ON THE CONVERGENCE OF QUASI-HERMITE-FEJÉR INTERPOLATION

K. K. Mathur and R. B. Saxena

The present paper deals with the convergence of quasi-Hermite-Fejér interpolation series $\left\{S_{n}(x, f)\right\}$ satisfying the conditions
$S_{n}(1, f)=f(1), S_{n}\left(x_{n \nu}, f\right)=f\left(x_{n \nu}\right) 1 \leqq \nu \leqq n, S_{n}(-1, f)=f(-1)$
and

$$
S_{n}^{\prime}\left(x_{n \nu}, f\right)=\beta_{n \nu} \quad 1 \leqq \nu \leqq n,
$$

where $\beta_{n \nu}$'s are arbitrary numbers; $x_{n 0}=1, x_{n, n+1}=-1$ and $\left\{x_{n v}\right\}$ are the zeros of orthogonal polynomial system $\left\{p_{n}(x)\right\}$ belonging to the weight function $\left(1-x^{2}\right)^{p}|x|^{q}, 0<p \leqq \frac{1}{2}$, $0<q<1$ (which actually vanishes at a point in the interval $[-1,+1])$. Further it has been proved that quasi-conjugate pointsystem $\left\{X_{n \nu}\right\}$ (similar to Fejér conjugate pointsystem) belonging to the fundamental pointsystem $\left\{x_{n \nu}\right\}$ lie everywhere thickly in the interval $[-1,+1]$.

Let there be given a point system

$$
\begin{align*}
1=x_{n 0}>x_{n 1}>x_{n 2}>\cdots>x_{n n}>x_{n, n+1}= & -1 \\
& (n=1,2, \cdots) \tag{1.1}
\end{align*}
$$

on the real axis and arbitrary real numbers

$$
\begin{gather*}
y_{n 0}, y_{n 1}, y_{n 2}, \cdots, y_{n n}, y_{n, n+1}, \\
y_{n 1}^{*}, y_{n 2}^{*}, \cdots, y_{n n}^{*} . \tag{1.2}
\end{gather*}
$$

Then setting

$$
\begin{equation*}
\omega_{n}(x)=c_{n}\left(x-x_{n 1}\right)\left(x-x_{n 2}\right) \cdots\left(x-x_{n n}\right) \quad\left(c_{n} \neq 0\right) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{n \nu}(x)=\frac{\omega_{n}(x)}{\omega_{n}^{\prime}\left(x_{n \nu}\right)\left(x-x_{n \nu}\right)}(\nu=1,2, \cdots, n), \tag{1.4}
\end{equation*}
$$

the quasi-Hermite-Fejér interpolation polynomial $S_{n}(x)$ [6] is given by

$$
\begin{equation*}
S_{n}(x)=\sum_{\nu=0}^{n+1} y_{n \nu} r_{n \nu}(x)+\sum_{\nu=1}^{n} y_{n \nu}^{*} \rho_{n \nu}(x) \tag{1.5}
\end{equation*}
$$

where $r_{n \nu}(x)$ and $\rho_{n \nu}(x)$ are called the fundamental polynomials of the 1st and the second kind of quasi-Hermite-Fejér interpolation.

For the fundamental polynomials of the 1st kind we have

$$
\begin{align*}
r_{n 0}(x) & =\frac{1+x}{2} \cdot \frac{\omega_{n}(x)^{2}}{\omega_{n}(1)^{2}}, \\
r_{n, n+1}(x) & =\frac{1-x}{2} \cdot \frac{\omega_{n}(x)^{2}}{\omega_{n}(-1)^{2}}, \tag{1.6}\\
r_{n \nu}(x) & =\frac{1-x^{2}}{1-x_{n \nu}^{2}} v_{n \nu}(x) l_{n \nu}(x)^{2}, \quad(\nu=1,2, \cdots n)
\end{align*}
$$

where

$$
\begin{align*}
v_{n \nu}(x) & =1+c_{n \nu}\left(x-x_{n \nu}\right), \tag{1.7}\\
c_{n \nu} & =\frac{2 x_{n \nu}}{1-x_{n \nu}^{2}}-\frac{\omega_{n}^{\prime \prime}\left(x_{n \nu}\right)}{w_{n}^{\prime}\left(x_{n \nu}\right)} \quad(\nu=1,2, \cdots, n)
\end{align*}
$$

and those of second kind

$$
\begin{equation*}
\rho_{n \nu}(x)=\frac{1-x^{2}}{1-x_{n \nu}^{2}}\left(x-x_{n \nu}\right) l_{n \nu}(x)^{2} \quad(\nu=1,2, \cdots, n) . \tag{1.9}
\end{equation*}
$$

The polynomials $S_{n}(x)$ are the unique polynomials of degree $\leqq 2 n+1$ which satisfy the requirements:

$$
\begin{array}{ll}
S_{n}\left(x_{n \nu}\right)=y_{n \nu} & \nu=0,1,2, \cdots, n+1 \tag{1.10}\\
S_{n}^{\prime}\left(x_{n \nu}\right)=y_{n \nu}^{*} & \nu=1,2, \cdots, n .
\end{array}
$$

From the unicity of the polynomials $S_{n}(x)$ it follows that for each polynomial $\Pi(x)$ of degree $\leqq 2 n$

$$
\begin{equation*}
\Pi(x)=\sum_{\nu=0}^{n+1} \Pi\left(x_{n \nu}\right) r_{n \nu}(x)+\sum_{\nu=1}^{n} \Pi^{\prime}\left(x_{n \nu}\right) \rho_{n \nu}(x) \tag{1.11}
\end{equation*}
$$

holds. For the special case $\Pi(x) \equiv 1$, we have

$$
\begin{equation*}
\sum_{\nu=0}^{n+1} r_{n \nu}(x) \equiv 1 \tag{1.12}
\end{equation*}
$$

