\lambda_{0}, \delta\right)$. The equation (16) is equivalent to the statement that for each $n \geqq 0$ the identity

$$
(n+1) a_{n+1}=\sum_{m=0}^{n} a_{m} b_{n-m}
$$

holds almost everywhere. It follows that for all θ not belonging to some null set N_{1} the above identities hold for all n. Thus if $\theta \notin N \cup N_{1}$ we have

$$
\frac{\partial}{\partial \lambda} U(\theta, \lambda)=U(\theta, \lambda) V(\theta, \lambda)
$$

for all $\lambda \in D\left(\lambda_{0}, \delta\right)$. This implies that for any rectifiable curve Γ which lies in $D\left(\lambda_{0}, \delta\right)$ and has initial point λ_{0} and terminal point λ

$$
U(\theta, \lambda)=U\left(\theta, \lambda_{0}\right) \exp \left\{\int_{\Gamma} V(\theta, \mu) d \mu\right\}
$$

Since this holds for all $\theta \notin N \cup N_{1}$ and since for each λ, μ

$$
f_{\lambda}=U(\theta, \lambda), P(\varphi-\mu)^{-1}=V(\theta, \mu) \quad \text { a.e. }
$$

we conclude that (10) holds, at least for curves Γ of this special type. But any rectifiable curve lying in $\rho\left(T_{\varphi}\right)$ may be obtained by joining finitely many curves of the special type, so (10) holds in general. Formula (11) is an immediate consequence of (10) and (14).

Theorem. $\sigma\left(T_{\varphi}\right)$ is connected.
Proof. It suffices to show that if C is a simple closed curve in $\rho\left(T_{\varphi}\right)$ the $\sigma\left(T_{\varphi}\right)$ is either entirely inside or entirely outside C. Let us apply Lemma 6 with $\Gamma=C$ and observe that by (14) f_{λ} is almost nowhere zero. Then we obtain

$$
\exp \left\{\int_{\sigma} P(\varphi-\mu)^{-1} d \mu\right\}=1
$$

Thus if

$$
\Phi(\theta)= \begin{cases}1 & \varphi(\theta) \text { inside } C \\ 0 & \varphi(\theta) \text { outside } C\end{cases}
$$

we have $e^{-2 \pi i P \omega}=1$. Therefore $P \Phi$ is a real (in fact integer) valued H_{2} function and so is constant. But since Φ is real valued this implies that Φ is itself constant, and so $R(\phi)$ lies entirely inside or entirely outside C. Assume the latter. The other case is quite similar, except that the point at infinity is involved; but this is handled in the usual way.

Let Ω be a simply connected open set which contains C and such that any point of Ω not inside C belongs to $\rho\left(T_{\varphi}\right)$. Choose $\lambda_{0} \in C$, keep it fixed, and use (10) and (11) to define f_{λ} and g_{λ} for all $\lambda \in \Omega$. Here Γ is always taken to lie in Ω. Notice that

$$
\int_{\Gamma} P(\varphi-\mu)^{-1} d \mu
$$

is independent of Γ (since Ω is simply connected and $P(\varphi-\mu)^{-1}$ is L_{p}-analytic for μ in Ω) and represents an L_{p}-analytic function of λ. Therefore f_{λ} and g_{λ} are analytic throughout Ω and by Lemma 3 even $L_{p^{-}}$ analytic and L_{q}-analytic respectively inside C. If $h \in H_{q}^{\circ}$ then

$$
\int f_{\lambda} h d \theta=0
$$

whenever $\lambda \in \rho\left(T_{\varphi}\right)$, since $f_{\lambda} \in H_{p}$. But since f_{λ} is L_{p}-analytic throughout Ω this identity holds throughout Ω, and so $f_{\lambda} \in H_{p}$ for all $\lambda \in \Omega$. Similarly we have $g_{\lambda} \in H_{q}$ for all $\lambda \in \Omega$. Moreover the identities (9) and (14) which hold in $\rho\left(T_{\varphi}\right)$ persist in Ω.

