ON THE CONVERGENCE OF QUASI-HERMITE-FEJÉR INTERPOLATION

K. K. MATHUR AND R. B. SAXENA

The present paper deals with the convergence of quasi-Hermite-Fejér interpolation series $\{S_n(x, f)\}$ satisfying the conditions

 $S_n(1,f) = f(1), \ S_n(x_{n
u},f) = f(x_{n
u}) \ 1 \leq
u \leq n, \ S_n(-1,f) = f(-1)$ and

$$S'_n(x_{n
u},f)=eta_{n
u} \qquad 1\leq
u\leq n \;,$$

where $\beta_{n\nu}$'s are arbitrary numbers; $x_{n0} = 1$, $x_{n,n+1} = -1$ and $\{x_{n\nu}\}$ are the zeros of orthogonal polynomial system $\{p_n(x)\}$ belonging to the weight function $(1-x^2)^p |x|^q$, 0 , <math>0 < q < 1 (which actually vanishes at a point in the interval [-1, +1]). Further it has been proved that quasi-conjugate pointsystem $\{X_{n\nu}\}$ (similar to Fejér conjugate pointsystem) belonging to the fundamental pointsystem $\{x_{n\nu}\}$ lie everywhere thickly in the interval [-1, +1].

Let there be given a point system

(1.1)
$$1 = x_{n0} > x_{n1} > x_{n2} > \cdots > x_{nn} > x_{n,n+1} = -1$$
$$(n = 1, 2, \cdots)$$

on the real axis and arbitrary real numbers

(1.2)
$$\begin{array}{c} y_{n0}, y_{n1}, y_{n2}, \cdots, y_{nn}, y_{n,n+1}, \\ y_{n1}^*, y_{n2}^*, \cdots, y_{nn}^*. \end{array}$$

Then setting

(1.3)
$$\omega_n(x) = c_n(x - x_{n1}) (x - x_{n2}) \cdots (x - x_{nn}) (c_n \neq 0)$$

and

(1.4)
$$l_{n\nu}(x) = \frac{\omega_n(x)}{\omega'_n(x_{n\nu}) (x - x_{n\nu})} (\nu = 1, 2, \dots, n),$$

the quasi-Hermite-Fejér interpolation polynomial $S_n(x)$ [6] is given by

(1.5)
$$S_n(x) = \sum_{\nu=0}^{n+1} y_{n\nu} r_{n\nu}(x) + \sum_{\nu=1}^n y_{n\nu}^* \rho_{n\nu}(x)$$

where $r_{n\nu}(x)$ and $\rho_{n\nu}(x)$ are called the fundamental polynomials of the 1st and the second kind of quasi-Hermite-Fejér interpolation.

For the fundamental polynomials of the 1st kind we have

(1.6)
$$r_{n0}(x) = \frac{1+x}{2} \cdot \frac{\omega_n(x)^2}{\omega_n(1)^2},$$
$$r_{n,n+1}(x) = \frac{1-x}{2} \cdot \frac{\omega_n(x)^2}{\omega_n(-1)^2},$$
$$r_{n\nu}(x) = \frac{1-x^2}{1-x^2_{n\nu}} v_{n\nu}(x) l_{n\nu}(x)^2, \qquad (\nu = 1, 2, \dots n)$$

where

(1.7)
$$v_{n\nu}(x) = 1 + c_{n\nu}(x - x_{n\nu})$$
,

(1.8)
$$c_{n\nu} = \frac{2x_{n\nu}}{1 - x_{n\nu}^2} - \frac{\omega_n''(x_{n\nu})}{w_n'(x_{n\nu})} \qquad (\nu = 1, 2, \dots, n)$$

and those of second kind

(1.9)
$$\rho_{n\nu}(x) = \frac{1-x^2}{1-x_{n\nu}^2} (x-x_{n\nu}) l_{n\nu}(x)^2 \quad (\nu=1, 2, \cdots, n) .$$

The polynomials $S_n(x)$ are the unique polynomials of degree $\leq 2n + 1$ which satisfy the requirements:

(1.10)
$$egin{array}{lll} S_n(x_{n
u}) &= y_{n
u} &
u = 0, \, 1, \, 2, \, \cdots, \, n+1 \; , \ S_n'(x_{n
u}) &= y_{n
u}^* &
u = 1, \, 2, \, \cdots, \, n \; . \end{array}$$

From the unicity of the polynomials $S_n(x)$ it follows that for each polynomial $\Pi(x)$ of degree $\leq 2n$

(1.11)
$$\Pi(x) = \sum_{\nu=0}^{n+1} \Pi(x_{n\nu}) r_{n\nu}(x) + \sum_{\nu=1}^{n} \Pi'(x_{n\nu}) \rho_{n\nu}(x)$$

holds. For the special case $\Pi(x) \equiv 1$, we have

(1.12)
$$\sum_{\nu=0}^{n+1} r_{n\nu}(x) \equiv 1$$
.

