
PACIFIC JOURNAL OF MATHEMATICS
Vol. 20, No. 1, 1967

RESIDUATED MAPPINGS

JEAN-CLAUDE DERDERIAN

In a series of papers, D. J. Foulis developed a theory in
the course of which he obtained analogues of Yon Neumann's
Coordinatization Theorem by making use of *-monotone map-
pings. A generalization of these mappings, residuated map-
pings, leads to extensions of his results. Residuated mappings
also arise independently in studies of R. Croisot and G. Nδbeling.
The purpose of this paper is to develop their properties sys-
tematically. Of particular help is the link established with
the basic properties of M-homomorphisms between groups with
operators yielding analogues of the Fundamental Theorem of
Homomorphisms and Fitting's Lemma, and with the study of
residuation especially in Noetherian rings.

Preliminaries. Unless further restricted, P, Q, R denote arbitrary
posets whose order relations are all written <;.

DEFINITION 1. An isotone mapping φ:P—>Q is said to be re-
siduated (resp. residual) if there is an isotone mapping ψ:Q—+P
such that:

( i ) xφψ ^ x (resp. xφψ :g x) for all x in P
(ii) xψφ g x (resp. xψφ >̂ x) for all x in Q.
An antitone mapping φ:P—+Q is said to be a Galois connection

if there is an antitone mapping ψ:Q—+P satisfying
( i ) xφψ Ξ> x for all x in P
(ii) xψφ ^ x for all x in Q.
Since one may pass from one type of mapping to either of the

other two by dualizing either one or both of the posets involved, we
shall record only the results for the residuated case, though using
them in whatever form required later.

We list some facts that will be used in the sequel and can be
found in, say, fl] and [2] possibly after applying the aforementioned
duality:

A. A necessary and sufficient condition that an isotone mapping
φ:P—>Q be residuated is that M a x { z e P : zφ S %} exists for all x
in Q; moreover, if this is the case, ψ is given by the rule xψ =
Max {zeP: zφ ^ x). Thus ψ is uniquely determined by φ and will
be denoted φ+.

B. If φ:P—>Q and ψ:Q-+R are residuated so is φψ:P—>R;
moreover, (φψ)+ = ψ+φ+. We denote by S(P, Q) the set of all residuated
mappings φ: P —> Q and write S(P) when P = Q. Note that S(P) is a
semigroup.
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C. φφ+φ — φ for all φ in S(P, Q).
D. For any φ in S(P) φ \ Pφφ+: Pφφ+ —> Pφφ+ is an order iso-

morphism.
E. For ψ in S(P, Q) if Vxe.^λ exists in P Vλe^(^) exists in Q and

equals (Vxe^^λ)^. If P has a zero 0P so does Q and 0Q — 0Pφ. In a
complete lattice φ is residuated if and only if it is a complete join-
homomorphism.

We now sketch two examples to provide a perspective for the
theory:

F. Let R be a binary relation on a set X, φB: ^{X) —> &*(X)
defined by AφR = AR for i g l i s residuated and its residual is given
by Aφ% ~ ((A')i?""1)', where ' denotes set-theoretic complementation.

G. Let Gl9 G2 be groups with operators M, let L{Gt) be the lattice
of M-subgroups of Gt and /: G1 —> G2 an M-homomorphism. Then
φ: LiGJ-+L(G2) given by the rule Hφ ^{hf:heH} for HeUβύ is
residuated and its residual is given by the rule Hφ+ — {g e Gx: gfe H}.
The exact relations are of interest:

( i ) Hφφ+ = (H)(kβτί) = HV {l}φ\
(ϋ) Hφ+φ = HΠGφ.

All the above is true for the lattice of normal M-subgroups and for
normal M-endomorphisms.

2. Range-closed mappings. Henceforth P, Q, R are supposed to
contain a least and a largest element 0 and 1 respectively. We know
by definition that xφ+φ <£ x; also xφ+φ g lφ. When is xφ+φ as large
as it can be: xφ+φ = x A lφΊ

PROPOSITION 1. For any φ e S(P, Q) the following conditions are
equivalent:

(i ) φ:P-*Q(Q, lφ) is onto
( i i ) α; Λ lg? exists for all x in Q and equals xφ+φ.

(iii) φ+ I ρ ( O f l ): Q(0, 1̂ >) —> P is one-to-one.

