TOEPLITZ OPERATORS ON H_{p}

HAROLD WIDOM

A Toeplitz operator is an operator with a matrix representation $(\alpha_{m-n})_{m,n=0}^{\infty}$ where the α_n are the Fourier coefficients of a bounded function φ . The operator may be considered as acting on any of the Hardy spaces $H_p(1 and it is$ the purpose of this note to show that the spectrum of anysuch operator is a connected set.

The Hardy space $H_r(1 \le r \le \infty)$ consists of those functions in $L_r(-\pi, \pi)$ whose Fourier coefficients corresponding to negative values of the index all vanish. If $f \in L_p(1 with$

$$f \sim \sum_{n=-\infty}^{\infty} c_n e^{in\theta}$$

then by a well-known theorem of M. Riesz the series

$$\sum_{n=0}^{\infty} c_n e^{in\theta}$$

is the Fourier series of a function Pf belonging to L_p (and so to H_p), and moreover

$$||Pf||_p \leq A_p ||f||_p$$

where A_p is a constant depending only on p. Thus P is a bounded projection from L_p to H_p .

(We use the following convention. When we speak of L_r or H_r then we assume only $1 \leq r \leq \infty$; but when we speak of L_p or H_p then we require 1 .)

Now let $\varphi \in L_{\infty}$. We define the Toeplitz operator T_{φ} on H_{p} by

$$T_{\varphi}f = P(\varphi f)$$
.

Clearly T_{φ} is a bounded operator with norm at most $A_p || \varphi ||_{\infty}$. In a previous paper [3] it was shown that for p = 2 the spectrum of T_{φ} is connected for all φ . The proof made use of a theorem of Helson and Szegö [2] which characterized those measures $d\mu$ with the property that P (restricted to the trigonometric polynomials) is bounded in the norm of $L_{\mathbb{P}}(d\mu)$. It is not at present known whether the analogue of this theorem holds for $p \neq 2$, but we shall present here a new proof which avoids using the Helson-Szegö theorem and which holds for arbitrary p.

Here is an outline of the proof. It suffices to show that if C is

any simple closed curve in the complex plane which is disjoint from $\sigma(T_{\varphi})$, the spectrum of T_{φ} , then $\sigma(T_{\varphi})$ lies entirely inside or entirely outside C. For $\lambda \in C$ the equation $T_{\varphi}f = \lambda f + 1$ has a solution $f = f_{\lambda} \in H_p$ which can be shown to satisfy a differential equation whose solution is

(1)
$$f_{\lambda} = f_{\lambda_0} \exp\left(\int_{\lambda_0}^{\lambda} P \frac{1}{\varphi - \mu} d\mu\right)$$

where λ_0 is a fixed point of *C*. (This fact, in a somewhat different setting, was observed by Atkinson [1] and used by him to obtain very simply the solution of a large class of operator equations.) If one takes the path of integration to be the entire curve *C* then it can be shown very easily from (1) that $R(\varphi)$, the essential range of φ , lies either entirely inside or entirely outside *C*. In the latter case, say, (1) shows how to continue f_{λ} analytically to the inside of *C*. Now there is an explicit formula which gives the solution of the equation

$$(2) T_{\varphi}h = \lambda h + k$$

in terms of f_{λ} for $\lambda \notin \sigma(T_{\varphi})$. But then this formula shows us how to continue $h = h_{\lambda}$ analytically to the inside of C and this continuation will provide the unique solution of (2). Thus we shall have shown that $\sigma(T_{\varphi})$ lies entirely outside C.

The f_{λ} we have been speaking about is an analytic function of λ whose values are measurable functions, and we must develop a little bit of theory of such things.

Let Ω be an open set in the complex plane and assume that for each $\lambda \in \Omega$ there is associated a measurable function f_{λ} on a finite measure space E. (All functions considered will tacitly be assumed to be finite a.e.) We shall say that f is analytic in Ω if for each $\lambda_0 \in \Omega$ there is a disc

$$D(\lambda_0,\,\delta)=\{\lambda\colon\,|\,\lambda-\lambda_0\,|<\delta\}$$

and a sequence a_0, a_1, \cdots of measurable functions such that for all $\lambda \in D(\lambda_0, \delta)$ the series

(3)
$$\sum_{n=0}^{\infty} a_n (\lambda - \lambda_0)^n$$

converges a.e. to f_{λ} . we shall say that f is L_r -analytic if each a_n belongs to L_r and for each $\lambda \in D(\lambda_0, \delta)$ the series (3) converges to f_{λ} in the norm of L_r .