2. Let f(x) be continuous in $-1 \leq x \leq 1$ and $f(x_{n\nu})$ its values at the points $x_{n\nu}(\nu = 0, 1, 2, \dots, n+1)$. Further let $y_{n\nu}^*(\nu = 1, 2, \dots, n)$ be arbitrary real numbers then the polynomials $S_n(x)$ in (1.5) written as

(2.1)
$$S_n(x,f) = \sum_{\nu=0}^{n+1} f(x_{n\nu}) r_{n\nu}(x) + \sum_{\nu=0}^n y_{n\nu}^* o_{n\nu}(x)$$

are called the generalised quasi-Hermite-Fejér interpolation polynomials. For $y_{n\nu}^* = 0$, they are called quasi-step parabolas. In this case for $\omega_n(x) = P_n(x)$, where $P_n(x)$ stands for the *n*th Legendre polynomial, the interpolatory polynomials

(2.2)
$$R_{n}(x) = f(1) \frac{1+x}{2} P_{n}(x)^{2} + f(-1) \frac{1-x}{2} P_{n}(x)^{2} + \sum_{y=1}^{n} f(x_{ny}) \frac{1-x^{2}}{1-x_{ny}^{2}} \left(\frac{P_{n}(x)}{P_{n}'(x_{ny}) (x-x_{ny})}\right)^{2}$$

have been obtained by E. Egerváry and P. Turán [2]. They have shown that if f(x) is a function continuous in the closed interval [-1, 1], then the polynomials in (2.2) converge uniformly to f(x) in [-1, 1]. The convergence of the polynomials $S_n(x, f)$ in (2.1) constructed on the roots of $P_n(x)$ has been investigated by P. Szász [6]. He has shown that assuming f(x) to be continuous and $|y_{n\nu}^*| < \Delta$, where Δ is a constant independent of n and ν the series $S_n(x, f)$ in (2.1) converges uniformly to f(x) in [-1, 1].

In this paper we answer the question of P. Turán for the quasi-Hermite-Fejér interpolation polynomials $S_n(x, f)$ which Balázs has answered [1] in the case of Hermite-Fejér interpolation polynomials.

Does there exist in [-1, 1] an orthogonal polynomial system $\{g_n(x)\}\$ whose weight function vanishes some where in this interval while the series $\{S_n(x, f)\}\$ in (2.1) constructed on the roots of $\{g_n(x)\}\$ converges uniformly to the continuous function f(x) in the closed interval [-1, 1] provided $\{y_{n\nu}^*\}\$ are bounded?

The answer to this question is explained in our Theorem 1.

3. Similar to the normal and strongly normal point system due to L. Fejér [3, 4], the notion of quasi-normal and strongly quasi-normal point systems have been defined by Szász [6]. Thus an infinite sequence of point system,

$$(3.1) x_{n1}, x_{n2}, \cdots, x_{nn}, \quad (n = 1, 2, \cdots)$$

lying in -1 < x < 1, is called strongly quasi-normal if by the notation of (1.3) and (1.7)

(3.2)
$$1 + c_{n\nu}(x - x_{n\nu}) \ge \rho > 0, \quad -1 \le x \le 1$$
$$(\nu = 1, 2, \dots, n; n = 1, 2, \dots)$$

where ρ is a positive number independent of x, ν and n.

If $X_{n\nu}$ indicates a zero of $v_{n\nu}(x)$ in (1.7), then

(3.3)
$$X_{n\nu} = x_{n\nu} + \frac{1}{c_{n\nu}}, \quad \nu = 1, 2, \dots, n.$$

These points will be called quasi-conjugate points similar to the conjugate points due to L. Fejér [4]. The quasi-conjugate points lie outside [-1, 1] when the fundamental point system is quasi-strongly

normal. In this connection we shall answer another question of P. Turán for the case of quasi-Hermite-Fejér interpolation polynomials which Balázs [1] has answered for the Hermite-Fejér interpolation polynomials.

Is it possible to assume in the interval [-1, 1] a fundamental point system whose quasi-conjugate points (3.3) lie thickly in [-1, 1]and the interpolation series $\{S_n(x, f)\}$ belonging to this fundamental point-system converges uniformly to the continuous function f(x) in [-1, 1] provided the numbers $\{y_{n\nu}^*\}$ are bounded.

In Theorem II we answer this in affirmative.

4. K. V Laščenov [5] has defined orthogonal polynomials

$$p_n^{_{(p,q)}}(x)=lpha_nx^n+lpha_{_{n-2}}x^{_{n-2}}+\cdots,\ \ lpha_n
eq 0,\ p>-1,\ q>-1$$

over the interval [-1, 1] with respect to the weight function $(1 - x^2)^p |x|^q$ which are constant multiples of

$$(4.1) p_n^{(p,q)}(x)^1 = \begin{cases} P_m^{(p,q-1/2)}(2x^2-1), \ n=2m \\ x P_m^{(p,q+1/2)}(2x^2-1), \ n=2m+1 \end{cases}$$

 $P_n^{(\alpha,\beta)}(t)$ being the classical Jacobi polynomial of degree *n* with parameters α and β satisfying the differential equation

(4.2)
$$(1-t^2)y'' + [\beta - \alpha - (\alpha + \beta + 2)t]y' + n(n + \alpha + \beta + 1)y = 0$$
.

The position of the roots of (4.1) is given by

$$(4.3) \quad -1 < x_{nm+1} < x_{nm+2} < \cdots < x_{nn} < 0 < x_{n1} < \cdots < x_{nm} < 1 \ ext{for } n = 2m$$

and

$$(4.4) \quad -1 < x_{nm+2} < x_{nm+3} < \cdots < x_{nn} < 0 = x_{nm+1} < x_{n1} < \cdots < x_{nm} < 1$$
for $n = 2m + 1$.

