# SETS WITH ZERO-DIMENSIONAL KERNELS 

N. E. Foland and J. M. Marr


#### Abstract

F. A. Valentine in his book ([1], p. 177, Problem 6.5) suggests that a sufficient condition for a nonempty compact and connected subset $S$ of $E^{2}$ to have a kernel consisting of a single point is that each triple of points of $S$ can see via $S$ a unique point of $S$. The authors show that this condition is sufficient if $S$ is any subset of a topological linear space which contains a noncollinear triple.


Let $S$ be a subset of a linear space. A point $p$ is said to be in the kernel of $S$ if $p$ can be joined to each point of $S$ by a closed line segment that lies in S. F. A. Valentine ([1], p. 164, Problem 1.1) has posed the problem of determining conditions under which the kernel of $S$ will be 0 -dimensional, that is, will consist of a single point. He suggests ([1], p. 177, Problem 6.5) that if $S$ is a compact and connected subset of the euclidean plane, then a sufficient condition for the kernel of $S$ to be a single point is that each noncollinear triple of points of $S$ be able to see a unique point of $S$ via $S$, where this unique point depends on the triple chosen. In this paper we prove that this condition on the noncollinear triples of $S$ implies that the kernel of $S$ is 0 -dimensional if $S$ is any subset of a topological linear space containing a noncollinear triple. Thus we establish a stronger result than that suggested by Valentine. The result is secured by first establishing, in the form of lemmas, several properties of such a set $S$ that culminate in the main result. The major property established, namely, that such a set $S$ cannot contain a closed polygonal path made up of four line segments, is obtained in Lemmas 2 and 3. The notation and terminology is that used in [1].

Sufficient conditions for a set $S$ to have a one point kernel. In the sequel $S$ will denote a subset of a topological linear space $L$ over the real field $\mathscr{R}$ with the property that if $x, y, z$ are noncollinear points of $S$, then there exists a unique point $p$ of $S$ such that the three segments $x p, y p, z p$ all lie in $S$. (Here the point $p$ may be one of the points $x, y$ or $z$ in which case one of the segments will be degenerate.) By the kernel $K$ of $S$ we mean the set of all points $p \in S$ with the property that if $x \in S$, then the segment $x p \subset S$.

Lemma 1. If $x, y \in S, x \neq y, x y \subset S$ and $z \in S$ such that $x, y, z$ are noncollinear, then the unique point $p$ of $S$ with the property that $x p, y p, z p$ all lie in $S$ is on the line determined $b y x$ and $y$.

Proof. Note first that $S$ can not contain a triangle. (The vertices of a triangle form a noncollinear triple of points and if the triangle lies in $S$, then the point corresponding to the vertices in the assumed condition on noncollinear triples of $S$ may be taken as any one of the vertices, contradicting the uniqueness of this point.) Thus if the point $p$ of the lemma is not on the line determined by $x$ and $y$, then $S$ contains a triangle.

By the dimension of a subset of $L$ we mean the dimension of a flat (also called linear variety) of least dimension that contains the set. A 1-dimensional flat (2-dimensional flat) will be called a line (a plane).

Lemma 2. The set $S$ can not contain a closed polygon consisting of four line segments that lie in a plane.

Proof. In order to show this, suppose the contrary and let $a, b, c, d$ be the vertices of such a quadrilateral $Q$ with sides $a b, b c, c d, d a$ all in $S$. If the quadrilateral $Q$ is the boundary of a nonconvex subset of $L$, then one of the vertices, say $a$, is contained in the interior of the triangle formed by the remaining vertices. Let $t$ be any point on side $a b$ of $Q$ that lies between $a$ and $b$. Since $t, d$, and $c$ are noncollinear points of $S$ and since $c d \subset S$, the point $t$ can be joined by a segment in $S$ to a point $r$ of the line of $c$ and $d$. It follows that either the points $a, d, r, t$ or the points $t, b, c, r$ form the vertices of a quadrilateral that is the boundary of a convex subset of the linear space $L$. Thus we may assume that $Q$ is the boundary of a convex subset of $L$.

Let $i(Q)$ denote the set bounded by $Q$ relative to the plane containing $Q$. We now show that if $Q \subset S$, then $i(Q) \subset S$. This is clearly impossible since $i(Q)$ contains a triangle. Let $t$ be any point of side $a b$ of $Q$ such that $a \neq t \neq b$. Since $S$ contains no triangle and the points $t, c, d$ are noncollinear, the unique point $r_{t}$ of $S$ to which each of the points $t, c, d$ can be joined by a segment in $S$ must be on side $c d$ of $Q$ between $c$ and $d$. Let $p \in i(Q)$ and suppose $p \notin S$. Then for each $t \in \alpha b$, either $p$ is a point of that part of $i(Q)$ that is bounded by $t b, b c, c r_{t}$, and $t r_{t}$ or $p$ is in that part of $i(Q)$ bounded by $a t, t r_{t}$, $r_{t} d$, and $d a$. Let $A$ be the set of all $t \in a b$ such that $p$ is in that part of $i(Q)$ bounded by $t b, b c, c r_{t}, t r_{t}$; and let $B=a b-A$. Then $a \in A$ and $b \in B$. If $u$ and $v$ are distinct points on $a b$, then the segments $u r_{u}$ and $v r_{v}$ do not intersect, where $r_{u}$ and $r_{v}$ denote the unique points on side $c d$ to which $u$ and $v$ can be joined, respectively. Thus if $u \in A$ and $v \in a b$ such that the order, $a, v, u$ holds on $a b$, then $v \in A$. It follows from this and the definition of $A$ and $B$, that either $A$ has a last point or $B$ has a first point in the order from $a$ to $b$. Suppose
that $s$ is the last point of $A$ in the order from $a$ to $b$. Then $s \neq b$ and $p$ is inside the quadrilateral with sides $s b, b c, c r_{s}$, and $s r_{s}$. Let $w$ be any point of the segment $a b$ between $s$ and $b$. Then $w \in B$ and $p$ is inside the quadrilateral with sides $a w, w r_{w}, d r_{w}$, and $d a$. Thus for each such $w, p$ is inside the quadrilateral with sides $s w, w r_{w}, r_{w} r_{s}$, and $s r_{s}$. Now let the point $w$ converge to the point $s$ along the segment $a b$, then the point $r_{w}$ converges to the point $r_{s}$ on $c d$, for if this is not the case $S$ contains a triangle. This implies that $p \in s r_{s}$ which is contrary to our assumption. If $s$ is the first point of $B$ in the order from $a$ to $b$ the argument is similar. Thus the lemma is proved.

