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A SYSTEM OF CANONICAL FORMS FOR RINGS
ON A DIRECT SUM OF TWO INFINITE
CYCLIC GROUPS

BURNETT R. TOSKEY

In this paper we canonically represent the isomorphism
classes of all rings whose additive group is a direct sum of
two infinite cyclic groups by a system of 4 by 2 matrices
whose elements are rational integers. It is then shown how
the canonical forms can be used to solve other problems
relating to these rings, The results obtained are (1) that
any integral domain in this class of rings is isomorphic to
a quadratic extension of a subring of the integers, (2) the
complete survey of rings in the class under study which are
decomposable as a direct sum, and (3) the complete survey of
rings in this class which are decomposable as an ordered
product which is not a direct sum. The paper concludes with
a description of other problems which can be solved by means
of the canonical matrices using routine calculations.

Let {u}, and {u,} be infinite cyclic groups. Multiplication in a
ring, G, whose additive group is {u,} @ {u,} is determined by a matrix:

glll gn‘z |
gl?l gl22
g211 g212

N g221 g222

(9ij1) =

where u;-u; = g;;%;, + ¢i;sUs, 1,5 = 1, 2, and the g,;, are integers., If
G is associative, then the equality:

! —_ 1
9:5101kp T Gi5002kp = 9119510 T Gjn2Fi0p

holds for ¢, 7, k, p =1, 2 (see [1]).

We consider the set of matrices of the above from which repre-
sent associative rings and reduce them to a system of canonical forms
which represent the isomorphism classes of the rings. Our main tool
in performing this reduction is the following result, which is a special
case of the main result appearing in [7], and also a special case of a
theorem of Beaumont (see Theorem 5 in [2]):

THEOREM. If G and H are rings with multiplication determined
by the matrices (g;;) and (h;;) respectively, then G and H are iso-
morphic if and only if there is a 2 by 2 matriz, A, with integer
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180 BURNETT R. TOSKEY
entries, such that |A|* =1 and (AQ A)g;ir) = (hin)A.

When we have obtained the desired canonical forms, we shall use
them to derive various properties of the rings under study.

2. The canonical forms. Our main result, upon which all sub-
sequent results are based, is the following:

THEOREM. Let matrices Ny(x), Ny(x) and C(x,y, z) be defined by:
0

N.(x) = C(x,y,2) =

oR R 8
S O W

0
x
0
0

S O O 8

0
where x,y, z are integers. Let N, ={N,(x): x > 0}, N, ={Ny(x): z > 0},

C,=1{C(0,0,2):2z = 0},
C,={C(2,0,2):0 =z =2/2<a},
C;={Cx,y,2:0=2=y,y + 0}

and let S= N,UN,UC,UC,UC, Then every ring whose additive
group s a direct sum of two infinite cyclic groups is isomorphic to
a ring whose multiplication coefficients are given by a member of S
and mo two members of S can represent the multiplication coefficients
of tsomorphic rings.

Proof. A. Let G be a noncommutative ring with multiplication
given by the matrix (g;;.), so that we must have either g, # g,, or
s 7 0s2.  The associativity conditions are:

L. s = oot = G1020100 = Go119ee = 0

2' gl21(g]21 - g222) — g122(gl22 - glll) - 0

Ges1(Go1s — Go22) = Gaso(Gore — 9111) = 0 .
3. gx21(gzm - gln) = g211(gmz - glll)
g122(g222 - g211) = 9212(9222 - 9121) .
Since ¢ # 0 implies gy = Gass, Gioe # 0 implies guoy = Gy, G # 0 implies
G211 = Gsozy Gore 7 0 Implies goro = Gursy Juor = Gorr iMplies gyo; = o1y = G = 0,
and gy = ¢y, implies gy = gon = ¢y = 0, there are two cases to
consider:

Case 1. Gui = Gy Go11 = Gassy Gio1 = oo = 0. Set x = (g, G11)y Gorr =
—cx, ¢, = dx, and let ad — bc =1, A = (g g) . Thus (AQ A)gin) =
Nix)A.
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Case 2. gy = Gassy Jro1 = Goss, Gize = Gour = 0. As before, set ¥ =

(@1, 9i)y Goos = — €2, gy = d, ad — be =1, A = (3 (?l), and we obtain

(A® A)Yizn) = Ni(x)A.