Since the roots are symmetrical, we have

(4.5)
$$x_{n\nu} + x_{n,n+1-\nu} = 0, \ \nu = 1, 2, \cdots [n/2].$$

We shall prove the following:

THEOREM 1. The quasi-Hermite-Fejér interpolation series $\{S_n(x, f)\}$, constructed on the point system

$$(4.5) 1 = x_{n0}, x_{n1}, \cdots x_{n,n-1}, x_{n,n}, x_{nn+1} = -1 n = 1, 2, \cdots$$

¹ From now onward we shall write $p_n(x)$ to mean $p_n^{(p,q)}(x)$.

where $x_{n\nu}(\nu = 1, 2, \dots, n)$ are the zeros of the orthogonal polynomial system belonging to the weight function²

$$(1-x^2)^p |\, x\,|^q \qquad 0 , $0 < q < 1$,$$

converges uniformly to the continuous function f(x) in [-1, 1] when $|y_{n\nu}^*| \leq cn^{\eta}, 1 > \delta/2 > \eta \geq 0$ and $\delta = \min(2p, q)$.

THEOREM 2. The quasi-conjugate points (3.3)

(4.6)
$$x_{n\nu} = x_{n\nu} + \frac{1}{c_{n\nu}}$$
 $\nu = 1, 2, \dots, n; n = 1, 2, \dots,$

belonging to the fundamental point system (4.5) lie thickly in the interval [-1, 1].

5. Preliminaries. We shall use some well-known facts about Jacobi polynomials. We have

(5.1)
$$P_{m}^{(\alpha,\beta)}(1) = \binom{m+\alpha}{m}$$

(5.2)
$$P_{m}^{(\alpha,\beta)}(-1) = (-1)^{m} P_{m}^{(\alpha,\beta)}(1) = (-1)^{m} \binom{m+\beta}{m}$$

(5.3)
$$P_m^{(\alpha,\beta)}(t) = (-1)^m P_m^{(\beta,\alpha)}(-t)$$
.

Further we have for -1 < x < 1

(5.4)
$$P_m^{(\alpha,\beta)}(x) = O(n^{-1/2}), \ \alpha, \beta > -1$$

(5.5)

$$P_{m}^{(lpha+1,eta)}(x)=rac{2}{(2m+lpha+eta+2)}\,rac{(m+lpha+1)P_{m}^{(lpha,eta)}(x)-(m+1)P_{m^{\perp1}}^{(lpha,eta)}(x)}{(1-x)}$$

and

(5.6)
$$\frac{d}{dt}P_m^{(\alpha,\beta)}(t) = \frac{1}{2}(m+\alpha+\beta+1)P_{m-1}^{(\alpha+1,\beta+1)}(t) .$$

Further let $t_{\nu} = \cos \theta_{\nu}$ be the root of the polynomial

$$P_m^{(\alpha,\beta)}(t) = P_m^{(\alpha,\beta)}(\cos\theta)$$

then for $-1/2 \leq lpha \leq 1/2, -1/2 \leq eta \leq 1/2,$

(5.7)
$$\frac{2\nu - 1}{2m + 1} \pi \leq \theta_{\nu} \leq \frac{2\nu}{2m + 1} \pi \qquad (\nu = 1, 2, \dots, m) .$$

 $|x|^2 \ (1-x^2)^p| \ x|^q$ for 0 , <math>0 < q < 1, actually vanishes at x=0.

For $0 < \theta_{\downarrow} \leq \pi/2$ we have

(5.8) $P_m^{\prime(\alpha,\beta)}(\cos\theta_{\nu}) \ge c_1 \nu^{-\alpha-3/2} m^{\alpha+2}$

where c_1 is positive numerical constant.

6. In this section we shall obtain certain estimations for the polynomial $p_n(x)$.

We shall first prove:

LEMMA 6.1. For
$$-1 \le x \le 1$$
 we have
(6.1) $(1-x^2)p_n^2(x) = 0(n^{-1})$.

Proof of this lemma follows at once from (4.1) using (5.4).

LEMMA 6.2. For the roots $x_{n\nu}$ ($\nu = 1, 2, \dots, \left[\frac{n}{2}\right]$, $n = 1, 2, \dots$ of the polynomial $p_n(x)$, we have

(6.2)
$$x_{n\nu}^2(1-x_{n\nu}^2) \ge \frac{\nu^2}{4n^2}.$$

Proof. Let $2x_{n\nu}^2 - 1 = \cos \theta_{n\nu}$, then $(1 - x_{n\nu}^2) = \sin^2 \theta_{n\nu}/2$, and $x_{n\nu}^2 = \cos^2 \theta_{n\nu}/2$. Hence

$$x_{n
u}^2(1-x_{n
u}^2)=rac{4}{4}\cos^2rac{ heta_{n
u}}{2}\sin^2rac{ heta_{n
u}}{2}=rac{1}{4}\sin^2 heta_{n
u}$$
 .

But from (5.7) we have

$$heta_{n
u} \geq rac{
u+rac{1}{2}}{n+rac{1}{2}} \, \pi > rac{
u \pi}{2n}$$

which gives

$$|\sin heta_{_{n
u}}| > \left|\sin rac{
u \pi}{2n}\right| > rac{
u}{n}.$$

Therefore

$$x_{n
u}^2(1-x_{n
u}^2)=rac{1}{4}\sin^2 heta_{n
u}>rac{
u^2}{4n^2}$$
 .

