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CLOSED AND IMAGE-CLOSED RELATIONS

S. P. FRANKLIN AND R. H. SORGENFREY

If X and Y are topological spaces, a relation 77c X X Y
is upper semi-continuous at the point # of the domain D(T)
of T if for each neighborhood V of T'(x), there is a neighbor-
hood U of z such that T'(U) & V. Results so far published
about such relations usually require that they be closed (as
subsets of the product space) or image-closed (7'(x) is closed
in Y for each x€ X). Given any relation T, it seems natural

to consider the associated relations 7’/ and 7, where T' is
defined by 7'(z) = T(x) and T is the closure of 7 in the
product space. In particular, it is pertinent to ask under
what conditions the upper semi-continuity of 7' implies that
of T' or 7, or that 7/ = 7. As might be expected, the
answers to these questions take the form of restrictions on

Y, and, indeed, serve to characterize regularity, normality,
and compactness.

Other relation-theoretic characterizations have been given previ-
ously. In [6], Engelking characterizes regularity and compactness (in
two ways), and in [10], Michael characterizes normality, collectionwise
normality, perfect normality, and paracompactness. Ceder |1] charac-
terizes m-compactness.

Terminology in this paper will follow Kelley [9]; in particular,
regular and normal spaces need not be T,. The following well known
fact will be used: 7' is upper semi-continucus (hereinafter abbreviated
usc) on D(T) if and only if the inverse under T of each closed subset
of Y is closed in D(T). A relation TS Xx Y will be said to be on
X dnto Y if and only if D(T) = X.

Statement of results. These are arranged so that for n = 1,2,3,4,
result (2n) is in the nature of a converse of result (2n — 1), thus
yielding the promised characterizations of regularity, normality, and
various types of compactness.

(1) If Y is regular and TS X X Y is usc at x€ D(T), then
T'(2) = T(@).

Regularity of ¥ does not imply the upper semi-continuity of 7"
or T for usc T X x Y (see (6a) and (6b) below).

The statement of the next result, a converse of (1), and of several
others will be expedited by a definition: Let 4 be a directed set and
p¢ 4. Define a topology for X = AU {p} by letting each point of 4 be
isolated and taking as a base at p all sets of the form S U {p} where
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S is a final segment in 4. When equipped with this topology, X will
be called the net-space of 4. It is clear that each net-space has at
most one accumulation point and therefore a rather simple structure.

(2) If for each met-space X and usc T on X into Y, T' = T,
then Y is regular.

(3) If Y is regular and TS X x Y s usc and image-closed,
then T is closed wn D(T) x Y.

Under certain circumstances the hypothesis of regularity can be
relaxed. A Fréchet space is one in which the closure of any subset A
is the set of all limits of sequences in A. Clearly, any first countable
space is Fréchet, but the converse is not true (see [7]).

(3") Let X and Y be such that X x Y 1s a Fréchet space (e.g.,
X and Y first countable). If Y is Hoausdorff and T X x Y 1is usc
and image-closed, then T is closed in D(T) x Y.

(4) If for each met-space X and usc image-closed relation T on
X into Y, T s closed, then either (a) Y 1is regular, or (b) every closed
nonregular subspace of Y fails to be R,.

The authors have been unable to remove the possibility (b) from
tae conclusion of this result. It is clear, however, that for R, (hence
for T))-spaces, (3) and (4) characterize regularity.

(8) If Y is normal and TS X x Y 1s usc at x€ D(T), then
both T" and T are usc at z.

From (5) it is clear that if Y is normal and D(T) Is closed, the
upper semi-continuity of 7S X x Y implies that of 7. That this
need not be the case if D(T) is not closed is shown by the following

ExampLeE, Let X and Y be the reals with usual topology and
f:Y— X be defined by f(y) =y~ sin y for y # 0, f(0) =1. Then
T=f"\{,y|ye Y} is use on D(T). However, T is not use at
Oe Q(T) since V = U {(nw — 1, nr + 1) | » an integer} is a neighborhood
of T(0), but there is no neighborhood U of 0 such that T(U) S V.

(6a) If for each net-space X and usc relation T on X into Y,
T is usc, then Y is normal.

! A space is R, if and only if point closures partition it. (Davis [4].)
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(6b) If Y 4s Hausdorff and for each net-space X and usc
relatton T on X into Y, T is usc, then Y is normal.

If Y is infinite and equipped with the co-finite topology,? then for
every X and use 7 on X into Y, T is usc; hence the Hausdorff
hypothesis in (6b) cannot be weakened even to T.. Thus (5) and (6a)
characterize normality, while (5) and (6b) characterize normality in
the class of Hausdorff spaces.

Recall that for any infinite cardinal m (defined as an initial ordinal)
a topological space Y is called m-compact if and only if each open
cover of power <m has a finite subcover. Compact spaces are precisely
those which are m-compact for each m. Y,-compact spaces are the
countably compact spaces. m-compact spaces have been characterized
in terms of the behavior of usc relations on them by Ceder [1]. A
space X is said to have local weight m if and only if m is the least
cardinal such that each point of X has a basis of neighborhoods of
power =m. First countable spaces are those of local weight = W,.