Proof, (i) => (ii): Suppose ^ $ and z ^ 1̂ ?, then, by (i), there
exists w in P such that 2 ^ wφ. Since W(p ^ a;, w ^ w^(p+ ^ o;^+,
and z — wφ g xφ+φ; therefore, xφ+φ = x A lφ.

(ii) => (iii): Suppose x,ySlφ and α;̂ )+ = yφ+, then a? — a; Λ lφ —
X^V = yφ+φ = 2/ Λ l<p = 2/.

(iii) => (i): Suppose cc ̂  lφ>, then xφ+φ ^ l^<p+(p g lςp. By the
dual of C xφ+φφ+ = ίc^+ for arbitrary x; thus, by (iii), α;̂ +ς9 = x.
Therefore φ is onto Q(0,

DEFINITION 2. If 9? e S(P, Q) satisfies any of the conditions of
the proposition it is said to be range-closed. The set of all such
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maps is denoted SR0(P, Q). If φ+ satisfies the conditions of the dual
proposition, then φ itself is said to be dually range-closed) the set
of all such maps is denoted SDRσ{P, Q). This terminology is suggested
by [4].

PROPOSITION 2. Let P be a lattice, the following mappings on P
are residuated:

[x if x g e (0 if x <̂  β

( i f x ^ β \x\f e \τ x %e

their residuals are

fl if cc ̂  β [x it x ^ e
Λ β it # §b e [^ it a; ̂  6

Proof. By computation.
Note also that α>, is range-closed, α e dually range-closed, both are

idempotent and lωe — e — Oaf.

PROPOSITION 3. For any poset P (with 0 and 1), the following are
equivalent:

( i ) P is a lattice.
(ii) For all x in P there exists Qx, Rx, Ψx e SRO(QX, P), fx e Sj)R0(P, Rx)

such that lφx — x = Oψi.

Proof, (i) ==> (ii): o)x and α, have the requisite properties,
(ϋ) => (i)# follows from Proposition 1 and its dual.

PROPOSITION 4. If φ e S W (P, Q) Π S ^ ^ P , Q), then

is an order-isomorphism.

Proof. Follows from D and Proposition 1.
In the case of example G this is the Fundamental Theorem of

Homomorphisms.

DEFINITION 3. a, beP are said to form a modular pair, in symbols
M(a, 6), if (x V a) A b and x V (a A b) exist and are equal whenever
x <; b. The dual statement is denoted ikf *(α, δ).

PROPOSITION 5. For arbitrary P, Q, R, with <p e Ŝ c ίP, Q) and

, Q) Π
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the following conditions are equivalent:
( i ) φψeSBσ{P,R).
(ii) M*(lφ, 0ψ+) and x A lφψ exists for all x in R.

Proof, (i) =* (ii): Suppose φf e SE0(P, R), then

aψ+φ+φψ = a(φψ)+φψ = a A lφψ .

Also, if a ^ 0^r+, a = δ ^ + ί ° r some 6 in J?. We thus have

b A lφφ — bψ+φ+φψ = aφ+φφ — (a A lφ)φ

where the last term exists by hypothesis, Finally, we get successively:

lφ) V 0ψ+ = (a A lφ)ψψ+ = (b A lφf)ψ+ = bψ+ A lφfψ+

= a A lφψψ+ = a A (lφ V 0ψ+)

where all the meets and joins exist.
(ii) -> (i): Suppose M*(lφ, 0f+), then

aψ+φ+φff+ = (aψ+ A lφ) V 0φ+ = aψ+ A (lφ V

= aψ+ A lφψψ+ = (α Λ

since α ^ + ̂  0^+ . Therefore

+ + + — (& A

Λ lψ = α Λ

Thus <pα/r is range-closed.

DEFINITION 4. The mapping 9? e S(P, Q) where P is a lattice is
said to be totally range-closed if ωeφ is range-closed for all β in P.
The set of all such maps is denoted STR0{P, Q). φ e S(P, Q) is said to
be dually totally range-closed if φ+a+ is dually range-closed for all e
in P; the set of all such maps is denoted by S^^iP, Q).

PROPOSITION 6. If P is a lattice, the following conditions are
equivalent for φ e S(P, Q):

( i ) φeSTBσ(P,Q).
( i i ) g A eφ exists for all g,eeP and equals (gφ+ A e)φ.

(iii) φ e SB0(P) =>φφe SE0(P, Q).