Lemma 3. Let $S$ contain a noncollinear triple. If $x, y \in S$ such that $x y \not \subset S$, then there is a unique point $p \in S$ such that $x p$ and yp both lie in $S$.

Proof. Since the set $S$ is not linear there is at least one point $p \in S$ such that $x p, y p \subset S$. Let $q \in S, p \neq q$, and suppose that $x q, y q \subset S$. By Lemma 2 the four points $x, y, p, q$ do not lie in a plane. Thus the situation is as follows: No one of the four points $x, y, p, q$ is in the plane determined by the other three and exactly four of the six segments determined by these four points, namely, $x p, y p, x q, y q$, lie in $S$. Denote the plane determined by three noncollinear points $a, b, c$ of $L$ by $\pi(a b c)$.

We now show that if $z \in S$ such that $z p \subset S$, then $z \in \pi(x y p)$. Suppose $z p \subset S$ and $z \notin \pi(x y p)$. If $p, q, z$ are noncollinear, then the unique point $r \in S$ to which each can be joined by a segment in $S$ must be on the line determined by $z$ and $p$. Thus the points $x, y$ and $r$ are collinear since each can be joined by a segment in $S$ to the distinct points $p$ and $q$. This implies $r \in \pi(x y p)$ which is impossible since the line determined by $z$ and $p$ has only the point $p$ in common with $\pi(x y p)$. Hence $p, q, z$ are collinear. Since $p, q$, and $z$ are collinear, the points $y, q$, and $z$ are noncollinear. Thus the unique point $r \in S$ to which $y, q, z$ can be joined by a segment in $S$ is on the line determined by $y$ and $q$. This implies that $S$ contains a triangle or a plane quadrilateral since $z \in \pi(y p q)$. Thus if $z \in S$ such that $z p \subset S$, then $z \in \pi(x y p)$. It follows that if $z \in S$ such that $z$ can be joined by a segment in $S$ to one of the points $x, y, p, q$ then $z$ is in the plane determined by the two segments in the set $\{x p, y p, x q, y q\}$ that have this point in common.

Consider now a point $u$ on $x q$ between $x$ and $q$ and a point $v$ on $y q$ between $y$ and $q$ such that the plane $\pi(u v p)$ does not intersect the line of $x$ and $y$. Then there is a point $s \in \pi(x y p)$ to which each of
the points $u, v, p$ can be joined by segments in $S$. Since $p \in S$ and $p s \subset S, p \in \pi(u v s)$. This is true since we can replace $x, y, p$ in the argument in the preceding paragraph by $u, v, s$. Thus $s$ is on the line of intersection of $\pi(x y p)$ and $\pi(u v p)$. The points $p, s, q$ are noncollinear and hence the point $q$ can be joined by a segment in $S$ to a point $t$ of the line of $s$ and $p$. Since $q t \subset S, t \in \pi(x y q)$. This is impossible since $\pi(x y p)$ and $\pi(x y q)$ have only the line of $x$ and $y$ in common.

This completes the proof of the lemma.
THEOREM. If $S$ contains a noncollinear triple, then the kernel $K$ of $S$ consists of a single point.

Proof. Since $S$ contains a noncollinear triple it contains at least two noncollinear line segments with a common endpoint $p$. We will show that $K=\{p\}$. Let $x$ and $y$ denote the other two endpoints of this two segment path in $S$, and let $q$ be any point of $S$ not on this two segment path. If $x, y, q$ are noncollinear, then the unique point $r$ of $S$ to which each can be joined by a segment in $S$ must be the point $p$ by Lemma 3. If the points $x, y, q$ are collinear, then the points $x, p, q$ are noncollinear and the points $y, p, q$ are noncollinear. Thus the point $q$ can be joined by a segment in $S$ to a point $r$ on the line of $x$ and $p$. Also $q$ can be joined by a segment in $S$ to a point $t$ of the line of $y$ and $p$. If the points $p, r, t$ are distinct, then we have a contradiction of Lemma 3. If exactly two of the points $p, r, t$ are the same, then $S$ contains a traingle. It follows that $p=r=t$ and $p q \subset S$. Thus the point $p$ is in the kernel $K$ of $S$. It is clear that $K$ can not contain two distinct points. Thus the theorem is proved.

The assumed condition on triples of $S$ is not a necessary condition for $K$ to consist of a single point. This can be seen by considering a triangle together with its interior and with two of its sides extended through the base opposite their intersection.

## Reference

1. F. A. Valentine, Convex sets, McGraw-Hill Series in Higher Mathematics, McGrawHill, Inc., New York, 1964.

Received June 18, 1965.
Southern Illinois University
Kansas State University