7. We shall need the following lemmas for the estimation of the fundamental polynomials of the first kind.

250

LEMMA 7.1. Let $x_{n\nu}$ be a root of $p_n(x)$, then

(i)
$$\frac{p_n''(x_{n\nu})}{p_n'(x_{n\nu})} = \frac{2}{x_{n\nu}} \left[(p+1) \frac{x_{n\nu}^2}{(1-x_{n\nu}^2)} - \frac{q}{2} \right]$$

except when n = 2m + 1, and $\nu = m + 1$. In this case we have

(ii)
$$\frac{p_n''(x_{n\nu})}{p_n'(x_{n\nu})} = 0$$
.

Proof. It follows from (4.1) by differentiating with respect to x, for n = 2m

(7.1)
$$\frac{p_n''(x_{n\nu})}{p_n'(x_{n\nu})} = 4_{n\nu} \left\{ \frac{\frac{d^2}{dt^2} P_m^{(p,(q-1/2))}(t)}{\frac{d}{dt} P_m^{(p,(q-1/2))}(t)} \right\}_{t=2x_{n\nu}^2-1} + \frac{1}{x_{n\nu}} .$$

By the substitution $t = 2x^2 - 1$, $\alpha = p$, $\beta = q - 1/2$, and n = m, the differential equation (4.2) gives

(7.2)
$$\begin{cases} \frac{d^2}{dt^2} P_m^{(p,(q-1/2))}(t) \\ \frac{d}{dt} P_m^{(p,(q-1/2))}(t) \\ = \frac{1}{4x_{n\nu}^2(1-x_{n\nu}^2)} \left[-2(p+1) + (2p+q+3) \left(1-x_{n\nu}^2\right) \right]. \end{cases}$$

Substituting (7.2) in (7.1) we get

(7.3)
$$\frac{p_n''(x_{n\nu})}{p_n'(x_{n\nu})} = \frac{2}{x_{n\nu}} \left[(p+1) \frac{x_{n\nu}^2}{1-x_{n\nu}^2} - \frac{q}{2} \right].$$

If however, n = 2m + 1 and $\nu \neq m + 1$, then it follows on account of (4.1) and (4.4) that

(7.4)
$$\frac{p_n''(x_{n\nu})}{p_n'(x_{n\nu})} = 4x_{n\nu} \left\{ \frac{\frac{d^2}{dt^2} P_m^{(p,(q+1/2))}(t)}{\frac{d}{dt} P_m^{(p,(q+1/2))}(t)} \right\}_{t=2x_{n\nu}^2-1} + \frac{3}{x_{n\nu}} .$$

But from (4.2) by putting $t=2x^2-1, \ \alpha=p, \ \beta=q+1/2$ and n=m we get

(7.5)
$$\begin{cases} \frac{d^2}{dt^2} P_m^{(p,(q+1/2))}(t) \\ \frac{d}{dt} P_m^{(p,(q+1/2))}(t) \\ \\ = -\frac{1}{4x_{n\nu}^2(1-x_{n\nu}^2)} \left[-2(p+1) + (2p+q+5) (1-x_{n\nu}^2) \right] \end{cases}$$

substituting (7.5) in (7.4) we get

(7.6)
$$\frac{p_n''(x_{n\nu})}{p_n'(x_{n\nu})} = \frac{2}{x_{n\nu}} \left[(p+1) \frac{x_{n\nu}^2}{1-x_{n\nu}^2} - \frac{q}{2} \right].$$

In case n = 2m + 1 and $\nu = m + 1$, $x_{n\nu} = 0$ on account of (4.4). But the polynomial $p_n(x)$ is an odd function of x, therefore $p''_n(x_{n\nu}) = 0$ and in this case

(7.7)
$$\frac{p_n''(x_{n\nu})}{p_n'(x_{n\nu})} = 0.$$

8. Estimation of the fundamental polynomials of the first kind.

LEMMA 8.1. For $-1 \leq x \leq 1$, we have

(8.1)
$$\sum_{\nu=0}^{n+1} |r_{n\nu}(x)| = O(1)$$

Proof. From (1.7), (1.8) and Lemma 7.1 we get for $1 \leq \nu \leq n$

(8.2)
$$v_{n\nu}(x) = 1 - \frac{2}{x_{n\nu}} \left\{ \frac{p x_{n\nu}^2}{(1 - x_{n\nu}^2)} - \frac{q}{2} \right\} (x - x_{n\nu}).$$

From the representation (4.4) of $x_{n\nu}$'s it is clear that for n = 2m + 1, and $\nu = m + 1$, $x_{nm+1} = 0$. Whence from Lemma 7.1 (ii) and (1.7) it follows that

$$(8.3) v_{nm+1}(x) \equiv 1.$$

For x=0 it follows from (8.2) on account of 0 < q < 1 and 0 that

(8.4)
$$v_{n\nu}(0) = 1 + \frac{2px_{n\nu}^2}{(1-x_{n\nu}^2)} - q \ge 1 - q > 0$$
.

This inequality is also applicable on account of (8.3) when n = 2m + 1, and $\nu = m + 1$. For $-1 < x \leq 0$ and $x_{n\nu} \leq 0$ we have on

account of $v_{n\nu}(x_{n\nu}) = 1$ and (8.4)

$$(8.5) v_{n\nu}(x) \ge 1 - q > 0 (0 < q < 1)$$

Since $v_{n\nu}(x)$ is a linear function in the interval $0 \le x < 1$ it follows from $v_{n\nu}(x_{n\nu}) \equiv 1$ and $x_{n\nu} \ge 0$ that

(8.6)
$$v_{n\nu}(x) \ge 1 - q > 0$$
 since $0 < q < 1$.