LEMMA 1. If f is L_r analytic then it is analytic.

Proof. Since L_r -analyticity implies L_1 -analyticity we may assume

r = 1. It suffices to show that if (3) converges L_1 for all $\lambda \in D(\lambda_0, \delta)$ then it converges a.e. for all $\lambda \in D(\lambda_0, \delta)$. Suppose $\delta_1 < \delta$. Then there is a constant A such that $||a_n||_1 \leq A\delta_1^{-n}$ for all n. Let $\delta_2 < \delta_1$. Then if we set

$$E_n = \{ \theta \colon | a_n(\theta) | \ge \delta_2^{-n} \}$$

we have

$$A\delta_1^{-n} \ge \int_{E_n} |a_n(heta)| d heta \ge \delta_2^{-n} |E_n|$$
 ,

where $|E_n|$ denotes the measure of E_n . Thus

$$|E_n| \leq A \left(rac{\delta_1}{\delta_2}
ight)^{-n}$$

and so $\sum |E_n| < \infty$. This shows that almost all θ belong to only finitely many E_n ; that is, for almost all θ we have $|a_n(\theta)| < \delta_2^{-n}$ for sufficiently large *n*. Therefore for almost all θ the series (3) converges for each $\lambda \in D(\lambda_0, \delta_2)$. But δ_2 was an arbitrary number smaller than δ . If we take for δ_2 successively $(1 - k^{-1})\delta(k = 1, 2, \cdots)$ we deduce that for almost all θ the series (3) converges for all $\lambda \in D(\lambda_0, \delta)$.

The next lemma is a partial converse of Lemma 1.

LEMMA 2. Suppose f is analytic in Ω . Then for any $\varepsilon > 0$ there is a set E_{ε} whose complement in E has measure at most ε such that f, when restricted to E_{ε} , is L_{∞} -analytic in Ω .

Proof. First consider a disc $D(\lambda_0, \delta)$ throughout which (3) converges a.e. to f_{λ} . Then the series

(4)
$$\sum_{n=0}^{\infty} a_n \left(\frac{\delta}{2}\right)^n$$

converges a.e. and so by Egoroff's theorem there is a set F_{ε} whose complement has measure at most ε on which (4) converges uniformly. There is a constant M such that for all $\theta \in F_{\varepsilon}$ and all n we have

$$(5) |a_n(heta)| \leq \left(rac{\delta}{2}
ight)^{-n}M$$
 .

Now let λ_1 be any point in the disc $D(\lambda_0, \delta/2)$. Then (5) shows that for

$$\lambda \in D\!\!\left(\lambda_1, rac{\delta}{2} - |\lambda_1 - \lambda_0|
ight)$$

the series (3), which converges a.e. to f_{λ} , may be rearranged into a

power series in $\lambda - \lambda_1$ which converges uniformly for $\theta \in F_{\varepsilon}$. This shows that f restricted to F_{ε} is L_{∞} -analytic in $D(\lambda_0, \delta/2)$.

Now we can find a countable set of discs $D(\lambda_j, \delta_j)$ $(j = 1, 2, \cdots)$ of the type just considered and such that

$$arOmega = igcup_{j=1}^{m{\infty}} D(\lambda_j, \left(rac{\delta_j}{2}
ight)$$
 .

For each j there is a set $F_{\varepsilon,j}$ whose complement has measure at most $2^{-j}\varepsilon$ and such that f restricted to $F_{\varepsilon,j}$ is L_{∞} -analytic in

$$D\left(\lambda_j, \frac{\delta_j}{2}\right)$$
.

But then

$$E_{\epsilon} = igcap_{j=1}^{\infty} F_{\epsilon,j}$$

has complement of measure at most ε and f restricted to E_{ε} is L_{∞} analytic throughout Ω .

LEMMA 3. Let C be a simple closed curve contained in a simply connected open set Ω . Suppose f is analytic in Ω and

$$\sup_{\mu\in\sigma}||f_{\mu}||_{r}=M<\infty$$
 .