2. Let $f(x)$ be continuous in $-1 \leqq x \leqq 1$ and $f\left(x_{n \nu}\right)$ its values at the points $x_{n \nu}(\nu=0,1,2, \cdots, n+1)$. Further let $y_{n \nu}^{*}(\nu=1,2, \cdots n)$ be arbitrary real numbers then the polynomials $S_{n}(x)$ in (1.5) written as

$$
\begin{equation*}
S_{n}(x, f)=\sum_{\nu=0}^{n+1} f\left(x_{n \nu}\right) r_{n \nu}(x)+\sum_{\nu=0}^{n} y_{n \nu}^{*} \rho_{n \nu}(x) \tag{2.1}
\end{equation*}
$$

are called the generalised quasi-Hermite-Fejér interpolation polynomials. For $y_{n \nu}^{*}=0$, they are called quasi-step parabolas. In this case for $\omega_{n}(x)=P_{n}(x)$, where $P_{n}(x)$ stands for the nth Legendre polynomial,
the interpolatory polynomials

$$
\begin{align*}
R_{n}(x)= & f(1) \frac{1+x}{2} P_{n}(x)^{2}+f(-1) \frac{1-x}{2} P_{n}(x)^{2} \\
& +\sum_{\nu=1}^{n} f\left(x_{n \nu}\right) \frac{1-x^{2}}{1-x_{n \nu}^{2}}\left(\frac{P_{n}(x)}{P_{n}^{\prime}\left(x_{n \nu}\right)\left(x-x_{n \nu}\right)}\right)^{2} \tag{2.2}
\end{align*}
$$

have been obtained by E. Egerváry and P. Turán [2]. They have shown that if $f(x)$ is a function continuous in the closed interval $[-1,1]$, then the polynomials in (2.2) converge uniformly to $f(x)$ in $[-1,1]$. The convergence of the polynomials $S_{n}(x, f)$ in (2.1) constructed on the roots of $P_{n}(x)$ has been investigated by P . Szász [6]. He has shown that assuming $f(x)$ to be continuous and $\left|y_{n \nu}^{*}\right|<\Delta$, where Δ is a constant independent of n and ν the series $S_{n}(x, f)$ in (2.1) converges uniformly to $f(x)$ in $[-1,1]$.

In this paper we answer the question of P. Turán for the quasi-Hermite-Fejér interpolation polynomials $S_{n}(x, f)$ which Balázs has answered [1] in the case of Hermite-Fejér interpolation polynomials.

Does there exist in $[-1,1]$ an orthogonal polynomial system $\left\{g_{n}(x)\right\}$ whose weight function vanishes some where in this interval while the series $\left\{S_{n}(x, f)\right\}$ in (2.1) constructed on the roots of $\left\{g_{n}(x)\right\}$ converges uniformly to the continuous function $f(x)$ in the closed interval $[-1,1]$ provided $\left\{y_{n}^{*}\right\}$ are bounded?

The answer to this question is explained in our Theorem 1.
3. Similar to the normal and strongly normal point system due to L. Fejér [3, 4], the notion of quasi-normal and strongly quasi-normal point systems have been defined by Szász [6]. Thus an infinite sequence of point system,

$$
\begin{equation*}
x_{n 1}, x_{n 2}, \cdots, x_{n n}, \quad(n=1,2, \cdots) \tag{3.1}
\end{equation*}
$$

lying in $-1<x<1$, is called strongly quasi-normal if by the notation of (1.3) and (1.7)

$$
\begin{align*}
& 1+c_{n \nu}\left(x-x_{n \nu}\right) \geqq \rho>0, \quad-1 \leqq x \leqq 1 \tag{3.2}\\
&(\nu=1,2, \cdots, n ; n=1,2, \cdots)
\end{align*}
$$

where ρ is a positive number independent of x, ν and n.
If $X_{n \nu}$ indicates a zero of $v_{n \nu}(x)$ in (1.7), then

$$
\begin{equation*}
X_{n \nu}=x_{n \nu}+\frac{1}{c_{n \nu}}, \quad \nu=1,2, \cdots, n . \tag{3.3}
\end{equation*}
$$

These points will be called quasi-conjugate points similar to the conjugate points due to L. Fejér [4]. The quasi-conjugate points lie outside $[-1,1]$ when the fundamental point system is quasi-strongly
normal. In this connection we shall answer another question of P. Turán for the case of quasi-Hermite-Fejér interpolation polynomials which Balázs [1] has answered for the Hermite-Fejér interpolation polynomials.

Is it possible to assume in the interval $[-1,1]$ a fundamental point system whose quasi-conjugate points (3.3) lie thickly in $[-1,1]$ and the interpolation series $\left\{S_{n}(x, f)\right\}$ belonging to this fundamental point-system converges uniformly to the continuous function $f(x)$ in $[-1,1]$ provided the numbers $\left\{y_{n \nu}^{*}\right\}$ are bounded.

In Theorem II we answer this in affirmative.
4. K. V Laščenov [5] has defined orthogonal polynomials

$$
p_{n}^{(p, q)}(x)=\alpha_{n} x^{n}+\alpha_{n-2} x^{n-2}+\cdots, \quad \alpha_{n} \neq 0, p>-1, q>-1
$$

over the interval $[-1,1]$ with respect to the weight function $\left(1-x^{2}\right)^{p}|x|^{q}$ which are constant multiples of

$$
p_{n}^{(p, q)}(x)^{1}=\left\{\begin{array}{l}
P_{m}^{(p, q-1 / 2)}\left(2 x^{2}-1\right), n=2 m \tag{4.1}\\
x P_{m}^{(p, q+1 / 2)}\left(2 x^{2}-1\right), n=2 m+1
\end{array}\right.
$$

$P_{n}^{(\alpha, \beta)}(t)$ being the classical Jacobi polynomial of degree n with parameters α and β satisfying the differential equation

$$
\begin{equation*}
\left(1-t^{2}\right) y^{\prime \prime}+[\beta-\alpha-(\alpha+\beta+2) t] y^{\prime}+n(n+\alpha+\beta+1) y=0 \tag{4.2}
\end{equation*}
$$

The position of the roots of (4.1) is given by

$$
\begin{array}{r}
-1<x_{n m+1}<x_{n m+2}<\cdots<x_{n n}<0<x_{n 1}<\cdots<x_{n m}<1 \tag{4.3}\\
\\
\text { for } n=2 m
\end{array}
$$

and
(4.4) $-1<x_{n m+2}<x_{n m+3}<\cdots<x_{n n}<0=x_{n m+1}<x_{n 1}<\cdots<x_{n m}<1$ for $n=2 m+1$.

Since the roots are symmetrical, we have

$$
\begin{equation*}
x_{n \nu}+x_{n, n+1-\nu}=0, \nu=1,2, \cdots[n / 2] \tag{4.5}
\end{equation*}
$$

We shall prove the following:
Theorem 1. The quasi-Hermite-Fejér interpolation series $\left\{S_{n}(x, f)\right\}$, constructed on the point system

$$
\begin{equation*}
1=x_{n 0}, x_{n 1}, \cdots x_{n, n-1}, x_{n, n}, x_{n n+1}=-1 \quad n=1,2, \cdots \tag{4.5}
\end{equation*}
$$

[^0]where $x_{n \nu}(\nu=1,2, \cdots, n)$ are the zeros of the orthogonal polynomial system belonging to the weight function ${ }^{2}$
$$
\left(1-x^{2}\right)^{p}|x|^{q} \quad 0<p \leqq \frac{1}{2}, 0<q<1,
$$
converges uniformly to the continuous function $f(x)$ in $[-1,1]$ when $\left|y_{n \nu}^{*}\right| \leqq c n^{\eta}, 1>\delta / 2>\eta \geqq 0$ and $\delta=\min (2 p, q)$.

