
PACIFIC JOURNAL OF MATHEMATICS
Vol. 20, No. 2, 1967

A HELLINGER INTEGRAL REPRESENTATION FOR
BOUNDED LINEAR FUNCTIONALS

JAMES R. WEBB

The function space considered is that consisting of the
complex-valued, quasicontinuous functions on a real interval
[a, 6], anchored at α, and having the LUB norm. It is shown
that each bounded linear functional on this Banach space has
a Hellinger integral representation. A formula for the norm
of the functional is given in terms of the integrating functions
involved in its representation. A new existence criterion for
the Hellinger integral is uncovered on the way to the repre-
sentation theorem.

2* Definitions* In this section certain definitions and notational
conventions are adopted for use in the succeeding sections. Throughout
the paper, [α, δ] will denote a given interval and the word function
will mean map from [a, h] into the complex numbers.

DEFINITION 2.1. If c is any number in (α, δ], then Rc denotes a
function such that Rΰ(t) = 0 if t is in [α, c) and Rΰ(t) = 1 if c S t <* b.
If c is in [α, b), then Lc denotes a function such that Le(t) = 0 if
a S t 5ϊ c and Lΰ(t) = 1 is t is in (c, δ]. The functions Lc and Rc are
called unit step functions. A linear combination of unit step functions
is called a step function. Notice that each step function vanishes at a.

DEFINITION 2.2. We now specify the function space, Q0[a, δ],
which plays the central role. Its elements are the quasicontinuous
functions anchored at a and they may be defined in two ways. First,
Q0[a, b] is the set of all functions which vanish at a and which have
a limit from the right at each t in fα, δ) and a limit from the left at
each t in (a, 6], Second, let B[a, b] be the Banach space of bounded
functions, with LUB norm. Then Q0[a,b] is the closure, in B[a,b], of
the linear space of all step functions. So Q0[<OL, δ] is a Banach space
with norm |]£c|| = LUB\x(t)\ for all t in [α, δ]. Also, each bounded
linear functional on Q0[α, δ] is determined by its values on the step
functions, since the latter form a dense linear subspace.

For proof of the equivalence of these two formulations of QQ[a9 δ],
see [1, Lemma 4.16],

DEFINITION 2.3. Suppose g is any subset of [a, δ]. If x is a
function, then xg denotes a function such that xg(t) = x(t) if t is in g
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and xg(t) = 0 if t is in [α, h] but not in g. If F is a linear functional
defined on QQ[a, 6] and it is true that xg is in Q0[α, 6] for each x in
Q0[α, 6], then Fg denotes a linear functional such that Fg(x) = F(α?̂ )
for each x in Qo[^, b].

DEFINITION 2.4. "v has bounded slope variation with respect to
u" means that v is a function, u is a real-valued, increasing function,
and there exists a nonnegative number B such that if {tp}%=0 is a
subdivision of [α, 6] with n > 1, then

Σ
- v(tv_t)

u(tp) - u(tp_x)

The least such number 5 is denoted by Vh

a{dv\du) and is called the
slope variation of v with respect to u over [α, &].

DEFINITION 2.5. Suppose each of M, V, and w is a function and u
dwdv/du exists" means that

S a

dwdv/du is a number and for each positive number ε there exists a
a

subdivision D of [α, δ] such that if {ίp}p=0 is any refinement of D then

t)1 [v(tP) - v(tp-

du p-i u(tp) — u

Clearly, this integral has a unique value.

<

DEFINITION 2.6. If u is an increasing function and v is a function
and c is in [a, b) then "D^v(c) exists" means that

limit

exists and equals D£v(c). The notation D~v(c) is used in a corre-
sponding manner for numbers c in (α, &].

3* Lemmas* This section contains results which are used in the
proofs given for theorems in § 4.

