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A SYSTEM OF CANONICAL FORMS FOR RINGS
ON A DIRECT SUM OF TWO INFINITE

CYCLIC GROUPS

BURNETT R. TOSKEY

In this paper we canonically represent the isomorphism
classes of all rings whose additive group is a direct sum of
two infinite cyclic groups by a system of 4 by 2 matrices
whose elements are rational integers. It is then shown how
the canonical forms can be used to solve other problems
relating to these rings. The results obtained are (1) that
any integral domain in this class of rings is isomorphic to
a quadratic extension of a subring of the integers, (2) the
complete survey of rings in the class under study which are
decomposable as a direct sum, and (3) the complete survey of
rings in this class which are decomposable as an ordered
product which is not a direct sum. The paper concludes with
a description of other problems which can be solved by means
of the canonical matrices using routine calculations.

Let {u3}f and {u2} be infinite cyclic groups. Multiplication in a
ring, G, whose additive group is {u^ φ {u2} is determined by a matrix:

/ 0111 0112 \

0121 0122

0211 0212

V 0221 0222 /

where ui-uj = g^^ + gij2u2, ί,j — 1, 2, and the gijk are integers. If

G is associative, then the equality:

ΰijlΰlkp hp — 9jkl9i

holds for i, j, k, p = 1, 2 (see [1]).
We consider the set of matrices of the above from which repre-

sent associative rings and reduce them to a system of canonical forms
which represent the isomorphism classes of the rings. Our main tool
in performing this reduction is the following result, which is a special
case of the main result appearing in [7], and also a special case of a
theorem of Beaumont (see Theorem 5 in [2]):

THEOREM. If G and H are rings with multiplication determined
by the matrices (gijk) and (hijk) respectively, then G and H are iso-
morphic if and only if there is a 2 by 2 matrix. A, with integer
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entries, such that \ A |2 = 1 and (A <g) A)(gijk) = (hijk)A.

When we have obtained the desired canonical forms, we shall use
them to derive various properties of the rings under study.

2. The canonical forms. Our main result, upon which all sub-
sequent results are based, is the following:

THEOREM. Let matrices N^x), N2(x) and C(x, y, z) be defined by:

/x
0

0

Vo

0\
X

0
N2(x) =

ίx 0\

0 0

0 x

Vo o/

C(x, y, z) =

/x

y

V

vo

z\
0

0

y)

where x, y, z are integers. Let N± = x > 0}, N2 = {N2(x): x > 0},

Cx - {C(0, 0, z): z^ 0} ,

C2 = {C(α, 0, ̂ ) : 0 ^ z S x/2

C3 = {C(x, y, z):0^x^y,y

x),

< x < i] y Φ 0}

αmZ Zβί S = iVi (J iV2 U CΊ U C^ U C3. Ϊ7&e% ever?/ rim? whose additive

group is a direct sum of two infinite cyclic groups is isomorphic to
a ring whose multiplication coefficients are given by a member of S
and no two members of S can represent the multiplication coefficients
of isomorphic rings.

Proof. A. Let G be a noncommutative ring with multiplication
given by the matrix (#4j7c), so that we must have either gm Φ g211 or
#122 Φ #2i2. The associativity conditions are:

1 . #112 — #221 — #122#121 = #211#212 = 0

2 . #12l(#m ~ #222) = #122(#122 — #ll l) = 0

#2U(#211 - #222) = #212(#212 " #l l l) = 0 .

3 . #12l(#212 "~~ #lll) — #21l(#122 " " #l l l)

#122\#222 #211/ ~ #212(#222 ' ' #121/

Since #1 2 1 Φ 0 implies g121 — g222, g122 Φ 0 implies g122 = gm, g211 Φ 0 implies.

#2ii = #222, #212 Φ 0 impl ies g212 = gm, gm - g211 impl ies gm = g211 = g222 = 0,

and ^122 = ^212 implies ^122 = ^212 = gin — 0, there are two cases to

consider:

Case 1. gm = g122, g211 = ^222, #1 2 1 = #212 = 0. Set x = ( # m , #211), #211 =

— ex, flrni = dx, and let αd — δc = 1, -4 = (^ d Thus (A ® A)(ί74iJk) =
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Case 2. gm = &12, g121 = g222, 0122 = 0211 = 0. As before, set x =

123, #m), #m = -ex, gm = ώα, ad - 6c = 1, A = (^ d J , and we obtain

Hence every noncommutative ring on a direct sum of two infinite
cyclic groups is isomorphic to a ring whose multiplication coefficients
are given by member of N± U N2. We show next that no two of
these can represent isomorphic rings.