Theorem 2. The quasi-conjugate points (3.3)

$$
\begin{equation*}
x_{n \nu}=x_{n \nu}+\frac{1}{c_{n \nu}} \quad \nu=1,2, \cdots n ; n=1,2, \cdots, \tag{4.6}
\end{equation*}
$$

belonging to the fundamental point system (4.5) lie thickly in the interval $[-1,1]$.
5. Preliminaries. We shall use some well-known facts about Jacobi polynomials. We have

$$
\begin{align*}
P_{m}^{(\alpha, \beta)}(1) & =\binom{m+\alpha}{m} \tag{5.1}\\
P_{m}^{(\alpha, \beta)}(-1) & =(-1)^{m} P_{m}^{(\alpha, \beta)}(1)=(-1)^{m}\binom{m+\beta}{m} \tag{5.2}\\
P_{m}^{(\alpha, \beta)}(t) & =(-1)^{m} P_{m}^{(\beta, \alpha)}(-t) . \tag{5.3}
\end{align*}
$$

Further we have for $-1<x<1$

$$
\begin{equation*}
P_{m}^{(\alpha, \beta)}(x)=O\left(n^{-1 / 2}\right), \alpha, \beta>-1 \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
P_{m}^{(\alpha+1, \beta)}(x)=\frac{2}{(2 m+\alpha+\beta+2)} \frac{(m+\alpha+1) P_{m}^{(\alpha, \beta)}(x)-(m+1) P_{m}^{(\alpha, \beta)}(x)}{(1-x)} \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d t} P_{m}^{(\alpha, \beta)}(t)=\frac{1}{2}(m+\alpha+\beta+1) P_{m-1}^{(\alpha+1, \beta+1)}(t) . \tag{5.6}
\end{equation*}
$$

Further let $t_{\nu}=\cos \theta_{\nu}$ be the root of the polynomial

$$
P_{m}^{(\alpha, \beta)}(t)=P_{m}^{(\alpha, \beta)}(\cos \theta)
$$

then for $-1 / 2 \leqq \alpha \leqq 1 / 2,-1 / 2 \leqq \beta \leqq 1 / 2$,

$$
\begin{equation*}
\frac{2 \nu-1}{2 m+1} \pi \leqq \theta_{\nu} \leqq \frac{2 \nu}{2 m+1} \pi \quad(\nu=1,2, \cdots, m) \tag{5.7}
\end{equation*}
$$

${ }^{2}\left(1-x^{2}\right)^{p}|x|^{q}$ for $0<p \leqq \frac{1}{2}, 0<q<1$, actually vanishes at $x=0$.

For $0<\theta_{2} \leqq \pi / 2$ we have

$$
\begin{equation*}
P_{m}^{\prime(\alpha, \beta)}\left(\cos \theta_{\nu}\right) \geqq c_{1} \nu^{-\alpha-3 \mid 2} m^{\alpha+2} \tag{5.8}
\end{equation*}
$$

where c_{1} is positive numerical constant.
6. In this section we shall obtain certain estimations for the polynomial $p_{n}(x)$.

We shall first prove:
Lemma 6.1. For $-1 \leqq x \leqq 1$ we have

$$
\begin{equation*}
\left(1-x^{2}\right) p_{n}^{2}(x)=0\left(n^{-1}\right) . \tag{6.1}
\end{equation*}
$$

Proof of this lemma follows at once from (4.1) using (5.4).
Lemma 6.2. For the roots $x_{n \nu}\left(\nu=1,2, \cdots,\left[\frac{n}{2}\right], n=1,2,\right) \cdots$ of the polynomial $p_{n}(x)$, we have

$$
\begin{equation*}
x_{n \nu}^{2}\left(1-x_{n \nu}^{2}\right) \geqq \frac{\nu^{2}}{4 n^{2}} . \tag{6.2}
\end{equation*}
$$

Proof. Let $2 x_{n \nu}^{2}-1=\cos \theta_{n \nu}$, then $\left(1-x_{n \nu}^{2}\right)=\sin ^{2} \theta_{n \nu} / 2$, and $x_{n \nu}^{2}=\cos ^{2} \theta_{n \nu} / 2$. Hence

$$
x_{n \nu}^{2}\left(1-x_{n \nu}^{2}\right)=\frac{4}{4} \cos ^{2} \frac{\theta_{n \nu}}{2} \sin ^{2} \frac{\theta_{n \nu}}{2}=\frac{1}{4} \sin ^{2} \theta_{n \nu} .
$$

But from (5.7) we have

$$
\theta_{n \nu} \geqq \frac{\nu+\frac{1}{2}}{n+\frac{1}{2}} \pi>\frac{\nu \pi}{2 n}
$$

which gives

$$
\left|\sin \theta_{n \nu}\right|>\left|\sin \frac{\nu \pi}{2 n}\right|>\frac{\nu}{n}
$$

Therefore

$$
x_{n \nu}^{2}\left(1-x_{n \nu}^{2}\right)=\frac{1}{4} \sin ^{2} \theta_{n \nu}>\frac{\nu^{2}}{4 n^{2}} .
$$

7. We shall need the following lemmas for the estimation of the fundamental polynomials of the first kind.

Lemma 7.1. Let $x_{n \nu}$ be a root of $p_{n}(x)$, then
(i) $\frac{p_{n}^{\prime \prime}\left(x_{n \nu}\right)}{p_{n}^{\prime}\left(x_{n \nu}\right)}=\frac{2}{x_{n \nu}}\left[(p+1) \frac{x_{n \nu}^{2}}{\left(1-x_{n \nu}^{2}\right)}-\frac{q}{2}\right]$
except when $n=2 m+1$, and $\nu=m+1$. In this case we have
(ii) $\frac{p_{n}^{\prime \prime}\left(x_{n \nu}\right)}{p_{n}^{\prime}\left(x_{n \nu}\right)}=0$.