LEMMA 3.1. If n is an integer greater than 2 and ko,ku ',kn

is a sequence of complex numbers and eu ez, , en is a sequence of
positive real numbers then

Σ
p=l

*^Ό

— > i e,
& . -

Σ<
ς = l

~ fcp_!

n-l

q = l

+
n—2

Σ
ϊ)-rl ^ 0

23+1
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Proof by induction. For the case n = 3,

329

ίl/3 rC2 1 Γv2 Γv\ I~C] A/Q

fv2 ΓCQ Ci ΓCQ

— k{

But by the triangle inequality, the sum of the first two terms of the
right-hand member is greater than or equal to

(k3 - k0) - (k2 - k0) _ (k2 - kQ) — (h — k0)

e3 e2

{h-

(k2 —

e^ + e2)

e1 + e2 +
e3 ez(ex + β2)

Thus it may be seen that the conclusion is true for this case.
For the final step in the induction we begin by noting that

Σ

w + l "^0 " ' w

is true provided the last term of the left-hand member is greater than
or equal to the sum of the last term of the right-hand member and

But this is true provided the sum of the last term of the left-hand
member and

Σ K-

Σ< Σ<

is greater than or equal to the last term of the right-hand member.
This last sum, is, by the triangle inequality, greater than or equal
to
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fΰ0) (fΰn (fΰn f€Q)

@n + l

n-l

(K - h) Σ
l

(kn - k0)

Σ eq

Thus each of the inequalities is true. Hence Lemma 3.1.

LEMMA 3.2. If n is an integer greater than 2 and ko,ku ' 9kn

is a number sequence and s0, sl9 , sn is an increasing real number
sequence, then

f l ftp ftp

Sp

ftp + \ fto ftp ftQ

Sp+1 S o Sp SQ

This result follows immediately from Lemma 3.1 by the transfor-
mation: sp — sp_x = ep for p = 1, 2, , n.

LEMMA 3.3. If v has bounded slope variation with respect to
u then D~v(t) exists for each t in (α, b] and D+v(t) exists for each
t in [a, b).

Proof. Suppose c is in [α, b) and limitί_>β+ (v(t) — v(c))/(u(t) — u{c))
does not exist. Then there exists a positive number ε such that if r
is in (c, b) then there exists a number s in (c, r) for which

v(r) v(c)

u(r) — u(s) —
^ ε .

I t may be seen, then, that if n is an integer greater than 2 there
exists an increasing number sequence s0, s1? « ,s % with sQ = c and
each term in [c, 6] such that

Σ
l

v(sp+1) - _ v(sp) -
(n -

i) - U(C) U(SP) — U(C)

But from this inequality and Lemma 3.2 it follows that

— v(Sp) _ v(sp) — v(sp
n-l
V

u(sp+1) - u(sp) u(sp) - u(sp^)
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Since there exists an integer n for which (n — l)ε > Vϊ(dv/du), this
is a contradiction. Hence D+v(c) exists for each c in [α, b). An
argument similar to that just given shows that D~v(c) exists for
each c in (a, b]. Hence Lemma 3.3.

LEMMA 3.4. Suppose v has bounded slope variation with respect

S δ

dRtdv/du exists and is equal to D~v(t).
dLtdv/du exists and is equal to D+v(t).

a

This lemma follows readily from Lemma 3.3 and the observation
that, in each of the two equations implied by Lemma 3.4, each ap-
proximant for the right-hand member is an approximant for the left-
hand member.

LEMMA 3.5. // v has bounded slope variation with respect to u
then the functional Fy given by

F(x) =

is linear on its domain, the dv/du-integrahle functions x, and these
form a linear space.

Proof of lemma is not given.

LEMMA 3.6. If S is a step function and v has bounded slope
variation with respect to u then

Ϊ
dSdv exists.

du

This lemma follows from Definition 2.5 and Lemmas 3.4 and 3.5.

LEMMA 3.7. If a normed linear space A may be written as a
direct sum A — B 0 C of two of its subspaces in such a way that

|| o || = Max {|| Prx(α) ||, ||Pr2(α)||}

for each a in A, then

\\F\\ = \\FoPTl\\ + | | F o P r 2 | | ,

for each bounded linear functional F on A.