Hence every noncommutative ring on a direct sum of two infinite
cyclic groups is isomorphic to a ring whose multiplication coefficients
are given by member of N,U N,., We show next that no two of
these can represent isomorphic rings.

(1) If either (A® A)Ny(r) = N(s)A or (AR A)N,(r) = Ny(s)A,

where A = <(CL

that |A|=oad. Thus ¢*=1 and » = as. Finally, since » and s are
both positive, we obtain a =1, r = s.

d) and |A =1, we obtain ¢*r =0 and o’r =as, so

(2) It (A® AN,(r) = N(s)4, where A= (2 1), we obtain ¢ =
adr = 0, which implies ¢ = ad = 0, so that | A| =0.

Hence no two members of N, U NN, can represent the coefficients
of isomorphic rings. It is elementary to verify that the cofficients given
by the matrices N, () and N,(x) satisfy the associativity conditions.

B. Let G be a commutative ring with multiplication given by
the matrix (g;;,), so that we must have ¢, = ¢,;, and ¢,,, = ¢,,. The
associativity conditions reduce to:

1. 91219 = Guslen

2- 9121(9121 - 9222) = gz21<gm - 9122)

Gi2(Gi2e — G111) = G11o(Ges — Gior) -
We first show that G must be isomorphic to a ring with coefficients

given by a matrix of the form C(z,y, z). We have three cases to
consider,

Case 1. If g3 = s = 0. = 0, the associativity conditions reduce
t0 gui(Gios — Gowe) = 0. If g1y = 0y, the matrix for G is already in the
form C(gus, G, 0).  If g1 # 0., then we must have g, = 0, gu # 0,
so that we may let (9.1, 9u) = 7, 9us = d7, gos = ¢7, and find a and b
such that ad — bc =1, If A = (g g) , we obtain the desired result:

(AR AXg;;.) = C(adr + ber, cdr, —abr)A.

Case 2. If (9., 91) =7 # 0, let 9y = —d7, 90 = cr, ad — be = 1,
and A — (g g) we obtain (4 ® A)(g:n) = C(@, ¥, 2)A, where

¢ = d(@*gu; + 2009:; + o) — c(+0°G1s + 2abG.s + DGu) ,
= aCdglll + d(ad -+ bc)glzl + bdzgzzl — bC°G10 — bdcyzz2 y
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= —b(azgm + 2abg.s; + b2g221) + a(azgnz + 2abg..s + bzgzm) .

Case 3. If g, = g = 0, 9o, # 0, let B = (g (]j> so that

(BQ B)9:;) = (hisi)B

and A, = 05, and we may apply the transformation of Case 2 to the
matrix (%;;;).

Thus we have shown that every commutative ring is isomorphic to
a ring with multiplication coefficients given by a matrix of the form
C(xz, v, 2). Again, it is elementary to see that every matrix of the
form C(x, y, 2) represents the multiplication coefficients of an associa-
tive ring. We now assume that the ring G has coefficients given by
C(z, y,#) for our final reduction to canonical form. There are three

cases to consider.

Case 1. If x =y =0, then if 2 =0, C(z,y,2)eC, and if 2z < 0,
let A= (g _(1)) and we obtain (A ® A)C(0, 0, z) = C(0, 0, —2)A,
and C(0,0, —z)c C..

