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A NOTE ON TOPOLOGICAL TRANSFORMATION
GROUPS WITH A FIXED END POINT

WILLIAM J. GRAY

Let (X, T, IT) be a topological transformation group, where
X is a nontrivial Hausdorff continuum, and T is a topological
group which leaves an endpoint e of X fixed. Wallace showed
that if X is locally connected and T is cyclic, T has another
fixed point. In a later paper, Wallace asked the following
question: if X is a peano continuum and T is compact or
abelian, does T have another fixed point?

In 1952, Wang showed that if X is arcwise connected and
T is compact, T has another fixed point; Chu has recently
extended this result by showing T has infinitely many fixed
points. Gray has shown that in the abelian case, the answer
to Wallace's question is "no" (in general). However, if T is
a generative group, and if X is arcwise connected, T has
another fixed point. In this paper we will generalize the last
result. In fact, we show that if X is arcwise connected or
locally connected, and T is a group of the form AH, where
H is a connected subgroup, and A is an abelian group
generated by a compact subset, and A lies in the center of
T, then T has another fixed point. We will generalize several
known theorems by studying ordered spaces similar to those
introduced by Wallace in 1945; in particular, we will obtain
a generalized solution of the compact group problem (Theorem
2).

2. In this section, X will denote a compact Hausdorff space
consisting of more than two points on which a reflexive, transitive,
and antisymmetric order g is defined; if zeX, let

L(z) = {x; z < χ}f M(z) = {x; x g z), N(z) = {x; z ^ x} .

We assume that <: satisfies the following conditions:
(a) The set M(z) is closed.
<b) The set L(z) is open, and N(z) is closed.
(e) X has a least element e under <;.
(d) Each set M(z) is a chain, i.e. M(z) is simply ordered by S.
(e) X is directed by ^ in the following sense: if x, y e X and

x Ψ e> y Φ e, then there exists zΦe such that z g x and z g y.
Wallace, [6], has proved:
(f) Each nonvoid closed subset of X contains a maximal element

τinder S.
We show:

is) If C is a closed nonvoid subset of X with β g C, we have
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z G X, z Φ e, for which z ^ c for every ceC.

Proof. If for some zeC, z S c for every c e C, we are finished.
Otherwise, if x,yeC and x Φ y, choose zxy Φ e satisfying (e): zxy £ x
and zxy <Ξ y. We show that the collection {L(zxy); x, y eC, x Φ y} is
an open cover of C. If x e C, we have y eC for which x gΞ y; it
follows that zxy < a?, and hence x e L(zxy). Since X is compact and C
is closed in X, there is a finite subset fe, , zn) of the set {zxy; x,yeC,
x φy) for which C c U {L(zd), l g j ^ n}; since 2y ̂  β for every j , by
(e) we have ze X for which z Φ e and 2 S z, for i = 1, , n. z is
the desired element of X.

By an order isomorphism: X—+ X, we mean a homeomorphism
which preserves ^ . If (X, T, Π) is a transformation group, we will
assume that for each te T the ̂ -transition of (X, T, Π) is an order
isomorphism.

If Ac X and 5 c l , we write i g 5 [4 < B] if, given a e A and
beB, we have α <£ b [a < 6],

LEMMA 2.1. Lei (X, Γ, /7) be a topologίcal transformation group.
If there is a closed nonempty T-invariant subset A c X such that
e$A, then T has a fixed point other than e.

Proof. Let A Φ 0 be any closed subset of X such that e$A.
Define

M(A) = Π{M(a);aeA} .

M(A) is a closed chain, and M(A) = {£; 2 ̂  A}. By (g), M(A) does not
consist of e alone. By (f), If (A) contains a maximal element ^€{A).
Since ikf(Λ) is a chain, ^f{A) is the largest element of M(A). If
ί: X—> X is an order isomorphism, then t^/ί{A) = ^£{tA). Then if
A is T-invariant, ^/έ(A) is fixed under T. It is clear that ^C(A) ^ 0,
so that the proof is complete.

LEMMA 2.2. Let (X, T, /7) 6e a transformation group. If there
is a T-invariant chain Bd X which is not empty and does not
consist of e alone, then T has a fixed point other then e.

Proof. The collection of closed sets {N(b); beB} has the finite
intersection property since B is a chain. Hence the intersection, N(B),
of the N(b) is not empty and is Γ-invariant since B is. Because
eίN{B),N(B) satisfies the hypothesis of Lemma 2.1, and the proof
is complete.
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LEMMA 2.3. Let tlf ,tn be commuting order isomorphisms:
X ~-* X. Then the t{ have a fixed point other than e in common.