Then f is L_r -analytic inside C and for all λ inside C we have

 $||f_{\lambda}||_{r} \leq M.$

Proof. Let λ_0 be inside C and let δ be so small that $D(\lambda_0, \delta)$ is entirely inside C and

$$f_{\lambda} = \sum_{n=0}^{\infty} a_n (\lambda - \lambda_0)^n$$

a.e. for each $\lambda \in D(\lambda_0, \delta)$. The beginning of the proof of Lemma 2 showed that if we restrict ourselves to an appropriate set E_{ϵ} , with complement of measure at most ϵ , the series in (6) converges uniformly as long as $\lambda \in D(\lambda_0, \delta/2)$. Take any $g \in L_{\infty}$. Then we can conclude

It follows from the Cauchy inequalities that

$$\left|\int_{E_{\varepsilon}} a_n g d\theta\right| \leq \left(\frac{\delta}{2}\right)^{-n} \max_{|\lambda - \lambda_0| = \delta/2} \left|\int_{E_{\varepsilon}} f_{\lambda} g d\theta\right|.$$

But since f restricted to E_{ε} is L_{∞} -analytic in Ω ,

$$\int_{E_{\varepsilon}} f_{\lambda}gd\theta$$

is a complex-valued analytic function in Ω , and so for any λ inside C we have

(7)
$$\left| \int_{E_{\varepsilon}} f_{\lambda}g d\theta \right| \leq \max_{\mu \in \sigma} \left| \int_{E_{\varepsilon}} f_{\mu}g d\theta \right| \leq M ||g||_{s},$$

where s = r/(r-1). Consequently

$$\left| \int_{E_{\varepsilon}} a_n g d heta
ight| \leq \left(rac{\delta}{2}
ight)^{-n} M \mid\mid g \mid\mid_s$$

for all $g \in L_{\infty}$, and so

$$\left\{ \int_{{}^{E}{}_{arepsilon}} |\, a_n\,|^r d heta
ight\}^{1/r} \leq \left(rac{\delta}{2}
ight)^{-n} M$$
 .

Since $\varepsilon > 0$ was arbitrary it follows that

$$|| \, a_n \, ||_r \leq \left(rac{\delta}{2}
ight)^{-n} M$$
 ,

and so the series in (6) converges in L_r for each $\lambda \in D(\lambda_0, \delta/2)$. Thus f is L_r -analytic inside Ω . Finally (7), with E_{ε} replaced by E, gives $||f_{\lambda}||_r \leq M$.

We shall have to deal later with the derivative of analytic function. If f is analytic in Ω we define f' as follows: if f_{λ} is given a.e. as the sum of the series (3) for $\lambda \in D(\lambda_0, \delta)$ then we set

$$f_{\lambda}' = \sum_{n=0}^{\infty} n a_n (\lambda - \lambda_0)^{n-1} \qquad \lambda \in D(\lambda_0, \, \delta)$$
.

We leave as exercises for the reader the verification that for each $\lambda \in D(\lambda_0, \delta)$ the above series converges a.e. and that if

$$\lambda \in D(\lambda_0, \delta_0) \cap D(\lambda_1, \delta_1)$$

then the two possible interpretations of f'_{λ} agree a.e., so that f'_{λ} is well defined and, of course, analytic. We also leave it to the reader to show that if f is L_r -analytic then the same is true of f'.

Let us return to our Toeplitz operators T_{φ} acting on L_p . We denote by $\rho(T_{\varphi})$ the resolvent set of T_{φ} , that is, the complement of $\sigma(T_{\varphi})$. Recall that the essential range of φ is denoted by $R(\varphi)$.

LEMMA 4. $\sigma(T_{\varphi})$ contains $R(\varphi)$.

Proof. Suppose $\lambda \in \rho(T_{\varphi})$. Then for some constant A we have

$$|| P(\varphi - \lambda)f ||_p \ge A || f ||_p$$

for all $f \in H_p$, so with another constant A' we have

$$||(\varphi - \lambda)f||_p \ge A' ||f||_p.$$

If g is an arbitrary trigometric polynomial we shall have $f = e^{im\theta}g \in H_p$ for some m. Then

 $|| (\varphi - \lambda) e^{im\theta} g ||_p \ge A' || e^{im\theta} g ||_p$

and of course this is exactly

$$||(\varphi - \lambda)g||_p \geq A' ||g||_p$$
.

It follows that $|\varphi - \lambda| \ge A'$ almost everywhere.

LEMMA 5. If $\lambda \in \rho(T_{\varphi})$ then $T_{(\varphi-\lambda)^{-1}}$, as an operator on $H_q(q = p/p - 1)$, is invertible.