Proof. (i)<=>(ii): ωeφ is range-closed if and only if g(ωeφ)+ωeφ =
gφ+ωtωeφ — g A lωβφ — g A eφ. Since ωe is range-closed, we have
gφ+ωtωe = #cp+ Λ lωΦ = 9φ+ A e. Therefore φ e STE0{P) if and only
if (gφ+ A e)φ = g A eφ for all β, 0 in P.

(ii) => (iii): Since φ is range-closed
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x(ψφ)+ψφ — Xφ+ψ+ψφ — Xφ+ψ+ψφ = (xφ+ A lψ)φ — X A lψφ .

(iii) => (i): obvious.

Next we study the relationship between the properties 'range-
closed' and 'totally range-closed'. To this end we set:

DEFINITION 5. Let P be a lattice, ψ:P—+P is called a weak
quantifier if it is a closure operator satisfying: (e A fψ)ψ = eψ A fψ
for all e, f in P.

LEMMA. For a lattice P:
( i ) If φe STR0(P, Q), then φφ+ is a weak quantifier.
(ii) If φe SR0(P, Q) and φφ+ is a weak quantifier then

φ e STR0(P, Q), whenever g A hφ exists for all g, h.

Proof. ( i ) Suppose φ is range-closed; this equivalent to
(gφ+ A h)φ — g A hφ for all g, h. A fortiori (gφφ+ A h)φ — gφ A hφ
for all g,h. Apply φ+ to both sides:

(gφφ
+
 A h)φφ

+
 = (gφ A hφ)φ

+
 = Qφφ

+
 A hφφ

+

for all g, h.
(ii) Since φ is range-closed and φφ+ is a weak quantifier,

(9φ+ A h)φφ+ = (gφ+φφ+ A h)φφ+ = gφ+φφ+ A hφφ+ = (flf Λ

Since ( ^ + Λ h)φ ̂  l<p and g Ahφ ^ lφ and 9? is range closed we get
g Λ hφ = (gφ+ A h)φ.

PROPOSITION 7. For a lattice P and <p G S^(P, Q) Π SDRO(P, Q), the
following conditions are equivalent:

( i ) ^ G SΓi?£7(P, Q).
(ii) Λf *(/, 0^+) for all / in P.

Proof. By the lemma, since cp e SE0(P, Q),φ£ S Γ J K ( ; (P, Q) if and only
if φφ+ is a weak quantifier. This is equivalent to (e A fφφ+)φφ+ —
eφφ+ A fφφ+ for all β, /, and, in turn, to (e A (f V 0φ+)) V 0<p+ =
(e V 0φ+) Λ (/ V 0(p+) since gp G S ^ P , Q). NOW, if M*(β, Ocp+) for
all e in P, then (β Λ (/ V 0φ+)) V 0^+ = (β V 0(p+) Λ (/ V 0φ+) since
/ V 0(^+ ̂  0(p+. Conversely, since φ>^+ is a weak quantifier and
/ = / v 0^+ = fφφ+ whenever / ^ Oφφ+, we have successively

(/ Λ β) V 0φ+ = (β Λ fφφ+)φφ+ = β^^+ Λ / ^ ^ + = (β V 0<p+) Λ

For 9? G S(P), ΐ is called ^-invariant if iφ ^ i.
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PROPOSITION 8. Let P be a lattice, φ e STβ0(P), i ^-invariant:
( i ) φ\P{Ofi): P(Q, i)—* P(0, i) is residuated, range-closed and its

residual is given by the rule x(φ\piQti))
+ — xφ+ A i.

(ii) If, in addition, φ is dually range closed φ\Pi0,i) is dually
range closed if and only if M(i, 0φ+).

Proof. ( i ) By computation.
(ii) φ\p(oti) is dually range-closed if and only if

P(o,,i))(φ I P(o,i))+ = XV 0(φ\ P(o,ί))+ = X V (0φ+ A i)

for x in P(0, i). But x(φ \ P{Ori))(φ | p(0,;))+ = xφφ+ A i for all x in
P(0, i). Hence the original statement is equivalent to M(0φ+, i).