(1) If either (A(^A)N1{r)^N1{s)A or (A ® A)N2(r) = N2(s)A,

where A = (a Λ and | A j2 = 1, we obtain cV = 0 and a2r = as, so

that I A ] = ad. Thus α2 = 1 and r = as. Finally, since r and s are

both positive, we obtain a — 1, r — s.

(2) If (A (g) A)ΛΓ

1(r) = i\Γ2(s)A, where A = (% J ) , w e obtain c2r =

adr = 0, which implies c = αd = 0, so that \A\ = 0 .
Hence no two members of Nλ U N2 can represent the coefficients

of isomorphic rings. It is elementary to verify that the cofficients given
by the matrices N^x) and N2(x) satisfy the associativity conditions.

B. Let G be a commutative ring with multiplication given by
the matrix (gijk), so that we must have gm = g2ίl and g122 = g212. The
associativity conditions reduce to:

1 . #1210122 = #1120221

2. 9m(9m — fe) = 9s2i(9in " #122)

#122(0122 — #111) — #112(0222 — 0i2i)

We first show that G must be isomorphic to a ring with coefficients
given by a matrix of the form C(x, y, z). We have three cases to
consider.

Case 1. If gm = g122 = g 221 = 0, the associativity conditions reduce

to 0m(#m — #222) = 0. If 0121 = #222, the matrix for G is already in the

form C(gm, gm, 0). If gm Φ g222, then we must have 0121 = 0, gm Φ 0,

so that we may let (g1Uf g222) — r, gm = dr, g222 = cr, and find a and &

such that ad — 6c = 1. If A = \a

n Λ , we obtain the desired result:

(A(&A)(gijk) == C(αdr + 6cr, cdr, —abr)A.

Case 2. If (gm, gm) = r Φ 0, let 0112 = — dr, gm = cr, ad — be = 1,

and A = Qf rfJ we obtain (A (g) -A)( ί̂iJfe) = C(a?, 2/, ̂ )A, where

αj = d(a2gni + 2α6fir121 + 62βr221) — e( + a*g112 + 2abgm + b2g222) ,

y = α c ^ 0 n l + d(αrf + δc)^ 1 2 1 + bd2g221 — be2g122 — bdeg222 ,
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z = -b(a2gni + 2abg1 a(a2gm

Case 3. If gm = g122 = 0, g221 ^ 0, let B = ί - ~

riifc) = (hijk)B ,

b2g222) .

so that

and An2 = (/221, and we may apply the transformation of Case 2 to the
matrix (hijk).

Thus we have shown that every commutative ring is isomorphic to
a ring with multiplication coeίScients given by a matrix of the form
C(x, y, z). Again, it is elementary to see that every matrix of the
form C(x, y, z) represents the multiplication coefficients of an associa-
tive ring. We now assume that the ring G has coefficients given by
C(x, y, z) for our final reduction to canonical form. There are three
cases to consider.

Case 1. If x = y = 0, then if z ^ 0, C(x, y, z) e Cly and if z < 0,

let A = ( ~ Q _^) and we obtain (4 0A)C(O, 0, z) = C(0, 0, -2)A,

and C(0,0, - 2 ) e C 1 (

Case 2. If x Φ 0, 1/ = 0, let a = | sc |/x, « = 6 | a? | + r, where

0 ^ r < I a? I, and A = (J J) so that | A |a = α2 = 1. We obtain

If 0 g r g I a; |/2, then C( | α |, 0, r) e C2. If 1/2 | a; | ^ r < | x |, let £ =

(o - ί a n d w e o b t a i n j , 0, -̂> = , 0, I Λ? I -r)B, and

Case 3. If y Φ 0, let d = \y \/y, x = b( — 2y) + r, where 0 ^ r <

I 2y i, and A = ( J J ) so t h a t | A |2 = d2 - 1. We obtain (A®A)C(x, y, z) =

C(r, | i / | , ί )A, where ί = fe - bdx - 621 y |. If 0 ^ r ^ | τ / | , then

C(r, \y\,t)eC,. If \y \ ̂  r < 2\y\, let B = J and we have

(B (8) B)C{r, 13/1, ί) - C(2 | y \ - r, | y |, r + ί - | y \ )B, and

C(2|i/ | - r, | i / | , r + ί - | ^ | ) e C 3 .