We shall now prove the inequality (8.1) in the interval $-1 < x \leq 0$. In this interval $r_{n\nu}(x) \geq 0$ for $x_{n\nu} \leq 0$. Also $r_{n0}(x)$ and $r_{n,n+1}(x)$ are positive. Hence from (1.12)

(8.7)

$$\sum_{\nu=0}^{n+1} |r_{n\nu}(x)| = \sum_{x_{n\nu} \le 0} |r_{n\nu}(x)| + \sum_{x_{n\nu} > 0} |r_{n\nu}(x)| \\
= \sum_{x_{n\nu} \le 0} r_{n\nu}(x) + \sum_{x_{n\nu} > 0} |r_{n\nu}(x)| \\
= 1 - \sum_{x_{n\nu} > 0} r_{n\nu}(x) + \sum_{x_{n\nu} > 0} |r_{n\nu}(x)| \\
\le 1 + 2 \sum_{x_{n\nu} > 0} |r_{n\nu}(x)|.$$

On account of (8.2), (1.6) and (1.4) we obtain

$$\sum_{x_{n\nu}>0} |r_{n\nu}(x)| = \sum_{x_{n\nu}>0} \frac{1-x^{2}}{1-x_{n\nu}^{2}} \left| 1 - \frac{2}{x_{n\nu}} \left\{ \frac{px_{n\nu}^{2}}{1-x_{n\nu}^{2}} - \frac{q}{2} \right\} (x-x_{n\nu}) \right|$$

$$\times \frac{p_{n}^{2}(x)}{p_{n}^{\prime 2}(x_{n\nu}) (x-x_{n\nu})^{2}}$$

$$\leq \sum_{x_{n\nu}>0} \frac{1-x^{2}}{1-x_{n\nu}^{2}} \cdot \frac{p_{n}^{2}(x)}{p_{n}^{\prime 2}(x_{n\nu}) (x-x_{n\nu})^{2}}$$

$$+ 2p \sum_{x_{n\nu}>0} \frac{(1-x^{2})p_{n}^{2}(x_{n\nu}) (x-x_{n\nu})}{|x_{n\nu}| (1-x_{n\nu}^{2})^{2} p_{n}^{\prime 2}(x_{n\nu}) (x-x_{n\nu})}$$

$$+ (2p+q) \sum_{x_{n\nu}>0} \frac{1-x^{2}}{(1-x_{n\nu}^{2})} \frac{1}{|x_{n\nu}|} \cdot \frac{p_{n}^{2}(x)}{p_{n}^{\prime 2}(x_{n\nu}) |x-x_{n\nu}|}.$$

Since $-1 < x \leq 0$ and $0 < x_{n\nu} < 1$, therefore $|x - x_{n\nu}| > |x_{n\nu}|$. Hence from (8.8),

(8.9)
$$\sum_{x_{n\nu}>0} |r_{n\nu}(x)| \leq (1+2p+q) \sum_{x_{n\nu}>0} \frac{1-x^2}{1-x_{n\nu}^2} \cdot \frac{1}{x_{n\nu}^2} \cdot \frac{p_n^2(x)}{p_n^{\prime 2}(x_{n\nu})} + 2|p| \sum_{x_{n\nu}>0} \frac{(1-x^2)}{(1-x_{n\nu}^2)^2 x_{n\nu}^2} \frac{p_n^2(x)}{p_n^{\prime 2}(x_{n\nu})}.$$

Owing to (4.1) we have

(8.10)
$$p'_n(x_{n\nu}) = \begin{cases} 4x_{n\nu} P'_m^{(p,2(q-1/2))}(2x_{n\nu}-1) & \text{for } n=2m \\ 4x_{n\nu}^2 P'_m^{(p,2(q+1/2))}(2x_{n\nu}-1) & \text{for } n=2m+1 \end{cases}$$

Thus for n = 2m, using (8.9) and (8.10); for *n* odd using (8.8), (8.10) and $x^2 < (x - x_{n\nu})^2$, we have

$$\sum_{x_{n\nu}>0} |r_{n\nu}(x)|$$

$$(8.11) \leq \begin{cases} \frac{1}{16} (1+4p+q) \sum_{x_{n\nu}>0} \frac{(1-x^2) [P_m^{(p,(q-1/2))}(2x^2-1)]^2}{x_{n\nu}^4 (1-x_{n\nu}^2)^2 \left[\frac{d}{dt} P_m^{(p,(q-1/2))}(t)\right]_{t=2x_{n\nu}^2-1}^2} \\ for \ n=2m \\ \frac{1}{16} (1+4p+q) \sum_{x_{n\nu}>0} \frac{(1-x^2)}{(1-x_{n\nu}^2)^2 x_{n\nu}^6} \cdot \frac{[P_m^{(p,(q+1/2))}(2x^2-1)]^2}{\left[\frac{d}{dt} P_m^{(p,(q+1/2))}(t)\right]_{t=2x_{n\nu}^2-1}^2} \\ for \ n=2m+1 . \end{cases}$$