Proof. The adjoint of $T_{\varphi} - \lambda I$ is the operator $T_{\overline{\varphi-\lambda}}$ acting on H_q . (Here we use the identification of H_q with H_p^* obtained by identifying the function $g \in H_q$ with the linear functional $f \to \int f \overline{g} d\theta$ on H_p .) Therefore $T_{\overline{\varphi-\lambda}}$ is invertible on H_q . Let

$$u = \exp\left(- \, 2 P \log | \, arphi - \lambda \, |
ight)$$

Then $c |\varphi - \lambda|^{-2} = u\overline{u}$ for some constant c, and since by Lemma 4 $|\varphi - \lambda|^{-1} \in L_{\infty}$ both u and u^{-1} belong to H_{∞} . For $g \in H_q$ we have

$$egin{aligned} c(arphi-\lambda)^{-1}g &= \overline{arphi-\lambda}uar{u}g \ &= ar{u}P\overline{arphi-\lambda}ug + ar{u}ar{v} & v\in H_q^\circ \end{aligned}$$

 $(H_r^{\circ}$ denotes the H_r functions with mean zero) and so

$$cP(arphi-\lambda)^{-1}g=P(ar{u}P\overline{arphi-\lambda}ug)$$
 .

This shows that

$$(8) c T_{(\varphi-\lambda)}^{-1} = T_{\overline{u}} T_{\overline{\varphi-\lambda}} T_{u} .$$

We have seen that $T_{\overline{\varphi-\lambda}}$ is invertible on H_q . Since $u^{-1} \in H_{\infty}$ the same is true of T_u . Since similarly T_u is invertible on H_p , its adjoint $T_{\overline{u}}$ is invertible on H_q . Thus the three operators on the right of (8) are all invertible and the lemma is established.

For any $\lambda \in \rho(T_{\varphi})$ we shall denote by f_{λ}, g_{λ} the unique solutions of

578

(9)
$$T_{(\varphi-\lambda)}f_{\lambda}=1, \ T_{(\varphi-\lambda)}-g_{\lambda}=1$$

in H_p , H_q respectively. The existence and uniqueness of g_{λ} are guaranteed by Lemma 5.

In the following lemma we shall be integrating $P(\varphi - \mu)^{-1}$ over a path lying in $\rho(T_{\varphi})$. It follows from Lemma 4 that $(\varphi - \mu)^{-1}$ is L_p -continuous on this path and consequently the same is true of $P(\varphi - \mu)^{-1}$. Therefore there is no difficulty making sense of the integral. We shall interpret it as a weak integral.

LEMMA 6. Let Γ be a rectifiable curve lying in $\rho(T_{\varphi})$ and having initial and terminal points λ_0 , λ respectively. Then

(10)
$$f_{\lambda} = f_{\lambda_0} \exp\left\{\int_{\Gamma} P(\varphi - \mu)^{-1} d\mu\right\},$$

(11)
$$g_{\lambda} = g_{\lambda_0} \exp\left\{-\int_{\Gamma} P(\varphi - \mu)^{-1} d\mu\right\}.$$

Proof. It follows from (9) that

(12)
$$(\varphi - \lambda)f_{\lambda} = 1 + \bar{u}_{\lambda}$$
 $u_{\lambda} \in H_p^{\circ}$

(13)
$$(\varphi - \lambda)^{-1}g_{\lambda} = 1 + \bar{v}_{\lambda} \qquad v_{\lambda} \in H_{q}^{\circ}$$

Therefore $f_{\lambda}g_{\lambda} = 1 + \bar{w}$ where $w \in H_1^{\circ}$. But since $f_{\lambda}g_{\lambda} \in H_1$ we conclude

(14)
$$f_{\lambda}g_{\lambda} = 1$$

Now f_{λ} is L_p -analytic since, as is well-known, $(T_{\varphi} - \lambda I)^{-1}$ is analytic in $\rho(T_{\varphi})$. Therefore \bar{u}_{λ} is also L_p -analytic and differentiation of both sides of (12) gives

$$(arphi-\lambda)f_{\lambda}'-f_{\lambda}=ar{u}_{\lambda}'$$
 .