Proof. It follows from (4.1) by differentiating with respect to x, for $n=2 m$

$$
\begin{equation*}
\frac{p_{n}^{\prime \prime}\left(x_{n \nu}\right)}{p_{n}^{\prime}\left(x_{n \nu}\right)}=4_{n \nu}\left\{\frac{\frac{d^{2}}{d t^{2}} P_{m}^{(p,(q-1 / 2)}(t)}{\frac{d}{d t} P_{m}^{(p,(q-1 / 2)\rangle}(t)}\right\}_{t=2 x_{n \nu}^{2}-1}+\frac{1}{x_{n \nu}} \tag{7.1}
\end{equation*}
$$

By the substitution $t=2 x^{2}-1, \alpha=p, \beta=q-1 / 2$, and $n=m$, the differential equation (4.2) gives

$$
\begin{align*}
& \left\{\frac{\frac{d^{2}}{d t^{2}} P_{m}^{(p,(q-1 / 2)}(t)}{\frac{d}{d t} P_{m}^{(p,(q-1 / 2)}(t)}\right\}_{t=2 x_{n \nu}^{2}-1} \tag{7.2}\\
& \quad=\frac{1}{4 x_{n \nu}^{2}\left(1-x_{n \nu}^{2}\right)}\left[-2(p+1)+(2 p+q+3)\left(1-x_{n \nu}^{2}\right)\right]
\end{align*}
$$

Substituting (7.2) in (7.1) we get

$$
\begin{equation*}
\frac{p_{n}^{\prime \prime}\left(x_{n \nu}\right)}{p_{n}^{\prime}\left(x_{n \nu}\right)}=\frac{2}{x_{n \nu}}\left[(p+1) \frac{x_{n \nu}^{2}}{1-x_{n \nu}^{2}}-\frac{q}{2}\right] . \tag{7.3}
\end{equation*}
$$

If however, $n=2 m+1$ and $\nu \neq m+1$, then it follows on account of (4.1) and (4.4) that

$$
\begin{equation*}
\frac{p_{n}^{\prime \prime}\left(x_{n \nu}\right)}{p_{n}^{\prime}\left(x_{n \nu}\right)}=4 x_{n \nu}\left\{\frac{\frac{d^{2}}{d t^{2}} P_{m}^{(p,(q+1 / 2)}(t)}{\frac{d}{d t} P_{m}^{(p,(q+1 / 2))}(t)}\right\}_{t=2 x_{n \nu}^{2}-1}+\frac{3}{x_{n \nu}} \tag{7.4}
\end{equation*}
$$

But from (4.2) by putting $t=2 x^{2}-1, \alpha=p, \beta=q+1 / 2$ and $n=m$ we get

$$
\begin{align*}
& \left\{\begin{array}{l}
\left\{\frac{d^{2}}{d t^{2}} P_{m}^{(p,(q+1 / 2))}(t)\right. \\
\frac{d}{d t} P_{m}^{(p,(q+1 / 2))}(t)
\end{array}\right\}_{t=2 x_{n \nu}^{2}-1} \tag{7.5}\\
& \quad=-\frac{1}{4 x_{n \nu}^{2}\left(1-x_{n \nu}^{2}\right)}\left[-2(p+1)+(2 p+q+5)\left(1-x_{n \nu}^{2}\right)\right]
\end{align*}
$$

substituting (7.5) in (7.4) we get

$$
\begin{equation*}
\frac{p_{n}^{\prime \prime}\left(x_{n \nu}\right)}{p_{n}^{\prime}\left(x_{n \nu}\right)}=\frac{2}{x_{n \nu}}\left[(p+1) \frac{x_{n \nu}^{2}}{1-x_{n \nu}^{2}}-\frac{q}{2}\right] . \tag{7.6}
\end{equation*}
$$

In case $n=2 m+1$ and $\nu=m+1, x_{n \nu}=0$ on account of (4.4). But the polynomial $p_{n}(x)$ is an odd function of x, therefore $p_{n}^{\prime \prime}\left(x_{n \nu}\right)=0$ and in this case

$$
\begin{equation*}
\frac{p_{n}^{\prime \prime}\left(x_{n \nu}\right)}{p_{n}^{\prime}\left(x_{n \nu}\right)}=0 \tag{7.7}
\end{equation*}
$$

8. Estimation of the fundamental polynomials of the first kind.

Lemma 8.1. For $-1 \leqq x \leqq 1$, we have

$$
\begin{equation*}
\sum_{\nu=0}^{n+1}\left|r_{n \nu}(x)\right|=O(1) \tag{8.1}
\end{equation*}
$$

Proof. From (1.7), (1.8) and Lemma 7.1 we get for $1 \leqq \nu \leqq n$

$$
\begin{equation*}
v_{n \nu}(x)=1-\frac{2}{x_{n \nu}}\left\{\frac{p x_{n \nu}^{2}}{\left(1-x_{n \nu}^{2}\right)}-\frac{q}{2}\right\}\left(x-x_{n \nu}\right) \tag{8.2}
\end{equation*}
$$

From the representation (4.4) of $x_{n \nu}$'s it is clear that for $n=$ $2 m+1$, and $\nu=m+1, x_{n m+1}=0$. Whence from Lemma 7.1 (ii) and (1.7) it follows that

$$
\begin{equation*}
v_{n m+1}(x) \equiv 1 \tag{8.3}
\end{equation*}
$$

For $x=0$ it follows from (8.2) on account of $0<q<1$ and $0<p \leqq \frac{1}{2}$ that

$$
\begin{equation*}
v_{n \nu}(0)=1+\frac{2 p x_{n \nu}^{2}}{\left(1-x_{n \nu}^{2}\right)}-q \geqq 1-q>0 \tag{8.4}
\end{equation*}
$$

This inequality is also applicable on account of (8.3) when $n=$ $2 m+1$, and $\nu=m+1$. For $-1<x \leqq 0$ and $x_{n \nu} \leqq 0$ we have on
account of $v_{n \nu}\left(x_{n y}\right)=1$ and (8.4)

$$
\begin{equation*}
v_{n \nu}(x) \geqq 1-q>0 \quad(0<q<1) \tag{8.5}
\end{equation*}
$$

Since $v_{n \nu}(x)$ is a linear function in the interval $0 \leqq x<1$ it follows from $v_{n \nu}\left(x_{n \nu}\right) \equiv 1$ and $x_{n \nu} \geqq 0$ that

$$
\begin{equation*}
v_{n \nu}(x) \geqq 1-q>0 \quad \text { since } 0<q<1 \tag{8.6}
\end{equation*}
$$