Now Lemmas 6.1 and 6.2, with (5.8) give

$$(8.12) \quad \sum_{x_{n\nu>0}} |r_{n\nu}(x)| = \begin{cases} \left[\sum_{\nu=1}^{m} O(n^{-1}) \frac{n^4}{\nu^4} \cdot \frac{\nu^{2p+3}}{n^{2p+4}} + \sum_{\nu=1}^{m} O(n^{-1}) \frac{n^4}{\nu^4} \cdot \frac{\nu^{q+2}}{n^{q+3}}\right] \\ \text{for } n = 2m \\ \left[\sum_{\nu=1}^{m} O(n^{-1}) \frac{n^5}{\nu^5} \cdot \frac{\nu^{2p+3}}{n^{2p+4}} + \sum_{\nu=1}^{m} O(n^{-1}) \frac{n^5}{\nu^5} \cdot \frac{\nu^{q+4}}{n^{q+5}}\right] \\ \text{for } n = 2m + 1 \end{cases}$$

and since 0 , <math>0 < q < 1, (8.12) gives

(8.13)
$$\sum_{x_{n\nu}>0} |r_{n\nu}(x)| = O(1)$$

By a similar reasoning we can obtain for the interval $0 \leq x < 1$ and $x_{n\nu} \geq 0,$ that

(8.14)
$$\sum_{x_{n\nu}<0} |r_{n\nu}(x)| = O(1)$$
.

Hence from (8.13) and (8.14) we get the lemma for $1 \leq \nu \leq n$, and -1 < x < 1. For $\nu = 0$ and n + 1 it is easy to see from (1.6) with $\omega_n(x) = p_n(x)$ and (5.4) that

$$r_{n0}(x) = O(1)$$
 and $r_{n,n+1}(x) = O(1)$.

At $x = \pm 1$, the lemma is trivial.

9. Estimation of the fundamental polynomials of the second kind. In this section we shall estimate the quantity

$$\sum_{\nu=1}^n | \mathcal{O}_{n\nu}(x) | .$$

We shall prove the following:

LEMMA 9.1. For $-1 \leq x \leq 1$ and $n = 1, 2, \cdots$ we have

(9.1)
$$\sum_{\nu=1}^{n} |\rho_{n\nu}(x)| = O(n^{-\delta/2})$$
, where $\delta = \min(2p, q) > 0$.

Proof. From (1.9) and (1.4) with $\omega_n(x) = p_n(x)$

(9.2)
$$\sum_{\nu=1}^{n} \rho_{n\nu}(x) = \sum_{\nu=1}^{n} (x - x_{n\nu}) \frac{1 - x^2}{1 - x^2_{n\nu}} \frac{p_n^2(x)}{p_n^{\prime 2}(x_{n\nu}) (x - x_{n\nu})^2}.$$

Now setting

(9.3)
$$\sum_{\nu=1}^{n} |\rho_{n\nu}(x)| = \sum_{x_{n\nu} \leq 0} |\rho_{n\nu}(x)| + \sum_{x_{n\nu} > 0} |\rho_{n\nu}(x)|$$

and considering the interval $-1 < x \leq 0$, we have for $x_{n\nu}$'s > 0,

$$|x - x_{n\nu}| > |x_{n\nu}|$$
 .

Thus from (9.2) and (8.10)

$$\sum_{x_{n\nu}>0} |\rho_{n\nu}(x)| \leq \begin{pmatrix} \frac{1}{16} \sum_{x_{n\nu}>0} \frac{1}{|x_{n\nu}|^3} \frac{(1-x^2)}{(1-x_{n\nu}^2)^{3/2}} \frac{[P_m^{(p,(q-1/2))}(2x^2-1)]^2}{\left[\frac{d}{dt} P_m^{(p,(q-1/2))}(t)\right]_{t=2x_{n\nu}^2-1}^2} \\ & \text{for } n=2m \\ \frac{1}{16} \sum_{x_{n\nu}>0} \frac{1}{x_{n\nu}^4} \frac{(1-x^2)}{(1-x_{n\nu}^2)^2} \frac{[P_m^{(p,(q+1/2))}(2x^2-1)]^2}{\left[\frac{d}{dt} P_m^{(p,(q+1/2))}(t)\right]_{t=2x_{n\nu}^2-1}^2} \\ & \text{for } n=2m+1 \end{pmatrix}$$

which on account of (5.8) and the Lemmas 6.1 and 6.2, gives,

$$(9.4) \quad \sum_{x_{n}\nu>0} |\rho_{n\nu}(x)| \leq \begin{cases} \sum_{\nu=1}^{m} O(n^{-1}) \frac{n^{3}}{\nu^{3}} \cdot \frac{\nu^{2p+3}}{n^{2p+4}} + \sum_{\nu=1}^{m} O(n^{-1}) \frac{n^{3}}{\nu^{3}} \cdot \frac{\nu^{q+2}}{n^{q+3}} \\ \text{for } n = 2m \\ \sum_{\nu=1}^{m} O(n^{-1}) \frac{n^{4}}{\nu^{4}} \cdot \frac{\nu^{2p+3}}{n^{2p+4}} + \sum_{\nu=1}^{m} O(n^{-1}) \frac{n^{4}}{\nu^{4}} \cdot \frac{\nu^{q+4}}{n^{q+5}} \\ \text{for } n = 2m + 1 \end{cases}$$

Since 0 and <math>0 < q < 1, it follows from (9.4) that

(9.5)
$$\sum_{x_{n\nu}>0} |\rho_{n\nu}(x)| \le O(n^{-\delta}) \qquad -1 < x \le 0$$

where $\delta = \min(2p, q) > 0$.