(7) If Y 4s compact and TS X X Y 1s closed, then T is usc
on D(T).

This result is well known and was apparently first noticed by
Choquet [3].

(Tm) If X has local weight m, Y is m-compact and TS X XY
is closed, then T 1s usc on D(T).

(TR If X is first countable, Y 1is countably compact and
TS X XY s closed. Then T is usc on D(T).

The corresponding results (7’), (Tm') and (7)) about functions, in
which the hypotheses on X and Y are the same and the conclusion
is that every function f: X — Y with closed graph is continuous, are

immediate corollaries, The net-space of an ordinal « will be denoted
by X..

(8) Let Y be T.. If for each met-space X every closed T on X
into Y 1s usc, then Y s compact.

8m) LetY be T.. If for each ordinal o = m, every closed 1
on X, into Y is usec, then Y is m-compact.

2 j.e., the topology generated by the complements of finite sets.
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(8W,) Let Y be T, If every closed T on the sequence space
Xy, "nto Y is usc, then Y is countably compact.

These results are immediate consequence of the corresponding
statements (8), (8m’) and (8] in which it is hypothesized that each
function f from X (Xm, Xy, into ¥ with closed graph is continuous.
If Y is the set of natural numbers with the initial segments as a
basis for the topology, then Y is 7, but not 7T}, no function into ¥
has closed graph, and Y is not countably compact. Hence the T,
hypothesis in (8'), (8nr’) and (8))) cannot be relaxed even to T;. Clearly
compactness (m-compactness, countable compactness) in T spaces is
characterized by (7) and (8) ((Tm) and (8m), (7¥,) and (8}R,)) as well
as by their corresponding function results.

The hypothesis of first countability on X in (7%,) can be relaxed
if the hypothesis on Y is strengthened.

(9) If Xisa Hausdorff Fréchet space, Y sequentially compact,
and TS X x Y closed, then T is usc on D(T).

The corresponding function result (9') is again an immediate co-
rollary. One might hope for a converse to (9) patterned after (8%R,),
but the existence of compact, nonsequentially compact spaces (such
as BN) makes the hope a vain one in view of (7).

Proofs of results. It will be convenient to give these in a
somewhat different order from that of the statements.

Proof of (1). It is clear that for any relation, 7'(z) = T(x).
Suppose, therefore, that ye T(x)\T’(x). Since Y is regular and T"'(x)
is closed, there is a closed neighborhood N of T”(x) not containing y.
Since T is use at «, there is an open neighborhood U of x such that
T(U) S N. Then U x (Y\N) is a neighborhood of (2, y) not inter-
secting T, whence (z,y)¢ T or y¢ T(x).

Proof of (3). For all xe D(T), T(x) = T(x) = T"(x) by hypothesis
and T'(z) = T(x) by (1).

Proof of (3'). Suppose there exist z€ D(T) and ye Y such that
(@,y)e T\T. Since X x Y is Fréchet, there is a sequence {(z,,¥,)} in
T converging to (v, y). Since y ¢ T(2), a closed set, and {y,.} — v, there
is an integer k such that if » >k, y, ¢ T(x). Thus K ={y,|n > k}U{y}
and T(x) are disjoint, and because Y is Hausdorff, K is closed. Since
T is use, T-%(K) is closed in D(T). But for n >k, x,€ T7(K) and
{z,} —«, whence ze¢ T-(K). Thus T(z) N K # &, a contradiction.
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Proof of (5). Let E be either T’(x) or T(x), and let V be a
neighborhood of E. Since E is closed and Y is normal, there is a
closed neighborhood N of E contained in V. Since T is usc at x and
N is a neighborhood of 7T(x), there is an open neighborhood U of
2 such that T(U) < N. If T(U) £ N, there are ze U and ye Y\N
such that (z,y)e T. But U x (Y\N) is a neighborhood of (z, ) not
intersecting 7. Hence T'(U) < T(U)S N<V, and both 7’ and T
are usc at z.

Proof of (6a). If Y is not normal, there exist a closed FCY
and a neighborhood W of F which contains no closed neighborhood of F,
Direct the neighborhood system 4 of F' by &, and let X = 4U{p} be
the net-space of 4. Define T on X by T(V) =V for all Ve 4, and
T(py =F. T is usec at p (and hence on X) since for any neighbor-
hood V, of T(p) = F, U= {Ved|VZV}U{p} is a neighborhood of
», and T(U)C V,. T’, however, is not usc at p since for each Ve 4,
T(V) =7V is a closed neighborhood of F and hence is not contained
in the neighborhood W of T(p) = F.

Proof of (6b). Suppose Y is not normal. We will construct a
net space X and use T on X into Y such that T is not usc.