We shall now prove the inequality (8.1) in the interval $-1<x \leqq 0$. In this interval $r_{n \nu}(x) \geqq 0$ for $x_{n \nu} \leqq 0$. Also $r_{n 0}(x)$ and $r_{n, n+1}(x)$ are positive. Hence from (1.12)

$$
\begin{align*}
\sum_{\nu=0}^{n+1}\left|r_{n \nu}(x)\right| & =\sum_{x_{n \nu} \leq 0}\left|r_{n \nu}(x)\right|+\sum_{x_{n \nu}>0}\left|r_{n \nu}(x)\right| \\
& =\sum_{x_{n \nu} \leq 0} r_{n \nu}(x)+\sum_{x_{n \nu}>0}\left|r_{n \nu}(x)\right| \tag{8.7}\\
& =1-\sum_{x_{n \nu}>0} r_{n \nu}(x)+\sum_{x_{n \nu} \nu 0}\left|r_{n \nu}(x)\right| \\
& \leqq 1+2 \sum_{x_{n \nu}>0}\left|r_{n \nu}(x)\right| .
\end{align*}
$$

On account of (8.2), (1.6) and (1.4) we obtain

$$
\begin{aligned}
& \sum_{x_{n \nu}>0}\left|r_{n \nu}(x)\right|=\sum_{x_{n \nu}>0} \frac{1-x^{2}}{1-x_{n \nu}^{2}}\left|1-\frac{2}{x_{n \nu}}\left\{\frac{p x_{n_{\nu}}^{2}}{1-x_{n \nu}^{2}}-\frac{q}{2}\right\}\left(x-x_{n \nu}\right)\right| \\
& \quad \times \frac{p_{n}^{2}(x)}{p_{n}^{\prime 2}\left(x_{n \nu}\right)\left(x-x_{n \nu}\right)^{2}} \\
& \quad \leqq \sum_{x_{n \nu}>0} \frac{1-x^{2}}{1-x_{n \nu}^{2}} \cdot \frac{p_{n}^{2}(x)}{p_{n}^{\prime 2}\left(x_{n \nu}\right)\left(x-x_{n \nu}\right)^{2}} \\
& \quad+2 p \sum_{x_{n \nu}>0} \frac{\left(1-x^{2}\right) p_{n}^{2}(x)}{\left|x_{n \nu}\right|\left(1-x_{n \nu}^{2}\right)^{2} p_{n}^{\prime 2}\left(x_{n \nu}\right)\left(x-x_{n \nu}\right)} \\
& \quad+(2 p+q) \sum_{x_{n \nu}>0} \frac{1-x^{2}}{\left(1-x_{n \nu}^{2}\right)} \frac{1}{\left|x_{n \nu}\right|} \cdot \frac{p_{n}^{2}(x)}{p_{n}^{\prime 2}\left(x_{n \nu}\right)\left|x-x_{n \nu}\right|} .
\end{aligned}
$$

Since $-1<x \leqq 0$ and $0<x_{n \nu}<1$, therefore $\left|x-x_{n \nu}\right|>\left|x_{n \nu}\right|$. Hence from (8.8),

$$
\begin{align*}
\sum_{x_{n \nu}>0}\left|r_{n \nu}(x)\right| \leqq & (1+2 p+q) \sum_{x_{n \nu}>0} \frac{1-x^{2}}{1-x_{n \nu}^{2}} \cdot \frac{1}{x_{n \nu}^{2}} \cdot \frac{p_{n}^{2}(x)}{p_{n}^{\prime 2}\left(x_{n \nu}\right)} \tag{8.9}\\
& +2|p| \sum_{x n_{\nu}>0} \frac{\left(1-x^{2}\right)}{\left(1-x_{n \nu}^{2}\right)^{2} x_{n \nu}^{2}} \frac{p_{n}^{2}(x)}{p_{n}^{\prime 2}\left(x_{n \nu}\right)} .
\end{align*}
$$

Owing to (4.1) we have

$$
p_{n}^{\prime}\left(x_{n \nu}\right)= \begin{cases}4 x_{n \nu} P_{m}^{\prime(p, 2(q-1 / 2))}\left(2 x_{n \nu}-1\right) & \text { for } n=2 m \tag{8.10}\\ 4 x_{n \nu}^{2} P_{m}^{\prime(p, 2(q+1 / 2))}\left(2 x_{n \nu}-1\right) & \text { for } n=2 m+1 .\end{cases}
$$

Thus for $n=2 m$, using (8.9) and (8.10); for n odd using (8.8), (8.10) and $x^{2}<\left(x-x_{n \nu}\right)^{2}$, we have

$$
\begin{align*}
& \sum_{x_{n \nu}>0}\left|r_{n \nu}(x)\right| \\
& \qquad \begin{array}{r}
\frac{1}{16}(1+4 p+q) \sum_{x_{n} \nu>0} \frac{\left(1-x^{2}\right)\left[P_{m}^{(p,(q-1 / 2))}\left(2 x^{2}-1\right)\right]^{2}}{x_{n \nu}^{4}\left(1-x_{n \nu}^{2}\right)^{2}\left[\frac{d}{d t} P_{m}^{(p,(q-1 / 2))}(t)\right]_{t=2 x_{n \nu}^{2}-1}^{2}} \\
\text { for } n=2 m \\
\frac{1}{16}(1+4 p+q) \sum_{x_{n \nu}>0} \frac{\left(1-x^{2}\right)}{\left(1-x_{n \nu}^{2}\right)^{2} x_{n \nu}^{5}} \cdot \frac{\left[P_{m}^{(p,(q+1 / 2))}\left(2 x^{2}-1\right)\right]^{2}}{\left[\frac{d}{d t} P_{m}^{(p,(q+1 / 2))}(t)\right]_{t=2 x_{n \nu}^{2}-1}^{2}} \\
\text { for } n=2 m+1 .
\end{array} \tag{8.11}
\end{align*}
$$

Now Lemmas 6.1 and 6.2, with (5.8) give

$$
\sum_{x_{\nu \nu} \nu 0}\left|r_{n \nu}(x)\right|=\left\{\begin{array}{r}
{\left[\sum_{\nu=1}^{m} O\left(n^{-1}\right) \frac{n^{4}}{\nu^{4}} \cdot \frac{\nu^{2 p+3}}{n^{2 p+4}}+\sum_{\nu=1}^{m} O\left(n^{-1}\right) \frac{n^{4}}{\nu^{4}} \cdot \frac{\nu^{q+2}}{n^{q+3}}\right]} \tag{8.12}\\
\text { for } n=2 m \\
{\left[\sum_{\nu=1}^{m} O\left(n^{-1}\right) \frac{n^{5}}{\nu^{5}} \cdot \frac{\nu^{2 p+3}}{n^{2 p+4}}+\sum_{\nu=1}^{m} O\left(n^{-1}\right) \frac{n^{5}}{\nu^{5}} \cdot \frac{\nu^{q+4}}{n^{q+5}}\right]} \\
\text { for } n=2 m+1
\end{array}\right.
$$

and since $0<p \leqq \frac{1}{2}, 0<q<1$, (8.12) gives

$$
\begin{equation*}
\sum_{x_{n \nu}>0}\left|r_{n \nu}(x)\right|=O(1) . \tag{8.13}
\end{equation*}
$$