Case 2. If ©++0, y=0, let a=|z|/x, z=0|x|+ r, where
0<r<|el and 4 = (0 Z{)so that |Af = a* = 1. We obtain

(A®Q A)C(z, 0,2) = C(|x], 0, A .

r =|x|/2, then C(|x],0,r)eC, If 12|z|=r<|ax| let B=
> and we obtain (B® B)C(|«|,0,r)=C(|z|,0,|x| —»)B, and
0,|a| —r)eC.

IfOé

C(le,

Case 3. If y+ 0, let d =|y|/y,x = b(—2y) + r, where 0 = r <
|2y|,andA—<0 g) sothat |A?=d*=1. We obtain (ARQ A)C(x,y,2) =
C(r,|yl, t)A, where t=dz—bde —0|y|. If 0= =/|y|, then
Clr,lyl,t)eC,. If ly|=r<2|yl, IetB:<~(1) i), and we have
(BQ B)C(r, |yl|,t) = C2|y| —r,|yl,» +t—[y|)B, and

C(2lyl-'r,[y[,1”+t-lyl)eCs.

Hence every commutative ring on a direct sum of two infinite
cyclic groups is isomorphic to a ring whose multiplication coefficients
are given by a member of C, U C,U C,. Since no member of N, U N,
can represent a ring which is isomorphic to any member of C, U C, U C;,
the proof of the theorem will be completed by showing that no two
members of C, U C, U C, can represent isomorphic rings. In the follow-
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ing, A= (fj 2)

(1) Suppose (A Q A)C,(0, 0,z) = C(0,0,v)A with |[Af=1. We
then have vec = ¢*%2 = 0, a2 = vd. Hence if z =0, we must have v =
0, and if 2 >0, we obtain ¢ =0,a®>=d* =1, and therefore z =uvd.
Since v > 0, we have d =1,z = .

(2) Suppose (AR A)C\(0,0,z) = Cyx, 0, v)A, so that ¢z = ax +
ve =0 and ¢’z = bx + vd. If 2 =0, we have | A| =0, since © = 0, and
if 2 >0, we have ¢ = a = 0 and again obtain |A4]| = 0.

(3) Suppose (A RQ A)Ci(0,0, 2) = Cyz, y, v)A. But then ay = cy =
0, and hence e =¢ =0 and | A| =0.

(4) Suppose (AR A)Cyzx, 0, 2) = Cy(u, 0, v)A and | A|* = 1. Then
cx = 0,0’ = au + ve, &’z = bu + vd. Hence ¢ =0, and o> =d* =1,
x = au, 2 = bu + vd, and we must have ¢ = 1, = u, since 2 > 0 and
u >0, But now 0 = bu + vd < /2, so that if d =1 we must have
b=0, 2 =9, and if d = —1 we must have either b =0, in which
case 2 =v =0, or b =1, in which case z = v = u/2.

(5) Suppose (AR A)Cy(x, 0, 2) = Ciu, y, v)A, so that we have
acr = ya, ¢’x = cy, acz = yb, ¢z =dy. If ¢=0, we obtain a =0,
since y # 0, and |A|=0. If ¢+ 0, then y = cx, az = bz, cz = dx
and hence | 4| = 0, since z # 0.

(6) Suppose (AR A)Cyx, y, 2) = Cy(u, v, w)A and |APP =1, We
obtain the equations:

a’x + 2bcy = au - cw a’z -+ by = bu + dw
ace + (ad + be)y = av acz + bdy = bv
cx -+ 2edy = cv ¢’z + d*y = dw.

If ¢+ 0, we obtain v =cx + 2dy,so that c¢(az — bx) = bdy and
¢(cz — dx) = d?y, yielding z = 0 so that v = dy, ¢z + dy = 0 and {finally
bey =ady and |A|=10. Hence we must have ¢=10,a'=d*=1.
This yields © =au,v =dy so that e =d =1, =u,v =y, and z +
by = bu + w. By symmetry, w + k™ = kx 4+ 2. But this implies
b+ k)yx = (b* + kYy, so that either =10, or k=0, or b=k =1,
¢ =v%. In any case, we obtain z = w.