Case 1. Y is regular. By (6a) there is a net-space X and use
T on X into Y such that T’ is not use. By (1), 7" = T, and the
construction is accomplished.

Case 2, 'Y is not regular. There exist a closed FF Y and
pe Y\F such that the closure of every neighborhood of p intersects
F. Let 4 be the family of all neighborhoods of » which do not
intersect F, direct 4 by &, and let X = 4 U {p} be the net-space of
4. Then T defined on X by T(x) = x is usc.

We now show that T(p) = p: Let p#~qe Y. Since Y is Hausdorff,
there exist V,e 4 and a neighborhood W of ¢ such that WnV,= @.
Then U={Ved| V< V}uU{p} is a neighborhood of » in X, hence
U x W is a neighborhood of (p,q) in X x Y. If (V,y)eU X W,
then y¢ V="T(V) since ye W and VNWZSV,NW = @. Hence
(V,weT, ie, (Ux W)NT= ¢, whence (p,q)¢ T, or q¢ T(p).

7 is not usc at p since if Ve d, T(V) >V and is therefore not
contained in the neighborhood Y\F of p = T(p).

Proof of (4). Assuming the proposition not true, there is a closed
nonregular subspace Z of ¥ which is R,. The existence of a net space
X and a nonclosed, image-closed, usc relation 7 on X into Z will be
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demonstrated. Since Z is closed, T, regarded as a relation on X into
Y will have the same properties and provide the desired contradiction.

There exist closed FF'c Z and ge Z\F which do not have disjoint
neighborhoods. Direct 4 = {(V, W) |V is a neighborhood of F' and W
is a neighborhood of ¢} by (V, W) > (V',W’) if and only if VSV’
and W< W', and let X = 4U{p} be the net-space of 4. Define T on
X into Z by T(V, W)) = {pr,w}~, where p,»c VN W, and T(p) = F.
Then T is image-closed; to show it usc at p, note that characteristic
of R,-spaces is the fact that x ¢ O, open, implies {}~ c O. Thus if V,
is a neighborhood of T(p) = F, U= {(V, W) |(V, W) >(V,, Y)U{p} is a
neighborhood of p, and (V, W)e U implies py,w€ VN WV, whence
TV, W)) = {prw}~CV,. But the net {(V, W), pyw)|(V,W)e 4} in
T converges to (p, q)¢ T, and T is not closed.

Proof of (2). Let X be any net-space and T be an image-closed
usc relation on X into Y. Then T = T and, by hypothesis 7" = T.
Hence T is closed and the hypothesis of (4) is satisfied. The present
result will follow from (4) when it is shown that Y (and hence every
subspace of Y) is R,. If this is not the case, there are points ¢ and
r of Y such that qe(r)- but r¢{g}~. Let X be the net-space con-
sisting of a sequence {z,} and its limit p, and define T on X into ¥ by
T(x,) = {q, v}; T(p) = {q}. Since every neighborhood of ¢ contains », T
is usc at p. But r¢ T'(p) = {¢}~, while r € T(p) since the sequence
{@,, )} in T converges to (p,r). Hence T’ + T.

Proof of (Tm). If F is a closed subset of Y, nz'(F) N T is closed
in X x Y. Since Y is m-compact, 7, is a closed mapping (Hanai [8])
and so TY(F) = wy(zy (F) N T) is closed in X and therefore in D(T).

Proof of (8n'). If Y is not m-compact, it follows from a lemma
attributed to Chittenden [2] (see Ceder [1]), that there is an a-net
{Uglp<acm Which has no cluster point. Define a function f: X, —Y by
fB) = yg if B < a and f(p) = y,, where ¥, is an arbitrarily chosen
point of ¥, f is not continuous at p since {B}s.. converges to p in
X, but {f(B)}pca = {Upls<a, having no cluster point, cannot converge
to f(p) =Y in Y.

Suppose (x, ¥) ¢ f. If x =B < «, then y = yg. Let W be any open
neighborhood of ¥ not containing y,. Then (x, y) € {8} X W, which is
open and disjoint from f. If, on the other hand, # = p, then y = y,.
Since y is not a cluster point of {yg}s.., there is an open neighborhood
U of y, not containing 9, and a B, <« such that g = B, implies
Y2 U. Let N={B|B, = B < a}U{p}. Then (z,y)e N x U which is
open and disjoint from f.
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(8) follows from (8m’) since Y is compact if and only if ¥ is m-
compact for all m (Chittenden [2], Ceder [1]).

Proof of (9). Let F be closed in Y. If x,€ clyy,T-(F), there is
a sequence {x,} & T~'(F') converging to x, (since subspaces of Fréchet
spaces are Fréchet [7]). For each % choose y,€ T(x,) N F and let
{y.,} be a subsequence of {y,} converging to y,€ Y. But y,€ F' and
{@n,, ¥a)} is contained in T and converges to (x,, ¥,). Thus, since T
is closed, x,€ T-(F).
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