By a similar reasoning we can obtain for the interval $0 \leqq x<1$ and $x_{n \nu} \geqq 0$, that

$$
\begin{equation*}
\sum_{x_{n \nu}<0}\left|r_{n \nu}(x)\right|=O(1) . \tag{8.14}
\end{equation*}
$$

Hence from (8.13) and (8.14) we get the lemma for $1 \leqq \nu \leqq n$, and $-1<x<1$. For $\nu=0$ and $n+1$ it is easy to see from (1.6) with $\omega_{n}(x)=p_{n}(x)$ and (5.4) that

$$
r_{n 0}(x)=O(1) \quad \text { and } \quad r_{n, n+1}(x)=O(1)
$$

At $x= \pm 1$, the lemma is trivial.
9. Estimation of the fundamental polynomials of the second kind. In this section we shall estimate the quantity

$$
\sum_{\nu=1}^{n}\left|\rho_{n \nu}(x)\right|
$$

We shall prove the following:
Lemma 9.1. For $-1 \leqq x \leqq 1$ and $n=1,2, \cdots$ we have

$$
\begin{equation*}
\sum_{\nu=1}^{n}\left|\rho_{n \nu}(x)\right|=O\left(n^{-s / 2}\right), \quad \text { where } \delta=\min (2 p, q)>0 \tag{9.1}
\end{equation*}
$$

Proof. From (1.9) and (1.4) with $\omega_{n}(x)=p_{n}(x)$

$$
\begin{equation*}
\sum_{\nu=1}^{n} \rho_{n \nu}(x)=\sum_{\nu=1}^{n}\left(x-x_{n \nu}\right) \frac{1-x^{2}}{1-x_{n \nu}^{2}} \frac{p_{n}^{2}(x)}{p_{n}^{\prime 2}\left(x_{n \nu}\right)\left(x-x_{n \nu}\right)^{2}} . \tag{9.2}
\end{equation*}
$$

Now setting

$$
\begin{equation*}
\sum_{\nu=1}^{n}\left|\rho_{n \nu}(x)\right|=\sum_{x_{n \nu} \leqslant 0}\left|\rho_{n \nu}(x)\right|+\sum_{x_{n \nu}>0}\left|\rho_{n \nu}(x)\right| \tag{9.3}
\end{equation*}
$$

and considering the interval $-1<x \leqq 0$, we have for $x_{n \nu}$'s >0,

$$
\left|x-x_{n \nu}\right|>\left|x_{n \nu}\right| .
$$

Thus from (9.2) and (8.10)

$$
\sum_{x_{n} \nu>0}\left|\rho_{n \nu}(x)\right| \leqq\left\{\begin{array}{c}
\frac{1}{16} \sum_{x_{n \nu}>0} \frac{1}{\left|x_{n \nu}\right|^{3}} \frac{\left(1-x^{2}\right)}{\left(1-x_{n \nu}^{2}\right)^{3 / 2}} \frac{\left[P_{m}^{(p,(q-1 / 2))}\left(2 x^{2}-1\right)\right]^{2}}{\left[\frac{d}{d t} P_{m}^{(p,(q-1 / 2))}(t)\right]_{t=2 x_{n \nu}^{2}-1}^{2}} \\
\text { for } n=2 m \\
\frac{1}{16} \sum_{x_{n \nu}>0} \frac{1}{x_{n \nu}{ }^{4} \frac{\left(1-x^{2}\right)}{\left(1-x_{n \nu}^{2}\right)^{2}} \frac{\left[P_{m}^{(p,(q+1 / 2))}\left(2 x^{2}-1\right)\right]^{2}}{\left[\frac{d}{d t} P_{m}^{(p,(q+1 / 2))}(t)\right]_{t=2 x_{n \nu}^{2}-1}^{2}}} \\
\text { for } n=2 m+1
\end{array}\right.
$$

which on account of (5.8) and the Lemmas 6.1 and 6.2, gives,
(9.4) $\quad \sum_{x_{n} \nu>0}\left|\rho_{n \nu}(x)\right| \leqq\left\{\begin{array}{l}\sum_{\nu=1}^{m} O\left(n^{-1}\right) \frac{n^{3}}{\nu^{3}} \cdot \frac{\nu^{2 p+3}}{n^{2 p+4}}+\sum_{\nu=1}^{m} O\left(n^{-1}\right) \frac{n^{3}}{\nu^{3}} \cdot \frac{\nu^{q+2}}{n^{q+3}} \\ \text { for } n=2 m \\ \sum_{\nu=1}^{m} O\left(n^{-1}\right) \frac{n^{4}}{\nu^{4}} \cdot \frac{\nu^{2 p+3}}{n^{2 p+4}}+\sum_{\nu=1}^{m} O\left(n^{-1}\right) \frac{n^{4}}{\nu^{4}} \cdot \frac{\nu^{q+4}}{n^{q+5}} \\ \text { for } n=2 m+1\end{array}\right.$

Since $0<p \leqq \frac{1}{2}$ and $0<q<1$, it follows from (9.4) that

$$
\begin{equation*}
\sum_{x_{n} \nu>0}\left|\rho_{n \nu}(x)\right| \leqq O\left(n^{-\delta}\right) \quad-1<x \leqq 0 \tag{9.5}
\end{equation*}
$$

where $\delta=\min (2 p, q)>0$.
Again let $x_{n \nu} \leqq 0,-1<x \leqq 0$ and

$$
\begin{equation*}
\sum_{x_{n \nu} \leq 0}\left|\rho_{n \nu}(x)\right|=\sum_{\substack{x_{n v} \leq 0 \\\left|x-x_{n}\right\rangle \leq n^{-\delta / 2}}}\left|\rho_{n \nu}(x)\right|+\sum_{\substack{x_{n \nu} \leq 0 \\\left|x-x_{n}\right|>n-\delta / 2}}\left|\rho_{n \nu}(x)\right|=\Sigma^{\prime}+\Sigma^{\prime \prime} . \tag{9.6}
\end{equation*}
$$

On account of (9.2) the following holds in the interval $-1<x \leqq 0$.