Again let $x_{n
u} \leq 0, -1 < x \leq 0$ and

$$(9.6) \sum_{x_{n\nu} \leq 0} |\rho_{n\nu}(x)| = \sum_{\substack{x_{n\nu} \leq 0\\ |x-x_{n\nu}| \leq n^{-\delta/2}}} |\rho_{n\nu}(x)| + \sum_{\substack{x_{n\nu} \leq 0\\ |x-x_{n\nu}| > n^{-\delta/2}}} |\rho_{n\nu}(x)| = \Sigma' + \Sigma'' .$$

On account of (9.2) the following holds in the interval $-1 < x \leq 0$.

$$(9.7) \qquad \Sigma'|\rho_{n\nu}(x)| \leq n^{-\delta/2} \, \Sigma' \, \frac{(1-x^2) p_n^2(x)}{(1-x_{n\nu}^2) p_n'^2(x_{n\nu}) \, (x-x_{n\nu})^2} \\ \leq \frac{n^{-\delta/2}}{|1-q|} \, \Sigma' \, \frac{(1-x^2)}{(1-x_{n\nu}^2)} \, v_{n\nu}(x) \, \frac{p_n^2(x)}{p_n'^2(x_{n\nu}) \, (x-x_{n\nu})^2} \\ \leq \frac{n^{-\delta/2}}{|1-q|} \, \Sigma' \, r_{n\nu}(x) \leq \frac{n^{-\delta/2}}{|1-q|} \, .$$

From (9.6) we have

$$\Sigma^{\prime\prime} \, | \,
ho_{n
u}(x) \, | \, \leq \, n^{\delta/2} \, \Sigma^{\prime\prime} \, rac{(1 - x^2)}{(1 - x^2_{n
u})} \; rac{p_n^2(x)}{p_n^{\prime 2}(x_{n
u})} \; .$$

But owing to (8.10), we have

$$\left| \mathcal{S}''| \left|
ho_{n
u}(x)
ight| \leq egin{cases} & rac{n^{\delta/2}}{16} \mathcal{S}'' \; rac{1}{x_{n
u}^2} \; rac{(1-x^2)}{(1-x_{n
u}^2)} \; rac{p_n^2(x)}{\left[rac{d}{dt} \; P_{m(t)}^{(p,(q-1/2))}
ight]_{t=2x_{n
u}^2-1}} & ext{for } n=2m \ & rac{n^{\delta/2}}{16} \mathcal{S}'' \; rac{(1-x^2)}{x_{n
u}^4(1-x_{n
u}^2)^2} \; rac{p_n^2(x)}{\left[rac{d}{dt} \; P_m^{(p,(q+1/2))}(t)
ight]_{t=2x_{n
u}^2-1}^2} & ext{for } n=2m+1 \ & ext{for } n=2m+1 \end{cases}$$

which by (5.8), and Lemmas 6.1 and 6.2 gives

$$\begin{array}{l} (9.8) \quad \mathcal{\Sigma}^{\prime\prime} | \, \rho_{n\nu}(x) \, | \\ \leq \begin{cases} n^{\delta/2} \bigg[\sum_{\nu=1}^{m} O(n^{-1}) \, \frac{n^2}{\nu^2} \, \frac{\nu^{2p+3}}{n^{2p+4}} + \sum_{\nu=1}^{m} O(n^{-1}) \, \frac{n^2}{\nu^2} \, \frac{\nu^{q+2}}{n^{q+3}} \bigg] \\ n^{\delta/2} \bigg[\frac{(1-x^2)p_n^2(x)}{p_n^{\prime 2}(0)} + \sum_{\nu=1}^{m} O(n^{-1}) \, \frac{n^4}{\nu^4} \, \frac{\nu^{2p+3}}{n^{2p+4}} + \sum_{\nu=1}^{m} O(n^{-1}) \, \frac{n^4}{\nu^4} \, \frac{\nu^{q+4}}{n^{q+5}} \bigg] \\ n^{\delta/2} \bigg[\frac{(1-x^2)p_n^2(x)}{p_n^{\prime 2}(0)} + \sum_{\nu=1}^{m} O(n^{-1}) \, \frac{n^4}{\nu^4} \, \frac{\nu^{2p+3}}{n^{2p+4}} + \sum_{\nu=1}^{m} O(n^{-1}) \, \frac{n^4}{\nu^4} \, \frac{\nu^{q+4}}{n^{q+5}} \bigg] \\ n^{\delta/2} \bigg[\frac{(1-x^2)p_n^2(x)}{p_n^{\prime 2}(0)} + \sum_{\nu=1}^{m} O(n^{-1}) \, \frac{n^4}{\nu^4} \, \frac{\nu^{2p+3}}{n^{2p+4}} + \sum_{\nu=1}^{m} O(n^{-1}) \, \frac{n^4}{\nu^4} \, \frac{\nu^{q+4}}{n^{q+5}} \bigg] \\ n^{\delta/2} \bigg[\frac{(1-x^2)p_n^2(x)}{p_n^{\prime 2}(0)} + \sum_{\nu=1}^{m} O(n^{-1}) \, \frac{n^4}{\nu^4} \, \frac{\nu^{2p+3}}{n^{2p+4}} + \sum_{\nu=1}^{m} O(n^{-1}) \, \frac{n^4}{\nu^4} \, \frac{\nu^{q+4}}{n^{q+5}} \bigg] \\ n^{\delta/2} \bigg] \right]$$

For n = 2m + 1 we obtain by using (6.2)

$$\frac{(1-x^2)p_n^2(x)}{p_n'^2(0)} = \frac{(1-x^2)x^2P_m^{2(p,\cdot(q+1/2))}}{[P_{m(-1)}^{(p,\cdot(q+1/2))}]^2} = \frac{O(n^{-1})}{\begin{pmatrix}m+\frac{q+1}{2}\\m\end{pmatrix}^2}.$$

From this as well as from (9.8) we see that in the interval $-1 < x \leq 0$

(9.9)
$$\sum_{\nu=1}^{n} |\rho_{n\nu}(x)| \leq O(n^{-\delta/2}).$$

Similarly it follows in the interval $0 \leq x < 1$ that

$$\sum_{\nu=1}^n |
ho_{n
u}(x)| \leq O(n^{-\delta/2})$$
 .