Proof. Let zQ be a maximal element of X. If A ~ {zQ, t^z^ i —
1, • -, n}, then e$ A. By (e) we have zt Φ e, zt g A. For each ΐ,
\zlf t^} c M(z0). We let 2\ be the cyclic group generated by t{ and
T = IίT2 ΓΛ. Then for each i, T& is a chain.

( 1) If s e Γ and ί e Γ such that szt and ^ both compare to zu

then s«! and tzx compare.
For if szx ^ z1 and ί^ g zu the result follows from (d). If sz± Ξ> ̂

and tz1 *z ̂ j, apply the last case to s~% and t~1z1 and use the fact
that T is abeiian. The final case follows by transitivity of ^ .

( 2) Each element of Tz2 compares to zu

Let if1 tξnz1 e Tzly where the Kζ are integers. Then tξiz1 com-
pares to zίt We proceed by induction. If t?1 tfjz1 compares to zl9

where 1 ̂  j S n — 1, then since tfit% compares to z1 also, ifi tf(t%
compares to zλ; the desired result follows.

From (1) and (2) it follows that Tz, is a chain. Now e £ Tzγ so
that Lemma 2.2 applies. The proof is complete.

A group T is generative if T is abeiian and is generated by a
compact neighborhood of the identity of T.

THEOREM 1. Let (X, T, Π) be a transformation group, where
T acts as a generative group of order isomorphisms on X. Then
T has a fixed point other than e.

Proof. Since T is generative, it is known that T has the form
KZnRn where Z and R denote the integers and reals, respectively,
with the usual topology, and m and n are nonnegative integers.
Thus T may be written in the form CA, where C is compact and A
is a finitely generated abeiian group. If x is a fixed point of X under
A, with x Φ e, then Tx = Cx is closed, T-invariant, and does not
contain e. Hence Lemma 2,1 applies, and the proof is complete.

NOTE. Actually, in Theorem 1, we need only assume that the
group T is abeiian and is generated by a compact set. For if then
C is a compact symmetric set which contains the identity of T and
generates T, let a; be a maximal element of X and let z ^ C^x,
where e Φ z. Then Cz c M(x), hence Cz is a chain. Since T is abeiian,
we may argue as in the proof of Lemma 2.3 and show that Cnz is a
chain for each positive integer n. Thus the set \J{C*z; n = 1, 2, •}
is a ^-invariant chain not consisting of e alone, and T has a fixed
point other than e. This proves
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THEOREM V. If (X, T, /7) is α transformation group, where T
is abelian and is generated by a compact subset, and if T acts as a
group of order isomorphisms on X, then T has a fixed point other
than e.

We now consider a strengthened form of axiom (e):
(es) X is strongly directed by ^ in the following sense: if x, y e X

and x Φ e, y Φ e, then there is & ze X with z Φ e for which z < {x, y}.
If X is a space which satisfies (a)—(e) but does not satisfy (es),

then it is easy to see that there is an x e X with x Φ e such that
tx ~ x for every order isomorphism t: X—> X. If X satisfies (es), then
we have

(gs) If C is a closed nonempty subset of X with β £ C, there is
a ^ e l with z Φ e f or which z < C.

THEOREM 2. Let (X, T, Π) be a transformation group, where X
has an order ^ which satisfies (b)—(d) and (es), and T acts as a
compact group of order isomorphisms on X. Let x e X with x Φ e.
Let

M(Tx) ^{y y^ Tx} = n [M(y); y e Tx}.

Then T leaves each point of M{Tx) fixed. Furthermore M{Tx) is
an infinite set.

Proof. The set M(Tx) is a T-invariant chain by axiom (d). Let
zeM(Tx). Then Tz is a compact subchain of A, and since (f) holds
for <; without assuming (a), Tz contains a maximal element m. Since
Tz is a chain, m is the largest element of Tz, hence is fixed under
T. Thus the orbit of z contains a fixed point under T, so that T
leaves z fixed. Now (gs) also holds for g , so that the set M(Tx) is
infinite, and the proof is complete.