Proof of this lemma is not given.
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LEMMA 3.8. Suppose h is subset of [α, b] and f and g are
mutually exclusive subsets of h whose union is h. Suppose, moreover,
that if x is any function in Q0[a, 6], then each of xf, xg, and xh is
in Q0[a, &]. If F is a bounded linear functional from Q0[a, b] then
each of Ff, Fg, and Fh is a bounded linear functional and

\\Ff\\ + \\Fg\\ = \\Fh\\<,\\F\\.

This lemma is a mere application of Lemma 3.7.

4* Theorems* In this section a representation for the bounded
linear functionals on QQ[a, b] in terms of the Hellinger integral is
developed and a formula for their norms is given.

THEOREM 4.1. If % is in QQ[a, b] and v has bounded slope vari-

ation with respect to u, then \ dxdv/du exists and

Proof. Let Sί9 S2, S3, be a sequence of step functions such
that \\Sp — x\\<l/p if p is a positive integer. Suppose n is an
integer greater than 1, {tP}p=0 is a subdivision of [α, b] and q is a
positive integer. Then, using summation by parts,

£ [Sq(tP) - Sq(t9^)] [v(tp) - v(tp^)]

U(tp) -

(t
u(tp+1) - u(tp) u(tp) -

u(b) - u(tn^)

It is thus evident that the left-hand member of this equation is, in
absolute value, less than or equal to

a du ifyi^

From this and Lemmas 3.3 and 3.6 one may conclude that

<>\\St\\\v!%L+\D.-v(b)\}
I du )

(It is to be noted that this inequality holds true with Sq replaced by
any other function in QQ[a, b] for which the integral exists). If m is
an integer greater than g, then, since | |S g — S w | | < 2/g, it follows that
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d(Sq - SJdv
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Γ-
Ja

du

Consequently, the sequence

Q

[h dSqdv\~
dll ίq

is a Cauchy sequence and so has a sequential limit. Call this limit

S δ

dxdv/du tend, under
a

refinement, to J.
There exists a number B such that

7

du

v(b) - v(t)

u(b) - u(t)
<B

for each t in [α, 5). Since || x — Sp || < 1/p for p = 1, 2, , it follows
that

for any subdivision {sJJLo of [α, δ] and any positive integer p. For
each positive integer p there exists a subdivision Dp of [α, 6] such
that if {sJJLo is any refinement of Z^ then

V dSβv

Since

r
Ja

dSpdv
du

- I

du

M f or p = 1, 2, •

it follows that, for each positive integer p,

- 45

provided {ŝ JLo is a refinement of Dp, Hence I dxdv/du exists and its
J α

value is /. That the integral satisfies the inequality of the conclusion
may be seen from the parenthetical note above. Hence Theorem 4.1.

THEOREM 4.2. Suppose v has bounded slope variation with re-
spect to u and F is the functional defined by

S 5

a

dxdv
du
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for each x in Q0[a, &]. Then F is a bounded linear functional whose
norm is Vh

a{dv\du) + \D~v(b)\.

Proof. It is clear from Lemma 3.5 and Theorem 4.1 that F
is linear and bounded and that the norm of F does not exceed
Va(dv/du) + \D~v(b)\. We now construct a function z in QQ[a,b] such
that || 3 || = 1 and F(z) equals the sum of \D~v(b)\ and the approxi-
mant for V!&dv/du) corresponding to a preassigned subdivision of [α,δ].

Suppose {tP}%0 is a subdivision of [a, b] with n > 1. Define dp,
for p = 1, 2, . . . , (n - 1), by

* u(tp+1) - u(tp) u(tP) -

if this expression is not zero and dp = 1 if the expression is zero.
For p = 1,2, " , (n — 1), let zp be a function such that

zp(t) = i

u(t) - u(tp_x) I

u{tp) - dp

κ ) - u(t) I dp

n) - u(tP)

for t in

for ί in [tp, tp+1]

0 for ί in [a, b] but not in [tp_u tp+1] .

If D~v(b) = 0, let ^ - Rb. If D"^(δ) ^ 0 let zn = (Dϊv(b)/\D;v(b)\)Rb.
Finally, let z = 2^ = 1 zp.