If we multiply both sides of this identity by $(\varphi - \lambda)^{-1}g_{\lambda}$ and use (13) and (14) we obtain

(15)
$$(\varphi - \lambda)^{-1} = g_{\lambda} f_{\lambda}' - (1 + \bar{v}_{\lambda}) \bar{u}_{\lambda}' .$$

It is easy to see that if h_{λ} is L_r -analytic and h_{λ} belongs to a certain closed subspace of L_r for all λ then h'_{λ} belongs to the same subspace. Therefore f'_{λ} belongs to H_p and so $g_{\lambda}f'_{\lambda} \in H_1$. Similarly $\bar{u}'_{\lambda} \in \overline{H_p^0}$ and so $(1 + \bar{v}_{\lambda})\bar{u}'_{\lambda} \in \overline{H_1^0}$. Consequently (15) gives

$$P(arphi-\lambda)^{-1}=g_{\lambda}f_{\lambda}'$$

and so by (14)

(16)
$$f'_{\lambda} = f_{\lambda} P(\varphi - \lambda)^{-1} .$$

Now consider a disc $D(\lambda_0, \delta)$ inside of which we have series representations

$$egin{aligned} &f_{oldsymbol{\lambda}}=\sum\limits_{n=0}^{\infty}a_{n}(\lambda-\lambda_{0})^{n}\ &P(arphi-\lambda)^{-1}=\sum\limits_{n=0}^{\infty}b_{n}(\lambda-\lambda_{0})^{n}\ . \end{aligned}$$

For each $\lambda \in D(\lambda_0, \delta)$ the two series converge a.e. and this implies that for all θ not belonging to some null set N the series converge for all $\lambda \in D(\lambda_0, \delta)$. Let us write $U(\theta, \lambda)$, $V(\theta, \lambda)$ for the sums of the two series; U and V are defined for $\theta \notin N$, $\lambda \in D(\lambda_0, \delta)$. The equation (16) is equivalent to the statement that for each $n \geq 0$ the identity

$$(n+1)a_{n+1} = \sum_{m=0}^{n} a_m b_{n-m}$$

holds almost everywhere. It follows that for all θ not belonging to some null set N_1 the above identities hold for all n. Thus if $\theta \notin N \cup N_1$ we have

$$rac{\partial}{\partial\lambda}\,U(heta,\,\lambda)=\,U(heta,\,\lambda)\,V(heta,\,\lambda)$$

for all $\lambda \in D(\lambda_0, \delta)$. This implies that for any rectifiable curve Γ which lies in $D(\lambda_0, \delta)$ and has initial point λ_0 and terminal point λ

$$U(heta,\,\lambda)=\,U(heta,\,\lambda_{\scriptscriptstyle 0})\exp\left\{\int_{arLambda}\,V(heta,\,\mu)d\mu
ight\}\,.$$

Since this holds for all $\theta \notin N \cup N_1$ and since for each λ, μ

$$f_{\lambda} = U(\theta, \lambda), P(\varphi - \mu)^{-1} = V(\theta, \mu)$$
 a.e.

we conclude that (10) holds, at least for curves Γ of this special type. But any rectifiable curve lying in $\rho(T_{\varphi})$ may be obtained by joining finitely many curves of the special type, so (10) holds in general. Formula (11) is an immediate consequence of (10) and (14).

THEOREM. $\sigma(T_{\varphi})$ is connected.

Proof. It suffices to show that if C is a simple closed curve in $\rho(T_{\varphi})$ the $\sigma(T_{\varphi})$ is either entirely inside or entirely outside C. Let us apply Lemma 6 with $\Gamma = C$ and observe that by (14) f_{λ} is almost nowhere zero. Then we obtain

$$\exp\left\{\int_{\sigma}P(\varphi-\mu)^{-1}d\mu
ight\}=1$$
 .

580

Thus if

$$arPsi(heta) = egin{cases} 1 & arphi(heta) ext{ inside } C \ 0 & arphi(heta) ext{ outside } C \end{cases}$$

we have $e^{-2\pi i P \phi} = 1$. Therefore $P \phi$ is a real (in fact integer) valued H_2 function and so is constant. But since ϕ is real valued this implies that ϕ is itself constant, and so $R(\phi)$ lies entirely inside or entirely outside C. Assume the latter. The other case is quite similar, except that the point at infinity is involved; but this is handled in the usual way.

Let Ω be a simply connected open set which contains C and such that any point of Ω not inside C belongs to $\rho(T_{\varphi})$. Choose $\lambda_0 \in C$, keep it fixed, and use (10) and (11) to define f_{λ} and g_{λ} for all $\lambda \in \Omega$. Here Γ is always taken to lie in Ω . Notice that

$$\int_{\Gamma} P(\varphi - \mu)^{-1} d\mu$$

is independent of Γ (since Ω is simply connected and $P(\varphi - \mu)^{-1}$ is L_p -analytic for μ in Ω) and represents an L_p -analytic function of λ . Therefore f_{λ} and g_{λ} are analytic throughout Ω and by Lemma 3 even L_p -analytic and L_q -analytic respectively inside C. If $h \in H_q^{\circ}$ then

$$\int f_{\lambda}hd heta=0$$

whenever $\lambda \in \rho(T_{\varphi})$, since $f_{\lambda} \in H_{p}$. But since f_{λ} is L_{p} -analytic throughout Ω this identity holds throughout Ω , and so $f_{\lambda} \in H_{p}$ for all $\lambda \in \Omega$. Similarly we have $g_{\lambda} \in H_{q}$ for all $\lambda \in \Omega$. Moreover the identities (9) and (14) which hold in $\rho(T_{\varphi})$ persist in Ω .