3* Mappings of finite ascent and descent* Since φ and φ+ are
isotone, it follows immediately that 1 Ξ> lφ ^ l<p2 ̂  and 0 ̂  0φ+ ^
0(<p+)2 ^ . If there exists an integer n ^ 0 such that 0(φ>+)% =
0(φ+)n+\ there is a smallest such integer; it will be called the ascent
of φ and will be denoted A(φ). If no such integer exists we write
A(φ) = oo. Dually the least integer such that lφn — lφn+ι is called
the descent of φ and denoted D(φ); we will set D(φ) = oo if no such
integer exists. We investigate the relationship between D(φ) and A(φ).
First we exhibit an extreme case.

EXAMPLE. Let Z denote the nonnegative integers and let
φ: &*(Z) —>&*(Z) be induced by the relation R = {(w, 2n):ne Z}.
We see that D(φ) = 0 while A(<p) = oo.

PROPOSITION 9. For any <p e SR0(P), if A(<p) is finite and D(̂ >) = 0
then A(φ) = 0.

Proof. Suppose A(φ) > 0, then for some O ^ ^ e P , xxφ = 0.
Since, by hypothesis l<p ~ 1 and φ is range-closed, we can define a
sequence {$J such that xn+1φ — xn. Now,

X % + 1 φ % + 1 = (xn+1φ)φn = X % φ % = = OVp = 0

therefore xn+1 g xn+1φ
n+1(φ+)n+1 = 0(^+)% + 1. But a?n+1 ^ 0(<p+)n, for, if

^*+! ^ 0(^ + ) w , we would have x1 = xu+1^
w ^ 0(^?+)V% ^ ° which would

be a contradiction. We would therefore have 0(φ+)n Φ 0(φ+)n+1 for all
n ^ 0 which is impossible since A(<p) is finite.

PROPOSITION 10. If P is a lattice, <p e STR0(P) Π SDTR0{P), and

, 23(9?) a r e both finite, then A{φ) =
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Proof. Suppose D(φ) = k. lφk is a ^-invariant, hence by Propo-
sition 8 φλ = φ I p{QΛφk): P(0, l<pfc) —>P(0, lφk) is residuated and range
closed. Also (lφk)φ! = l(pV = 1(?Λ thus D(^i) = 0. Recall that Oφf =
0<p+ Λ l<pfc, hence

0(<p+)2 = (0φ+ A lφk)φ+ A lφ* = °(<P+Y Λ W + Λ lφk - 0(<p+)2 Λ lφk

since 1^V+ = lφh~ιφφ+ ^ l^*""1 ^ 1?>*. Inductively we get 0(φt)n =
0(cp+)% Λ lcpfc, hence if 0(<p+)m = 0(φ+)n, we have 0(^ί)m = Q(φt)n- This
means Aί^) g A(<p); therefore Aί^) is finite. Applying Proposition 9 to
φx we get A(φύ = 0. Now, suppose # ̂  0(φ+)k+1 and let ?/ = x<pk. We
have 2/9?! = xφkφ1 — xφk+1 = 0. But α;^ ~ y ^ Vψiψi = Qφi = 0 and
^^0(^ + ) f c . We have shown 0(^"f)A:+1 g 0(φ+)k. Since we always have
0(φ+)k ^ O(cp+)fc+1 we may conclude that 0(φ+)k = Q(φ+)k+1. Therefore
A{φ) S D(φ). The other inequality follows by duality.

We now focus our attention to mappings for which A(φ) = 1 or
D{φ) = 1.

PROPOSITION 11. For arbitrary P:
( i ) If φ e SB0(P) and A(φ) = 1, then lφ Λ θ / = O

(ii) lίφe SDB0(P) Π SBΰ(P) and A(φ) = 1 = D(^), then 1^ V 0^+ = 1.

Proof. By Proposition 1, lφ A 0φ+ exists. We have successively
lφ A 0φ+ — 0φ+φ+φ — 0φ+φ ^ 0.

(ii) follows from (i) and its dual.

COROLLARY 1. For any P, let A(φ) and D(φ) be finite, n —

Max {A(φ), D(φ)}, then if φn e SR0(P) n SDS0(P), lφn V Q(φ)n = 1.

Proof. Note that A{φn) — 1 = D{φn), hence it suffices to apply the
above to φn.

Next, we restrict P to be a lattice:

COROLLARY 2. For any P, let A(φ) and D(φ) be finite, then if
φ € STR0(P) n Sj,TBσ(P), lφn V O(cp+)% = 1 where A(φ) =

Proo/. By Proposition 6 φn e SE0{P) Π SDBσ(P). By Proposition 10
= D{φ). The remainder follows from Corollary 1.