Hence every commutative ring on a direct sum of two infinite
cyclic groups is isomorphic to a ring whose multiplication coefficients
are given by a member of d U C2 U C3. Since no member of N2 (J iV2

can represent a ring which is isomorphic to any member of Cx U C2 U C3,
the proof of the theorem will be completed by showing that no two
members of Cx U C2 U C3 can represent isomorphic rings. In the follow-
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(1) Suppose (A (g> A)CX(O, 0, z) = 0,(0, 0, v)A with | A |2 = 1. We
then have vc ~ c2z = 0, a2z = vd. Hence if 2 — 0, we must have v =
0, and if 2 > 0, we obtain c = 0, α2 — d2 = 1, and therefore 2 =wZ.
Since v > 0, we have cZ = 1, z — v.

(2) Suppose (A (g) A)CΊ(0, 0, z) = C2(#, 0, φ l , so that Λ = ax +
vc = 0 and α22 = δ& + vd. If 2; = 0, we have \A\ = 0, since x Φ 0, and
if 2 > 0, we have c — a — 0 and again obtain | A \ — 0.

(3) Suppose (A (g) A)Cx(0, 0, 2) = C3(a?, y, v)A. But then α# = ey =
0, and hence α = c = 0 and | A | = 0 .

(4) Suppose (A ® A)C2(α, 0, 2) = C2(w, 0, v)A and | A |2 = 1. Then
c2χ = 0, α2a; = αu + vc, a2z =• 6u + vd. Hence c — 0, and a? — d2 — 1,
x = αw, 2 — δu + vd, and we must have a = 1, x = u, since a? > 0 and
u > 0. But now 0 ^ £m + vd g u/2, so that if d — 1 we must have
6 — 0, 2 —v9 and if d — — 1 we must have either 6 = 0, in which
case z — v — 0, or b = 1, in which case 2 — v = u/2.

(5) Suppose (A (g) A)C2(fic, 0, z) = Cs(u> y, v)A, so that we have
acx = τ/α, c2x = C7/, acz = yb, c2z = d/z/. If c = 0, we obtain a — 0,
since 2/ =£ 0, and | A | = 0. If c Φ 0, then 2/ = cχ, a z — bx, cz — dx
and hence | A [ == 0, since x Φ 0.

(6) Suppose (A (g) A)C8(a?, 2/, 2) = Cz(u, v, w)A and | A |8 = 1. We
obtain the equations:

cw1
acx + (αd + bc)y =

'a2z + 62 /̂ = 6u + dw

acz + 6d̂ / = bv

= cv [c2z + d2y — dv.

If c Φ 0, we obtain v — ex + 2dy, so that c(az — bx) —
c(cz — cfe) = d2y, yielding z = 0 so that v = cfa/, ex + c?τ/ = 0 and finally
bey = ady and [ A | — 0. Hence we must have c — 0, a2 = d2 — 1.
This yields x — αi6, v = dy so that a = d = 1, x = u, v = y, and « +
b2y — bu + w. By symmetry, w + A:2i; = kx + «. But this implies
(δ + k)x = (δ2 + A:2)?/, so that either 6 = 0, or k = 0, or δ = k = 1,
x — y. In any case, we obtain 2 = w.

Hence no two members of Cλ U C2 U C3 can represent the coefficients
of isomorphic rings, and the proof of the theorem is complete.