We show now that $T_{\varphi} - \lambda I$ is invertible for each λ inside C. Suppose $h \in H_{\varphi}$ and $(T_{\varphi} - \lambda I)h = 0$. Then

$$\overline{\varphi - \lambda}\overline{h} \in H_p^{\circ}$$
 .

Since, by (9),

$$\overline{(\varphi - \lambda)}^{-1} \overline{g}_{\lambda} \in H_q$$

we deduce $\overline{hg_{\lambda}} \in H_{1}^{\circ}$. But since $hg_{\lambda} \in H_{1}$ we must have $hg_{\lambda} = 0$ and so h = 0. We have shown that $T_{\varphi} - \lambda I$ is one-one.

Next let $k \in H_{\infty}$ be arbitrary and for $\lambda \in \rho(T_{\varphi})$ let $h_{\lambda} \in H_{p}$ denote the solution of

(17)
$$(T_{\varphi} - \lambda I)h_{\lambda} = k .$$

Then

$$(arphi-\lambda)h_{\lambda}=k+\,\overline{l}_{\lambda}\qquad l_{\lambda}\!\in H_{p}^{\,\circ}$$
 .

Multiplying both sides by $(\varphi - \lambda)^{-1}g_{\lambda}$ and using (13) we obtain

$$g_{\lambda}h_{\lambda}=(arphi-\lambda)^{-1}g_{\lambda}k+(1+ar{v}_{\lambda})ar{l}_{\lambda}$$
 .

Since $g_{\lambda}h_{\lambda} \in H_1$ and $(1 + v_{\lambda})l \in H_1^{\circ}$ we conclude that

$$g_{\lambda}h_{\lambda} = P(\varphi - \lambda)^{-1}g_{\lambda}k$$
.

Therefore

$$h_{\lambda}=f_{\lambda}P(arphi-\lambda)^{-1}g_{\lambda}k$$
 .

Let this identity, which holds for $\lambda \in \rho(T_{\varphi})$, be used to define h_{λ} for $\lambda \in \Omega$. Note that since k is bounded $P(\varphi - \lambda)^{-1}g_{\lambda}k$ is L_q -analytic and so h_{λ} is analytic. But since

$$\sup_{\mu \in \sigma} ||h_{\mu}||_{\mathfrak{p}} \leq \sup_{\mu \in \sigma} ||(T_{\varphi} - \lambda I)^{-1}|| \, ||k||_{\mathfrak{p}}$$

Lemma 3 tells us that h_{λ} is L_p -analytic inside C and satisfies the inequality

(18)
$$|| h_{\lambda} ||_{p} \leq \sup_{\mu \in \sigma} || (T_{\varphi} - \lambda I)^{-1} || || k ||_{p}$$

there. By an argument already given $h_{\lambda} \in H_p$ and satisfies (17) there.

Finally let k be an arbitrary function belonging to H_p . Then we can find a sequence of functions k_n belonging to H_{∞} and satisfying $||k_n - k||_p \to 0$. Let $h_{n,\lambda}$ denote the solution of

$$(T_{\varphi} - \lambda I)h_{n,\lambda} = k_n$$
.

As $n, m \to \infty$ we have $||k_n - k_m||_p \to 0$, so by (18)

 $||h_{n,\lambda}-h_{m,\lambda}||_p \rightarrow 0$.

Then $\{h_{m,\lambda}\}$ converges in L_p to a function $h_{\lambda} \in H_p$ and

$$(T_{\varphi}-\lambda I)h_{\lambda}=k$$
.

This completes the proof of the theorem.

References

1. F. V. Atkinson, Some aspects of Baxter's functional equation, J. Math. Anal. Appl. 7 (1963), 1-30.

2. H. Helson and G. Szegö, A problem in prediction theory, Annali di Mat. 41 (1960) 107-138.

3. H. Widom, On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 365-375.

Received May 21, 1965. Supported in part by Air Force grant AFOSR 743-65.

CORNELL UNIVERSITY

582