We show now that $T_{\varphi}-\lambda I$ is invertible for each λ inside C. Suppose $h \in H_{p}$ and $\left(T_{\varphi}-\lambda I\right) h=0$. Then

$$
\overline{\varphi-\lambda} \bar{h} \in H_{p}^{\circ} .
$$

Since, by (9),

$$
\overline{(\rho-\lambda)^{-1} \bar{g}_{\lambda} \in H_{q}}
$$

we deduce $\overline{h g_{\lambda}} \in H_{1}{ }^{\circ}$. But since $h g_{\lambda} \in H_{1}$ we must have $h g_{\lambda}=0$ and so $h=0$. We have shown that $T_{\varphi}-\lambda I$ is one-one.

Next let $k \in H_{\infty}$ be arbitrary and for $\lambda \in \rho\left(T_{\varphi}\right)$ let $h_{\lambda} \in H_{p}$ denote the solution of

$$
\begin{equation*}
\left(T_{\varphi}-\lambda I\right) h_{\lambda}=k \tag{17}
\end{equation*}
$$

Then

$$
(\varphi-\lambda) h_{\lambda}=k+\bar{l}_{\lambda} \quad l_{\lambda} \in H_{p}^{\circ}
$$

Multiplying both sides by $(\varphi-\lambda)^{-1} g_{\lambda}$ and using (13) we obtain

$$
g_{\lambda} h_{\lambda}=(\varphi-\lambda)^{-1} g_{\lambda} k+\left(1+\bar{v}_{\lambda}\right) \bar{l}_{\lambda} .
$$

Since $g_{\lambda} h_{\lambda} \in H_{1}$ and $\left(1+v_{\lambda}\right) l \in H_{1}^{\circ}$ we conclude that

$$
g_{\lambda} h_{\lambda}=P(\varphi-\lambda)^{-1} g_{\lambda} k .
$$

Therefore

$$
h_{\lambda}=f_{\lambda} P(\varphi-\lambda)^{-1} g_{\lambda} k .
$$

Let this identity, which holds for $\lambda \in \rho\left(T_{\varphi}\right)$, be used to define h_{λ} for $\lambda \in \Omega$. Note that since k is bounded $P(\varphi-\lambda)^{-1} g_{\lambda} k$ is L_{q}-analytic and so h_{λ} is analytic. But since

$$
\sup _{\mu \in \sigma}\left\|h_{\mu}\right\|_{p} \leqq \sup _{\mu \in \sigma}\left\|\left(T_{\varphi}-\lambda I\right)^{-1}\right\|\|k\|_{p}
$$

Lemma 3 tells us that h_{λ} is L_{p}-analytic inside C and satisfies the inequality

$$
\begin{equation*}
\left\|h_{\lambda}\right\|_{p} \leqq \sup _{\mu \in \sigma}\left\|\left(T_{\varphi}-\lambda I\right)^{-1}\right\|\|k\|_{p} \tag{18}
\end{equation*}
$$

there. By an argument already given $h_{\lambda} \in H_{p}$ and satisfies (17) there.
Finally let k be an arbitrary function belonging to H_{p}. Then we can find a sequence of functions k_{n} belonging to H_{∞} and satisfying $\left\|k_{n}-k\right\|_{p} \rightarrow 0$. Let $h_{n, \lambda}$ denote the solution of

$$
\left(T_{\varphi}-\lambda I\right) h_{n, \lambda}=k_{n} .
$$

As $n, m \rightarrow \infty$ we have $\left\|k_{n}-k_{m}\right\|_{p} \rightarrow 0$, so by (18)

$$
\left\|h_{n, \lambda}-h_{m, \lambda}\right\|_{p} \rightarrow 0 .
$$

Then $\left\{h_{m, \lambda}\right\}$ converges in L_{p} to a function $h_{\lambda} \in H_{p}$ and

$$
\left(T_{\varphi}-\lambda I\right) h_{\lambda}=k
$$

This completes the proof of the theorem.

References

1. F. V. Atkinson, Some aspects of Baxter's functional equation, J. Math. Anal. Appl. 7 (1963), 1-30.
2. H. Helson and G. Szegö, A problem in prediction theory, Annali di Mat. 41 (1960) 107-138.
3. H. Widom, On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 365375.

Received May 21, 1965. Supported in part by Air Force grant AFOSR 743-65.