We conclude this section by remarking that the algebra types
(see [3], page 61) of the rings can be determined from the canonical
forms. Types I, II, III, IV, and V refer to [3], page 97:
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(i) Any ring represented by a member of iVΊ has algebra type II.
(ii) Any ring represented by a member of N2 has algebra type

III.
(iii) Any ring represented by a member of Cx has algebra type V

if z > 0 and nil algebra type if z — 0.
(iv) Any ring represented by a member of C2 has algebra type I.
(v) Any ring represented by C3 with x2 + Ayz — 0 has algebra

type IV.
(vi) Any ring represented by C3 with x2 + 4yz — v2 Φ 0 has type

jβ 0 i? (semi-simple type).
(vii) Any ring represented by C3 with x2 + 4̂ /2 not the square of

an integer has quadratic field type.
This last result is a corollary of the first result in the following

section. Rings in different classes from the above list are not quasi-
isomorphic, since quasi-isomorphic rings have the same algebra type.

3* Relationship to known rings. Let C(r) denote the ring
whose additive group is the infinite cyclic group {u}, with multiplica-
tion defined by uu = ru. Since C(r) and C(s) are isomorphic if and
only if r2 = s2, we may assume r ^ 0. Also, if r > 0, then C(r) is
isomorphic to the subring of the integers generated by r and C(0) is
the zero ring with infinite cyclic additive group. If C(r) and C(s) are
two of these rings (not necessarily distinct), then the direct sum and
the ordered product (see [6]) are rings whose additive group is the
direct sum of two infinite cyclic groups. If a is a root of a quadratic
equation which is irreducible over the ring of integers, then the
subring of the field of complex numbers generated by a and C(r), r > 0,
considered as a subring of the ring of integers, will have the direct sum
of two infinite cyclic groups as its additive group, if and only if a is
a zero of a quadratic polynomial, irreducible over the integers, of the
form X2 + nX + m, where n, m are integers. In this section we shall
use the canonical forms which were obtained in the previous section to
express the rings of the three types mentioned above.

Our first result is the following, which shows that any integral
domain whose additive group is the direct sum of two infinite cyclic
groups is isomorphic to a quadratic extension of a subring of the
integers. It is a refinement of a special case of a theorem by
Beaumont and Wisner (Theorem 3, in [4]).

THEOREM. The following are equivalent:
1. Cs(x, y, z) is an integral domain.
2. x2 + iyz is not the square of a rational integer.
3. C3(x, y, z) is isomorphic to the subring of the complex numbers

generated by C(y) and α, where a2 — xa — yz — 0.



DIRECT SUM OF TWO INFINITE CYCLIC GROUPS 185

Proof. (1) implies (2): Suppose x2 + Ayz = v2. If z Φ 0, then
[(x — v)ut + 2zu2] [2yu1 + (v — #)w2] = 0, and if z ~ 0, we have

— ^^62)(^61) — 0 ,

so that in either case C3(x, y, z) is not an integral domain.

(2) implies (3): It is easy to verify that the correspondence auΛ +
bu2 —> aa + by is the required isomorphism.

Since it is evident that (3) implies (1), the proof of the theorem
is complete.

Our theorem on the canonical forms and the above theorem may
be combined to yield the following:

COROLLARY. For rational integers x, y, and z, let a^x, y, z)
and a2(x, y, z) denote the zeros of the polynomial a2 — xa — yz, let
D(x, y, z) denote the subring of the complex numbers which is gen-
erated by the subring C(y) of the rational integers and a^x, y, z)
and let D — {D(x, y,z): 0 ^ x <Ξ y, y Φ 0, and x2 + Ayz not the square
of a rational integer}. Then every subring of the complex numbers
which is generated by a subring of the rational integers and a zero
of a monic quadratic polynomial which is irreducible over the ring
of rational integers is isomorphic to a member of D and no two
distinct members of D are isomorphic.

Turning next to the problem of decomposability, we first note
that if a ring whose additive group is the direct sum of two infinite
cyclic groups decomposes as the direct sum of two ideals, then the
additive groups of the direct summands must be cyclic, and hence
the ring must be commutative. Since an integral domain cannot
decompose, we need only consider the rings Cx(0, 0, z), C2(x, 0, z) and
those rings CB(x, y, z) for which x2 + Ayz — v2 for some rational integer,
v. The following result therefore gives a survey of the docomposable
rings on a direct sum of two infinite cyclic groups:

THEOREM.

A. C^O, 0, z) is decomposable if and only if z — 0.
B. C2(x, 0, z) is decomposable if and only if z — 0.
C. If x2 + Ayz ~ v2, v ^ 0, v a rational integer, then Cs(x, y, z) is

decomposable if and only if (v — x, 2y)(v + x, 2y) = 4yv.