Hence no two members of C, U C, U C, can represent the coefficients
of isomorphic rings, and the proof of the theorem is complete.

We conclude this section by remarking that the algebra types
(see [3], page 61) of the rings can be determined from the canonical
forms. Types I, II, III, IV, and V refer to [3], page 97:
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(i) Any ring represented by a member of N, has algebra type II.

(il) Any ring represented by a member of NV, has algebra type
III.

(iii) Any ring represented by a member of C; has algebra type V
if 2 > 0 and nil algebra type if z = 0.

(iv) Any ring represented by a member of C, has algebra type I.

(v) Any ring represented by C, with 2? + 4yz = 0 has algebra
type IV.

(vi) Any ring represented by C, with x* + 4yz = v* # 0 has type
R @ R (semi-simple type).

(vil) Any ring represented by C, with «* + 4yz not the square of
an integer has quadratic field type.

This last result is a corollary of the first result in the following
section. Rings in different classes from the above list are not quasi-
isomorphic, since quasi-isomorphic rings have the same algebra type.

3. Relationship to known rings. Let C(r) denote the ring
whose additive group is the infinite eyclic group {u}, with multiplica-
tion defined by wu = ru. Since C{r) and C(s) are isomorphic if and
only if »* = s*, we may assume 7 = 0. Also, if » >0, then C(r) is
isomorphic to the subring of the integers generated by » and C(0) is
the zero ring with infinite cyclic additive group. If C(r) and C(s) are
two of these rings (not necessarily distinct), then the direct sum and
the ordered product (see [6]) are rings whose additive group is the
direct sum of two infinite cyclic groups. If « is a root of a quadratic
equation which is irreducible over the ring of integers, then the
subring of the field of complex numbers generated by a and C(r), » >0,
considered as a subring of the ring of integers, will have the direct sum
of two infinite cyclic groups as its additive group, if and only if « is
a zero of a quadratic polynomial, irreducible over the integers, of the
form X* + nX + m, where n, m are integers. In this section we shall
use the canonical forms which were obtained in the previous section to
express the rings of the three types mentioned above.

Our first result is the following, which shows that any integral
domain whose additive group is the direct sum of two infinite cyclic
groups is isomorphic to a quadratic extension of a subring of the
integers. It is a refinement of a special case of a theorem by
Beaumont and Wisner (Theorem 3, in |4]).

THEOREM. The following are equivalent:

1. C«=,y,?) is an integral domain.

2. x* + 4dyz is mot the square of a rational integer.

3. Cyz,y, 2) is isomorphic to the subring of the complex numbers
generated by C(y) and «, where o — xa — yz = 0,
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Proof. (1) implies (2): Suppose a* + 4yz =*. If 2= 0, then
[(x — v)u, + 2zu,]-[2yu, + (v — 2)u,] = 0, and if z =0, we have

(yu, — 2u)(uy) =0,

so that in either case Cy(x, ¥, 2) is not an integral domain,

(2) implies (3): It is easy to verify that the correspondence au, +
bu, — ax + by is the required isomorphism.

Since it is evident that (3) implies (1), the proof of the theorem
is complete.

Our theorem on the canonical forms and the above theorem may
be combined to yield the following:

COROLLARY. For rational integers =, y, and z, let aizx,y,?)
and ox,y, 2) denote the zeros of the polynomial o — xa — yz, let
D(z, y,2) denote the subring of the complex numbers which is gen-
erated by the subring C(y) of the rational integers and oz, y,z)
and let D={D(z,y,2): 0= <y,y+0, and ©* + 4yz not the square
of a rational integer}. Then every subring of the complex numbers
which is generated by a subring of the rational integers and a zero
of a monic quadratic polynomial which is irreducible over the ring
of rational integers is isomorphic to a member of D and no two
distinet members of D are isomorphic.