It seems appropriate at this point to point out that if P satisfies
the ascending chain condition A(φ) is automatically finite. The same
applies to the descending chain condition and D(φ). In the case of
Example G Corollary 1 or 2 are known as Fitting's Lemma. Ore's
Theorem ([9], pp. 203-4) can be formulated and proven in terms of
residuated mappings.
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PROPOSITION 12. Let P be a lattice and i a ^-invariant:
( i ) If φ e STR0(P) and A(φ) = n, then iφn A 0(φ+)n Λ i = 0.
(ii) If φeSDTR0(P) Π SΛσ(P), A(9>) - n and Λf*(i, Lp), then i
)» Λ (lφ% V i).

Proof. ( i ) We first show that if φ e STE0(P) and A(φ) = 1 then
0 — iφ /\ Qφ+ /\ %% Since φ is totally range-closed φ \ P{Oti) is residuated
and range-closed; moreover,

0((φ I Pίo,*))+)2 - 0(^ + ) 2 Λ 0φ+ A i = 0φ+ A % = Q(φ \ P{o,i))+ .

Hence, applying Proposition 11, we get 0 = i(φ \ P(Oίi)) Λ 0(φ | p(0,i))
+ =

iφ A 0φ+ A i. Now note that φn e STR0(P) and 0(φ+)n = 0(φ+)2n thus,
if we apply the above to φn, we get 0 = iφn A 0(φ+)n A ί.

(ii) follows by a dual argument.

EXAMPLE. Let R be a commutative ring with unit, L(R) the
lattice of ideals of R. Define pΛ: L(R)—>L(R) for AaR, by the rule
BpA — BA. Denote p{a} by pa. One verifies very easily that:

( i ) pa is totally range-closed and dually totally range-closed for
all a in R.

(ii) Rpa = Rpia) and {0}̂ +α) = {0}ρi.
For i2 Noetherian, / an ideal and a an element of R, part (ii) of

the above proposition yields I — I: (αr) Π (/ + (αr)) for some integer r
which as is well known implies that every irreducible ideal is primary.

Extending a notion of Kurosh we set:

DEFINITION 6. Let P be a lattice, suppose e V / = 1, M(e, f),
M*(e,f), define the mappings φβ,f, φ+f: P—>P by the rules xφβ,f —
(x V e) A f, xφtf = (x A f) V e for all x in L.

PROPOSITION 13. ( i ) φlf = ̂ β f /, φlf = (φtff.
(ii) ^ G S ^ p j n s ^ P ) .
(iii) lφe,f = /, 0^+y = β.
(iv) If, in addition, M(x, e) and Λf*(a;, /) for all x in L, then

S( n SDTRO(P).

Proof. By computation.

PROPOSITION 14. If P is a lattice, the following conditions are
equivalent:

( i ) φ* = φeSao{P)nSDBσ{P).

(ii) 0φ+ v 1^ = 1, Λί(θ9+, Iφ), M*(lφ, 0φ+) and
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Proof, (ii) => (i) is Proposition 13.
( i )=>( i i ) : Since φ2 = ω e SB0(P) Π Smo(P) we have M(0φ+, lφ)

and M *(1<£>, 0φ+) from Proposition 5 and its dual and 0φ+ V lφ = 1
from Proposition 11. Furthermore we have successively

Xφ — Xφφ+φ — Xφφ+φ+φ — (x V 0^>+) Λ lφ — Xφoφ+,ιφ

COROLLARY 1. For a lattice P the following conditions are
equivalent:

( i ) φ2 = φeSTE0(P)nSDTR0{P).

(ii) 0φ+ v l φ = l, jlffa, lςp), M*(», 0^+) /or all x in P and

COROLLARY 2. For a lattice P the following conditions are
equivalent:

( i ) P is modular complemented.
(ii) For every x in P there is φl = φx£ STR0(P)Γ\SDTR0(P) such

that lφz •=• x.

(iii) For every x in P there is φl — φx £ STB0(P) ΓΊ SΏTB0(P) such
that Oφi = x.

(iv) P is isomorphic to the lattice of left annihilating ideals

of sTB0(P) n sD,R0{P).

Proof. All equivalences are immediate except those with (iv)
which follow from paragraph 3 of [7].

The author wishes to thank Prof. D. J. Foulis for his help and
encouragement.
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