Proof. A. Cx(0, 0, 0) is just the zero ring, and hence CΊ(O, 0, 0) =
C(0) φ C(0). If z Φ 0 and {aux + bu2} is an ideal in Cx(0, 0, z), then
we must have ux(aut + bu2) = azu2 = arut + bru2 for some r. But this
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implies ar = 0, az = hr and since z Φ 0, we must have α — r — 0, if
the ideal is not the zero ideal. Hence the only proper ideals are of
the form {bu2}, and u1 is not contained in the sum of any two of
these, and hence CΊ(O, 0, z) is indecomposable.

B. It is easy to check that C2(x, 0, 0) = {uλ} φ {u2}. If z Φ 0 and
{au1 + δ2£2} is an ideal in C2(x, 0, z), then we must have u1(au1 + δ^2) =
αarax + azu2 — aru1 + bru1 for some r. This implies ax — αr, αz = δr,
so that either a = r — 0, or αδ =£ 0, a; = r, and α£ = &#. As before,
C2(x, 0, 2) cannot decompose as the sum of two ideals of the form
{cu2}, and two ideals of the form {aux + bu2) with ah Φ 0 will not be
disjoint because of the condition az ~ bx. But if we suppose C2(x, 0, z)
decomposes as the sum of {auλ + bu2} and {cu2} then we must have
ux — kauλ for some k, so that α2 — 1 and ^ — ahx, contrary to the
condition 0 g ^ x/2 < a;.

C. First suppose Cz{x, y, z) — {aux + δ^2} 0 {cux + du2}. Since no
ideal can be of the form {δ^2}, b Φ 0, we can assume a > 0 and c > 0.
Since t^, ^ 2 e C3($? j / , z), there must exist integers n, m, p, q such that
1 = %a + me, 0 = ^δ + md, 0 = pα + ^c, and 1 = pδ + qd. This im-
plies (ad — δc)2 = 1. Hence (α, δ) = (c, d) — 1. We must also have
u^aut + δ^2) — (αa; + δ?/)̂ i + azu2 = ία^x + ίδ^2, whence, eliminating £,
we obtain δ/α = ( —a; ± v)/(2y), and similarly for d/c. Since δ/α ^ d/c,
we can assume 2y — a(v — x, 2y) = c(v + x, 2y), v — x — b(v — x, 2y)
and v + a? — —d(^ + a?, 2^/), and finally

(v — x, 2y)(v + x, 2y) = (ad — δc)2{> — a;, 22/)(v + x, 2y)

and hence, since 7/ > 0, v ^ 0, we must have ad — be — — 1 . Con-
versely, if we assume (v — x, 2y)(v + a?, 2#) ~Avy, let

2̂ / = α(v — a;, 2̂ /) = c(v + x, 2y), v — a; = b(v — x, 2y)

and v + x — —d(v + ^, 2τ/), and it is easy to check that ad — be — —1
and C3(a;, ̂ /, z) = {α^ + δ^2} φ {c^ + d^2}.

The problem of decomposability as an ordered product of two
subrings of the integers is somewhat simpler. If C(r) and C(s) are
two subrings of the integers, and an ordered product C(r)(<)C(s) is
not a ring direct sum, then it is easy to verify that it is a ring with
additive group which is a direct sum of two infinite cyclic groups

IT 0\

with multiplication coefficients given by the matrix: Is

 π , which

\ °l
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may be transformed to a member of C3, by letting r — 26s - t, with

0 ^ t < 2s, and applying the matrix A — (Q ^ j to obtain

C3(£, s, bt + δ2s)

if 0 ^ ί < s, or the matrix B = (~^ b "j" ^ to obtain

C3(2s - ί, s, ( -1 - δ)(2s - ί) + ( - I - 6)2s)

if s ^ t < 2̂ /. Thus the ordered product is isomorphic to a ring of
the form C3(x, y, z), with z — ex + Λ/. Conversely, the matrix ί ~ -. j
may be applied to the ring C3(x, y, ex + c2y) to obtain the ordered
product C(\ x + 2cy \)(<)C(y). The condition z — ex + c2y is equivalent
to x2 + Ίyz = (a? + 2τ/c)2 so that the rings are not integral domains,
and we must have either 2y | v — x or 2y \ v + x, where x2 + 4τ/2; = v2.
This proves the following:

THEOREM. A. No member of NX\J N2\J C1\J C2 can represent
the multiplication coefficients of an ordered product of two rings
which is not the direct sum.