Turning next to the problem of decomposability, we first note
that if a ring whose additive group is the direct sum of two infinite
cyelic groups decomposes as the direct sum of two ideals, then the
additive groups of the direct summands must be cyclic, and hence
the ring must be commutative. Since an integral domain cannot
decompose, we need only consider the rings Cy(0, 0, ?), Cy(x, 0, ) and
those rings Cy(z, y, 2) for which 2* + 4yz = +* for some rational integer,
v, The following result therefore gives a survey of the docomposable
rings on a direct sum of two infinite eyclic groups:

THEOREM.

A. C(0,0,z) is decomposable if and only if z = 0.

B. Cyz, 0, 2) is decomposable if and only if z = 0.

C. If ©* +4yz =v*, v = 0, v a rational integer, then Cix, y, ) is
decomposable if and only if (v — x, 2y)(v + @, 2y) = 4yv.

Proof. A. C0, 0, 0) is just the zero ring, and hence C(0, 0, 0) =
C(0) P C(0), If 20 and {ou, + bu,} is an ideal in C,(0, 0, z), then
we must have u,(au, + bu,) = azu, = aru, + bru, for some ». But this
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implies ar = 0, az = br and since z # 0, we must have a = » =0, if
the ideal is not the zero ideal. Hence the only proper ideals are of
the form {bu,}, and u, is not contained in the sum of any two of
these, and hence C,(0, 0, z) is indecomposable.

B. It is easy to check that Cy(x, 0, 0) = {u,} P {u.}). If 2z 0and
{au, + bu,} is an ideal in Cy(z, 0, z), then we must have w,(au, + bu,) =
axu, + azu, = aru, + bru, for some r. This implies ax = ar, az = br,
so that either a =» =0, or a¢b# 0, x =, and az = bxz. As before,
Cy(z, 0, 2) cannot decompose as the sum of two ideals of the form
{cu,}, and two ideals of the form {ow, + bu,} with ab = 0 will not be
disjoint because of the condition ¢z = bx. But if we suppose Cy(z, 0, z)
decomposes as the sum of {au, + bu,} and {cu,} then we must have
%, = kau, for some k, so that a¢* =1 and z = abz, contrary to the
condition 0 =z = /2 < 2.

C. First suppose Cyz,y, 2) = {ou, + bu} P {eu, + du,}. Since no
ideal can be of the form {bu,}, b = 0, we can assume a > 0 and ¢ > 0.
Since u,;, u, € Cyx, ¥, 2), there must exist integers =, m, p, ¢ such that
1=na + mec, 0 =nb+ md, 0=1pa—+ qc,and 1 = pb + gd. This im-
plies (ad — be)* = 1. Hence (a,b) = (¢,d) =1. We must also have
w(aw, + buy) = (ax + by)u, -+ azu, = tau, + tbu,, whence, eliminating ¢,
we obtain b/a = (—x =+ v)/{2y), and similarly for d/c. Since b/a == d/c,
we can assume 2y = a(v — «, 2y) = ¢(v + , 2y), v — & = b(v — =, 2y)
and v + & = —d(v + x, 2y), and finally

(v — =, 2y)(v + @, 2y) = (ad — be)(v — w, 2y)(v + @, 2y)
= (ad — bcY —4yvw)

and hence, since y > 0,v =0, we must have ad — bc = —1. Con-
versely, if we assume (v — z, 2y)(v + @, 2y) =4vy, let

2y = afv — =z, 2y) = c(v + @, 2y), v — @ = blv — &, 2Zy)

and v + ¢ = —d(v + z, 2y), and it is easy to check that ad — bec = —1
and Cy{w, y, 2) = {au, + bu,} P {eu, + duy}.