In what follows, let X be a nontrivial Hausdorff continuum. If
ee X, then e is an end point of X if, given an open set U with e e U>
there exists yeU such that y Φ e and

If x e X, let E(e, x) ~ {e, x} U {z; z separates e and x in X} Given two
points &, n e l , define a; ^ if and only if x e E(e, y). Then <; satisfies
(b)—(e) and (es)# Furthermore, a homeomorphism: X —* X which leaves
e fixed is an order isomorphism. If in addition X is locally connected,
g satisfies (a), and the results of this section apply to such a space.
Hence if (X, T, Π) is a transformation group, where X is locally
connected and Te = e, and if there is a closed nonempty T-invariant
subset Ac X such that e$ A, then T has a fixed point other than e.
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Prom Theorem 2 we obtain

COROLLARY 2.1. Let (X, T, Π) be a transformation group, where
X is a nontrivial Hausdorff continuum and T is a compact group
which leaves an end point e of X fixed. If xe X and x Φ e, let

E(e, Tx) — {y; y separates e and Tx in X} .

Then T leaves each point of E(e, Tx) fixed.
We will call a metric continuum a dendrite if each two distinct

points of the continuum is separated by a third point of the continuum.
It is known [10] that each point of a dendrite is either a cut point
or an end point.

COROLLARY 2.2. Let X be a dendrite with a finite number, N,
of end points. Then the only compact groups which can act effectively
on X are the subgroups of SNy the permutation group on N symbols.

Proof. Let E be the set of end points of X and T be a compact
group which acts effectively on X. Then for each te T, the restric-
tion, 11E, of t to E is in S^, and the mapping t—>t\E is a homo-
morphic mapping of T onto a subgroup of SN.

Let P be the set of all elements of T which leave each point of
E fixed. P is a closed subgroup of T, and since X = (j {E(x, y); x, y e E},
it follows from Corollary 2.1 that P leaves each element of X fixed,
and because T is effective, P is the identity alone. Thus if t\E =
s IE, then s~H e P, hence s = t. Thus the mapping t—>t\E, sllteT,
is an isomorphism.

3* In this section, X will denote a nontrivial locally connected
Hausdorff continuum, and T is a group which leaves an end point e
of X fixed. We remark that all the results of this section hold when
X is arcwise connected but not necessarily locally connected (we replace
the remark immediately preceding Corollary 2.1 by Wang's Lemma,
[9]).

LEMMA 3.1. Let (X, T, Π) be a transformation group, where T
is connected. Then T has a fixed point other than e.

Proof. Since X contains at least two noncut points, [8], let x Φ e
be another noncut point, and

X~z= Uu V, eeU,xeV, (ϋ Π V)Π(U[j V) = 0

now Tx contains only noncut points, and so z£ Tx since z is a cut
point. Since Tx is connected, it follows that Tx c V. Because
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V U {z} is closed, we have TxczV [j {z}. We have found a nonempty
closed T-invariant set not containing e, so that the remark preceding
Corollary 2.1 applies.

THEOREM 3. Let (X, T, Π) satisfy the hypothesis of Lemma 3.1.
Either e is the only noncut point in one of its neighborhoods, or
else T has infinitely many fixed points.

Proof. We use the order and notation of § 2. Let x0 be a noncut
point of X with x0 Φ e. From the proof of Lemma 2.1, we see that
^(Tx0) is a fixed point different from e. Let A1 = ^//{Tx,) U TxQ.
Since e does not belong to the closed set Au we may find z e X for
which

X-z= U\JV, eeU, AczV, (UnV)U(Uf) V) = 0 .

Suppose every neighborhood of e contains a cut point other than e,
and let x1 e U be such a point. Since z is a cut point, z ί Txλ so that
Txt c 27 U {z}. Furthermore, a separation argument shows that if
x G Ύxu then M(x) c U U {z} so that ^f( TxJ czUu {z}. Since

e V, we have ^{Tx^ Φ ^€{TX,). Set

A2 = ~Tx0 U 2̂ χ U ̂ C(2X) U

and complete the proof by induction.

THEOREM 4. Let (X, T, /7) δβ α transformation group, with
T ^ AH, where A is an abelian group which is generated by a
compact subset and lies in the center of T, and H is a connected
subgroup. Then T has a fixed point other than e.

Proof. Let X be a fixed point under A, where x Φ e. Then
Tx — Hx is connected. If e 0 ϊϊx, we are finished (in view of previous
results). If e e Ήx, since Ήx is a nontrivial Hausdorff continuum,
Hx contains a noncut point y Φ e. Then for some ze X,

Because Hx is connected, z is a cut point of Hx. Since Hy contains
only noncut points of Hx,z$Hy, and Hycz(Vf)Hx)\j{z}, for the
last set is closed in X. Now A lies in the center of T, hence every
point of Hx is fixed under A, so that Hy is a T-invariant set not
containing e. By the remark at the end of § 2, the proof is complete.

The author is indebted to Professor Hsin Chu for his encourage-
ment during the preparation of this paper, and to the referee for pointing
out two previously overlooked generalizations in the theorems.
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