$$
\begin{align*}
\Sigma^{\prime}\left|\rho_{n \nu}(x)\right| & \leqq n^{-\delta / 2} \Sigma^{\prime} \frac{\left(1-x^{2}\right) p_{n}^{2}(x)}{\left(1-x_{n \nu}^{2}\right) p_{n}^{\prime 2}\left(x_{n \nu}\right)\left(x-x_{n \nu}\right)^{2}} \tag{9.7}\\
& \leqq \frac{n^{-\delta / 2}}{|1-q|} \Sigma^{\prime} \frac{\left(1-x^{2}\right)}{\left(1-x_{n \nu}^{2}\right)} v_{n \nu}(x) \frac{p_{n}^{2}(x)}{p_{n}^{\prime 2}\left(x_{n \nu}\right)\left(x-x_{n \nu}\right)^{2}} \\
& \leqq \frac{n^{-\delta / 2}}{|1-q|} \Sigma^{\prime} r_{n \nu}(x) \leqq \frac{n^{-\delta / 2}}{|1-q|}
\end{align*}
$$

From (9.6) we have

$$
\Sigma^{\prime \prime}\left|\rho_{n \nu}(x)\right| \leqq n^{\delta / 2} \Sigma^{\prime \prime} \frac{\left(1-x^{2}\right)}{\left(1-x_{n_{\nu}}^{2}\right)} \frac{p_{n}^{2}(x)}{p_{n}^{\prime 2}\left(x_{n \nu}\right)} .
$$

But owing to (8.10), we have

$$
\Sigma^{\prime \prime}\left|\rho_{n \nu}(x)\right| \leqq\left\{\begin{array}{l}
\frac{n^{\delta / 2}}{16} \Sigma^{\prime \prime} \frac{1}{x_{n \nu}^{2}} \frac{\left(1-x^{2}\right)}{\left(1-x_{n \nu}^{2}\right)} \frac{p_{n}^{2}(x)}{\left[\frac{d}{d t} P_{m,(t)}^{(p,(q-1 / 2))}\right]_{t=2 x_{n \nu}^{2}-1}} \\
\text { for } n=2 m \\
\frac{n^{\delta / 2}}{16} \Sigma^{\prime \prime} \frac{\left(1-x^{2}\right)}{x_{n \nu}^{4}\left(1-x_{n \nu}^{2}\right)^{2}} \frac{p_{n}^{2}(x)}{\left[\frac{d}{d t} P_{m}^{(p,(q+1 / 2)}(t)\right]_{t=2 x_{n \nu}^{2}-1}^{2}} \\
\text { for } n=2 m+1
\end{array}\right.
$$

which by (5.8), and Lemmas 6.1 and 6.2 gives
(9.8) $\quad \Sigma^{\prime \prime}\left|\rho_{n \nu}(x)\right|$

$$
\leqq\left\{\begin{array}{l}
n^{\delta / 2}\left[\sum_{\nu=1}^{m} O\left(n^{-1}\right) \frac{n^{2}}{\nu^{2}} \frac{\nu^{2 p+3}}{n^{2 p+4}}+\sum_{\nu=1}^{m} O\left(n^{-1}\right) \frac{n^{2}}{\nu^{2}} \frac{\nu^{q+2}}{n^{q+3}}\right] \\
n^{\delta / 2}\left[\frac{\left(1-x^{2}\right) p_{n}^{2}(x)}{p_{n}^{\prime 2}(0)}+\sum_{\nu=1}^{m} O\left(n^{-1}\right) \frac{n^{4}}{\nu^{4}} \frac{\nu^{2 p+3}}{n^{2 p+4}}+\sum_{\nu=1}^{m} O\left(n^{-1}\right) \frac{n^{4}}{\nu^{4}} \frac{\nu^{q+4}}{n^{q+5}}\right] \\
\text { for } n=2 m+1 .
\end{array}\right.
$$

For $n=2 m+1$ we obtain by using (6.2)

$$
\frac{\left(1-x^{2}\right) p_{n}^{2}(x)}{p_{n}^{\prime 2}(0)}=\frac{\left(1-x^{2}\right) x^{2} P_{m}^{\left.2\left(p, x^{2}(q+1) / 2\right)\right)}}{\left[P_{m(-1)}^{\left(p_{p}(q+1) / 2\right)}\right]^{2}}=\frac{O\left(n^{-1}\right)}{\binom{m+\frac{q+1}{2}}{m}^{2}} .
$$

From this as well as from (9.8) we see that in the interval $-1<x \leqq 0$

$$
\begin{equation*}
\sum_{\nu=1}^{n}\left|\rho_{n \nu}(x)\right| \leqq O\left(n^{-\delta / 2}\right) \tag{9.9}
\end{equation*}
$$

Similarly it follows in the interval $0 \leqq x<1$ that

$$
\sum_{\nu=1}^{n}\left|\rho_{n \nu}(x)\right| \leqq O\left(n^{-\delta / 2}\right)
$$

At $x= \pm 1$, the lemma obviously holds.
10. The proof of the Theorem 1. We now apply the usual argument. We have $S_{n}(x, f)$ our interpolating polynomial and $\Pi(x)$ an arbitrary polynomial of degree $2 n$ at most. Then there holds

$$
\begin{equation*}
S_{n}(x, f)-f(x)=S_{n}(x, f-\Pi)+(\Pi(x)-f(x)) . \tag{10.1}
\end{equation*}
$$

From (2.1) and (1.11) we get

$$
\begin{equation*}
S_{n}(x, f)-f(x)=\sum_{\nu=0}^{n+1}\left\{f\left(x_{n \nu}\right)-\Pi\left(x_{n \nu}\right)\right\} r_{n \nu}(x)+\sum_{\nu=0}^{n}\left(y_{n \nu}^{*}-\Pi^{\prime}\left(x_{n \nu}\right) \rho_{n_{\nu}}(x) .\right. \tag{10.2}
\end{equation*}
$$

Now by Weistrass approximation theorem for $-1 \leqq x \leqq 1$

$$
\begin{equation*}
\Pi(x)-f(x)=o(1) \tag{10.3}
\end{equation*}
$$

Now

$$
\begin{align*}
& \left|\sum_{\nu=0}^{n+1}\left\{f\left(x_{n \nu}\right)-\Pi\left(x_{n \nu}\right)\right\} r_{n \nu}(x)\right| \tag{10.4}\\
\leqq & \max _{-1 \leqq x \leqq 1}|f(x)-\Pi(x)| \sum_{\nu=0}^{n+1}\left|r_{n \nu}(x)\right|=o(1)
\end{align*}
$$

owing to (10.3) and Lemma 8.1
If $M=\max . \Pi^{\prime}(x)$ then in the interval $-1 \leqq x \leqq 1$

$$
\begin{equation*}
\left|\sum_{\nu=1}^{n}\left(y_{n \nu}^{*}-\pi^{\prime}\left(x_{n \nu}\right)\right) \rho_{n \nu}(x)\right| \leqq\left(c n^{\eta}+M\right) \sum_{\nu=1}^{n}\left|\rho_{n \nu}(x)\right|=o(1) \tag{10.5}
\end{equation*}
$$

in consequence of Lemma 9.1 and $\left|\beta_{n \nu}\right| \leqq c n^{\eta}$, where $0 \leqq \eta<\frac{\delta}{2}<1$ and $\delta=(2 p, q)>0$.