Each of 2;, ̂ , z2, * *, zn is in Qo[^? &] ^^d it may be verified that

)a dn L

for p = 1, 2, , (n — 1) and

a dU

v̂

+i) - u(tp) u(tp) -

= \D~v(b)\. Hence,

+ I D-v(b) ί

If ί is in [a, ί j , then

— u(a)
^ 1 .

If ί is in [ί%_i, 6), then

^ 1 .

If 39 is one of 1, 2, , (n — 2) and ί is in [tp, tp+1] then
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U(t) - u(tp) 1 dp+11 _ u(tp+ι) - U(t) I dp

u(tp+1) - u(tp) d'35+1 u(tp+1) - u(tp) dp

<: 1 .

And I 2(6) I = 1. Hence | | s | | = 1.
It may be inferred from the foregoing that the norm of F is not

less than V£(dv/du) + \D~v(b)\. Hence Theorem 4.2.

THEOREM 4.3. If F is a bounded linear functional from Q0[a, b]
then there exist two functions u and v, with v having bounded slope
variation with respect to u, such that

F(x) = dxdv
du

for each x in Q0[a, b].

Proof. Suppose c is in (α, δ]. If r and s are numbers such that
a < r < s < c, then, by Lemma 3.8, || F{rte) || ^ || F{s,c) || ^ 0. Conse-
quently, limitf_c_ || JFU,C) || exists. Let λ denote the function such
that λ(c) = l imit^^ || F{Uc) || for each number c in (α, b] and λ(α) = 0,
Similarly, let p denote the function such that p(c) = limitt_»c+ \\F{c,t) \\
for each c in [α, δ) and p(b) — 0.

Now it may be seen from the definition of λ and Lemma 3,8 that
if {tp}%Q is a subdivision of [α, 6], then

A similar statement is true of p. Thus there exists a countable
subset M of [a, b] such that if t is in [a, b] but not in M then
χ(t) = p(t) = 0.

Let u denote an increasing function such that (1) if t is in (α, b)
and X(t) > 0, then u(t) - u(t — ) > 0, and (2) if t is in [α, 6) and
/θ(ί) > 0, then u(t + ) — u(t) > 0. For each t in [α, 6] let ut denote
the function such that ut(s) = 0 for a <; s ^ ί and πt(s) = π(s) — ^(ί)
for t ^ s ^b. Let i; denote the function such that v(t) = —F(ut) for
each t in [α, 6],

Suppose {ίj^o is a subdivision of [α, b] and ̂  > 1. Then, by the
definition of v and the linearity of F there exists a number sequence
{dj»}S=ϊ> with I dp I = 1 for p = 1, 2, , (w — 1), such that

n-1

y
ut — ut Λ
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It may be verified that the norm of the function which is the argu-
ment of F in the right-hand member of the equation is 1. Conse-
quently the left-hand member is less than or equal to | | . F | | . Thus it
may be inferred that v has bounded slope variation with respect to u.

Let G denote the bounded linear functional such that

a

dxdv
du

for each x in Q0[a, 6]. Suppose c is in (α, b]. By Lemma 3.4

G(Re) = D-v(c)

G(Re) = limit v(c) ~ v(t)

*->e~ U(C) — U(t)

= limit F( U'~U' ) .
ί-»c- V u(c) — u(t) /

For t in (α, c), one has

ut(s) - uc(s)

u(c) — u(t)
— JXC{S)

0 if s is in [α, t]

u(c) — u(t)

0 if c < s ^ 6

in (ί, c)

so that

v(c) — v(t)

u(c) — u(t)
- F(RC) /

^ \\F(^ II J-1 (t,c)

V u(c) — u(t)

u(c-) — u(t)

u(c) — u(t)

Now limit^^ || F ( ί f β ) || = λ(c). But if λ(c) > 0, then
so that

limit

So, whether λ(c) is positive or zero, one has that

- u(c-) > 0

limit v(c) — v(t)

u(c) — u(t)
r\

Hence F(Re) = G(Re) for each c in (α, 6]. A similar argument shows
that F(LC) = G{LC) for each c in [α, b). Therefore F(S) = G(S) for
every step function S. Thus, F = G. Hence Theorem 4.3. Clearly,
the norm of F is given by the expression appearing in Theorem 4.2.
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