B. Cs(x, y, z) represents the multiplication coefficients of an
ordered product of two rings which is not a direct sum if and only
if x2 + 4yz — v2 and either 2y | v — x or 2y \ v + x.

4* Concluding remarks. By using the canonical forms for the
rings on a direct sum of two infinite cyclic groups, many other
problems involving these rings may be solved by straightforward
elementary calculations. We conclude the present paper by indicating
some of these results, omitting the calculations.

A. A complete survey of nonzero idempotents is as follows: (α)
The elements of the form ux + bu2 are left identities in Nλ (1) and
right identities in N2(l). (b) ut is idempotent in C2(l, 0, 0), but not
an identity, (c) u2 is the identity in Cz(x, 1, z). (d) ux is idempotent
in C3(l, y, 0) and — ux + u2 is idempotent in C8(l, 1, 0); neither is an
identity.

B. Since the additive group of any subring is either cyclic or is
the direct sum of two infinite cyclic groups, we can find all subrings
by calculating the images of isomorphisms on C(r) or members of
C1 U C2 U C3 U Nλ U N2 into the given ring. The subrings which are
found may be tested directly to determine whether they are ideals.
It can be shown, for example, that the class of rings C^O, 0, z), with
z > 0, have the property that each is isomorphic to an ideal of any



188 BURNETT R. TOSKEY

other member of the class. Other classes of rings in C2 (j C3 also have
this property.

C. It can be easily shown for any ring on a direct sum of two
infinite cyclic groups, using the canonical forms, that the prime rad-
ical, the Jacobson radical, and the McCoy radical coincide ([5], pages
69, 112, 132, respectively), and hence they may be calculated as the
maximal images of isomorphisms of C(0) and CΊ(O, 0, z) into the given
ring, these being the only nilpotent rings with additive group either
infinite cyclic or a direct sum of two infinite cyclic groups.

D. If a correspondence between any two of the rings is designated
by Ui —-> ailuί + ai2u2i it is easy to determine the set of 2 by 2 matrices
(aiά) which represent homomorphisms between the rings. The set of
endomorphisms of a given ring can also be determined in this way,
as well as the group of automorphisms. The automorphisms, for
example, are as follows:

(a) For N± or N2: isomorphic to the multiplicative group of

matrices of the form (^ Λ where b is an integer and cf = 1.

(δ) For CΊ(O, 0, 0): the multiplicative group of all matrices of the

form r* Λ with α, b, c, d integers such that (ad — be)2 — 1; and for

CΊ(O, 0, z), z > 0: The multiplicative group of matrices of the form

(0 1) w ^ h & a n integer and α2 = 1.

(c) For C2(x, 0, z), C8(sc, x, z) and C8(0, y, z): cyclic of order two.
(d) Cz(x, y,z),0 < x < y: the identity.

REFERENCES

1. Ross A. Beaumont, Rings with additive group which is the direct sum of cyclic
groups, Duke Math. J., 15 (1948), 367-369.
2. , Matric criteria for the uniqueness of basis number and the equivalence of
algebras over a ring, Publicationes Mathematicae Debrecen 4, (1956), 469-480.
3. R. A. Beaumont and R. S. Pierce, Torsion-free rings, Illinois J. Math. 5 (1961),
61-98.
4. R. A. Beaumont and R. J. Wisner, Rings with additive group which is a torsion-
free group of rank two, Acta Scientiarum Mathematicarum, Szeged, 20 (1959), 105-
116.
5. Neal H. McCoy, The Theory of Rings, Macmillan, New York, 1964.
6. Burnett R. Toskey, Ordered products of rings, Journal fur die reine und
angewandte Mathematik 209, (1962), 163-166.
7. , Rings on a direct sum of cyclic groups, Publicationes Mathematicae,
Debrecen, 10 (1963), 93-95.

Received June 6, 1965.

SEATTLE UNIVERSITY

SEATTLE, WASHINGTON