The problem of decomposability as an ordered product of two
subrings of the integers is somewhat simpler. If C(r) and C(s) are
two subrings of the integers, and an ordered product C(r)(<)C(s) is
not a ring direct sum, then it is easy to verify that it is a ring with
additive group which is a direct sum of two infinite c;(r)clic groups

r

with multiplication coefficients given by the matrix: which

0
s 0)
0 s
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may be transformed to a member of C,, by letting # = 2bs - ¢, with
0 =< ¢ < 2s, and applying the matrix A = <é “i’) to obtain

Ci(t, s, bt + b's)
if 0 =¢<s, or the matrix B = <—(1) b 41r 1) to obtain
Cy(2s — t, 8, (—1 — b)(2s — t) + (—1 — b)s)

if s <t < 2y. Thus the ordered product is isomorphic to a ring of
the form C,(z, y, 2), with z = cx + ¢*y. Conversely, the matrix <(1) f)
may be applied to the ring Cyx, y, cx + ¢*y) to obtain the ordered
product C(]2 + 2¢y [)(<)C(y). The condition z = ¢x + ¢*y is equivalent
to @ + 4yz = (¢ + 2yc)* so that the rings are not integral domains,
and we must have either 2y |v — 2 or 2y | v + x, where 2* + 4yz = 2%
This proves the following:

THEOREM. A. No member of N,U N,UC,UC, can represent
the multiplication coefficients of an ordered product of two rings
which ts mot the direct sum.

B. Cyz,y,?z) represents the multiplication coefficients of an
ordered product of two rings which is not a direct sum if and only
iof af + 4dyz = v* and either 2y |v — x or 2y |v + .

4. Concluding remarks. By using the canonical forms for the
rings on a direct sum of two infinite cyclic groups, many other
problems involving these rings may be solved by straightforward
elementary calculations. We conclude the present paper by indicating
some of these results, omitting the calculations,

A. A complete survey of nonzero idempotents is as follows: (a)
The elements of the form w, + bu, are left identities in N, (1) and
right identities in N,(1). (b) u, is idempotent in Cy 1, 0, 0), but not
an identity. (¢) u, is the identity in Cy(z, 1, 2). (d) u, is idempotent
in C;1,y,0) and —u, + u, is idempotent in Cy(1, 1, 0); neither is an
identity.

B. Since the additive group of any subring is either cyclic or is
the direct sum of two infinite eyclic groups, we can find all subrings
by calculating the images of isomorphisms on C(r) or members of
C,UC,UC,U N, U N, into the given ring. The subrings which are
found may be tested directly to determine whether they are ideals.
It can be shown, for example, that the class of rings C,(0, 0, z), with
z >0, have the property that each is isomorphic to an ideal of any
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other member of the class. Other classes of rings in C, U C, also have
this property.

C. It can be easily shown for any ring on a direct sum of two
infinite cyclic groups, using the canonical forms, that the prime rad-
ical, the Jacobson radical, and the McCoy radical coincide ([5], pages
69, 112, 132, respectively), and hence they may be calculated as the
maximal images of isomorphisms of C(0) and C,(0, 0, 2) into the given
ring, these being the only nilpotent rings with additive group either
infinite cyeclic or a direct sum of two infinite cyelic groups.

D. If a correspondence between any two of the rings is designated
by u; — a,u, + a,u,, it is easy to determine the set of 2 by 2 matrices
(a;;) which represent homomorphisms between the rings. The set of
endomorphisms of a given ring can also be determined in this way,
as well as the group of automorphisms. The automorphisms, for
example, are as follows:

(a) For N, or N,: isomorphic to the multiplicative group of

matrices of the form (1) 3> where b is an integer and d* = 1.

(d) For C(0,0,0): the multiplicative group of all matrices of the
form (g’ 2) with a, b, ¢, d integers such that (ad — be)* = 1; and for
C(0,0,2), 2> 0: The multiplicative group of matrices of the form
g 1) with b an integer and a* = 1.

(¢) For Cy(x, 0, 2), Cy(x, z, 2) and C,(0, y, 2): cyelic of order two.
(d) Cy2, y,2),0 < <y: the identity.
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