Thus (10.2), (10.3), (10.4) and (10.5) complete the proof of our Theorem 1.
11. Proof of Theorem 2. The conjugate points belonging to our point-system owing to (4.6), (1.8) and Lemma 7.1 (i) are given by

$$
\begin{align*}
X_{n \nu} & =x_{n \nu}+\frac{x_{n \nu}}{2\left\{\frac{p x_{n \nu}^{2}}{1-x_{n \nu}^{2}}-\frac{q}{2}\right\}} \tag{11.1}\\
& =x_{n \nu}\left[\frac{2 p+(1-2 p-q)\left(1-x_{n \nu}^{2}\right)}{2 p-(2 p+q)\left(1-x_{n \nu}^{2}\right)}\right] \quad x_{n \nu} \neq 0 .
\end{align*}
$$

If however $x_{n \nu}=0$ i.e., in the case when $n=2 m+1$ and $\nu=$ $m+1$, then it follows from (4.6), (1.8) and Lemma 7.1(ii) that

$$
X_{2 m+1, m+1}=\infty
$$

Now we shall make use of the following statements in the proof of Theorem 2.

Let (α, β) be a fixed part of the interval $[-1,1]$ but as small as we please. Consider the fundamental point system (4.3) or (4.4). We prove that for any value of n sufficiently large at least one member of the series of triangular matrix of the fundamental point-system lies within the interval (α, β). Let

$$
f(x)=\left\{\begin{array}{l}
0 \text { for }-1 \leqq x<\alpha \\
(x-\alpha)(\beta-x) \text { for } \alpha \leqq x \leqq \beta \\
0 \text { for } \beta<x \leqq 1
\end{array}\right.
$$

Then $f(x)$ is apparently continuous in the interval $-1 \leqq x \leqq 1$. Let us assume that it is not so then there is a series $n_{1}<n_{2}<n_{3} \cdots<n_{i} \cdots$ such that no member of the point group belonging to these indices $x_{n i, 1}, x_{n i, 2}, \cdots, x_{n i n i}(i=1,2, \cdots)$ lie in the interval (α, β). Therefore in the interval $-1 \leqq x \leqq 1 \lim _{i \rightarrow \infty} S_{n i}(f, x)=0$ holds. On the otherhand according to Theorem 1 in place of $x=\alpha+\beta / 2$

$$
\lim _{i \rightarrow \infty} S_{n i}(f, x)=f\left(\frac{\alpha+\beta}{2}\right)=\left(\frac{\alpha-\beta}{2}\right)^{2} \neq 0
$$

contradicts the foregoing inference, i.e., point-system (4.3) or (4.4) lie thickly in the interval $-1 \leqq x \leqq 1$. It can also be proved that the conjugate point-system belonging to (4.3) or (4.4) thickly cover the interval $-1 \leqq x \leqq 1$.

The conjugate points belonging to points $x_{n \nu} \neq 0$ can according to (11.1) be obtained from the function

$$
g(x)=x\left[\frac{1-q-(1-2 p-q) x^{2}}{(2 p+q) x^{2}-q}\right]
$$

in the places $x_{n \nu}$. In the interval $-1 \leqq x \leqq 1, g^{\prime}(x)<0$. Therefore the function $g(x)$ in the interval $(-\sqrt{q / 2 p+q}, \sqrt{q / 2 p+q})$ which on account of $0<p \leqq \frac{1}{2}$ and $0<q<1$ forms a part interval of $[-1,1]$ diminishes continuously, is continuous and its value includes all values from $+\infty$ to $-\infty$. There must also be two points a_{1} and b_{1} different from each other within the interval $[-\sqrt{q / 2 p+q}, \sqrt{q / 2 p+q}]$ so that $g\left(a_{1}\right)=-1$ and $g\left(b_{1}\right)=1$. Since $g^{\prime}(x)<0$ it follows that $-1 \leqq g(x) \leqq 1$ holds in the interval $b_{1} \leqq x \leqq a_{1}$. Let a_{2} and b_{2} be again two different real values for which $-1<a_{2}<b_{2}<1$ holds.

Then there must obviously lie in the interval $\left(a_{1}, b_{1}\right)$ two different points a_{3} and b_{3} such that $g\left(a_{3}\right)=a_{2}$ and $g\left(b_{3}\right)=b_{2}$. Since we have already proved that at least one point of each series of the point-system (4.3) or (4.4) must belong to the index n within the interval $\left(a_{3}, b_{3}\right)$. Therefore it follows that the conjugate points belonging to the fundamental points lying within the interval (α, β) must owing to monotony of $g(x)$ from this index onwards lie within the interval $\left(a_{2}, b_{2}\right), a_{2}$ and b_{2} can lie as near to each other as we please. Thus Theorem 2 is proved.

References

1. J. Balázs, On the convergence of Hermite-Fejér interpolation process, Acta. Math. Acad. Sci. Hungar, 9 (1958), 363-377.
2. E. Egerváry, and P., Turan, Notes on interpolation V, Acta Math. Acad. Sci. Hunger. 9 (1958), 259-267.
3. L. Fejér, Lagrangesche interpolation und die zugehoriegen konjugiertch Punkte, Math. Annalen 106 (1932), 1-55.
——, On the characterization of some remarkable systems of points of interpolation by means of conjugate points, Amer. Math. Monthly 41 (1934), 1-14.
4. K. V. Laščenov, On a class of orthogonal polynomial, Leningrad Gos. Ped. Inst. Zap. 89 (1953), 167-187.
5. P. Szász, On Quasi-Hermite-Fejer interpolation., Acta Math. Acad. Sci. Hungar., 10 (1959), 413-439.
6. G. Szegö, Orthogonal polynomials, Amer. Math. Soc., Colloquium Publications. Vol. 23.

Received September 12, 1962, and in revised form May 12, 1964.
Department of Mathematics and Astronomy
The University, Lucknow, India

[^0]: ${ }^{1}$ From now onward we shall write $p_{n}(x)$ to mean $p_{n}^{(p, q)}(x)$.