At $x = \pm 1$, the lemma obviously holds.

10. The proof of the Theorem 1. We now apply the usual argument. We have $S_n(x, f)$ our interpolating polynomial and $\Pi(x)$ an arbitrary polynomial of degree 2n at most. Then there holds

(10.1)
$$S_n(x, f) - f(x) = S_n(x, f - \Pi) + (\Pi(x) - f(x))$$
.

From (2.1) and (1.11) we get

$$S_n(x,f) - f(x) = \sum_{\nu=0}^{n+1} \{f(x_{n\nu}) - \Pi(x_{n\nu})\} r_{n\nu}(x) + \sum_{\nu=0}^n (y_{n\nu}^* - \Pi'(x_{n\nu})\rho_{n\nu}(x) .$$

Now by Weistrass approximation theorem for $-1 \leq x \leq 1$

(10.3)
$$\Pi(x) - f(x) = o(1)$$
.

Now

(10.4)
$$\left| \sum_{\nu=0}^{n+1} \{ f(x_{n\nu}) - \Pi(x_{n\nu}) \} r_{n\nu}(x) \right| \\ \leq \max_{-1 \leq x \leq 1} |f(x) - \Pi(x)| \sum_{\nu=0}^{n+1} |r_{n\nu}(x)| = o(1)$$

owing to (10.3) and Lemma 8.1

If $M = \max$. $\Pi'(x)$ then in the interval $-1 \leq x \leq 1$

(10.5)
$$\left|\sum_{\nu=1}^{n} (y_{n\nu}^{*} - \pi'(x_{n\nu}))\rho_{n\nu}(x)\right| \leq (cn^{\eta} + M)\sum_{\nu=1}^{n} |\rho_{n\nu}(x)| = o(1)$$

in consequence of Lemma 9.1 and $|\beta_{n\nu}| \leq cn^{\eta}$, where $0 \leq \eta < \frac{\delta}{2} < 1$ and $\delta = (2p, q) > 0$.

Thus (10.2), (10.3), (10.4) and (10.5) complete the proof of our Theorem 1.

11. Proof of Theorem 2. The conjugate points belonging to our point-system owing to (4.6), (1.8) and Lemma 7.1 (i) are given by

(11.1)
$$X_{n\nu} = x_{n\nu} + \frac{x_{n\nu}}{2\left\{\frac{px_{n\nu}^2}{1 - x_{n\nu}^2} - \frac{q}{2}\right\}}$$
$$= x_{n\nu} \left[\frac{2p + (1 - 2p - q)(1 - x_{n\nu}^2)}{2p - (2p + q)(1 - x_{n\nu}^2)}\right] \qquad x_{n\nu} \neq 0.$$

If however $x_{n\nu} = 0$ i.e., in the case when n = 2m + 1 and $\nu = m + 1$, then it follows from (4.6), (1.8) and Lemma 7.1(ii) that

$$X_{2m+1,m+1} = \infty$$
 .

Now we shall make use of the following statements in the proof of Theorem 2.

Let (α, β) be a fixed part of the interval [-1, 1] but as small as we please. Consider the fundamental point system (4.3) or (4.4). We prove that for any value of n sufficiently large at least one member of the series of triangular matrix of the fundamental point-system lies within the interval (α, β) . Let

$$f(x) = egin{cases} 0 \ ext{ for } -1 \leq x < lpha \ (x-lpha) \ (eta-x) \ ext{ for } lpha \leq x \leq eta \ 0 \ ext{ for } eta < x \leq 1 \ . \end{cases}$$

Then f(x) is apparently continuous in the interval $-1 \leq x \leq 1$. Let us assume that it is not so then there is a series $n_1 < n_2 < n_3 \cdots < n_i \cdots$ such that no member of the point group belonging to these indices $x_{ni,1}, x_{ni,2}, \cdots, x_{nini}$ $(i = 1, 2, \cdots)$ lie in the interval (α, β) . Therefore in the interval $-1 \leq x \leq 1 \lim_{i \to \infty} S_{ni}(f, x) = 0$ holds. On the otherhand according to Theorem 1 in place of $x = \alpha + \beta/2$

$$\lim_{i \to \infty} S_{\scriptscriptstyle ni}(f,\,x) = f\!\left(\frac{\alpha+\beta}{2}\right) = \left(\frac{\alpha-\beta}{2}\right)^{\!\!\!\!2} \neq 0$$

contradicts the foregoing inference, i.e., point-system (4.3) or (4.4) lie thickly in the interval $-1 \leq x \leq 1$. It can also be proved that the conjugate point-system belonging to (4.3) or (4.4) thickly cover the interval $-1 \leq x \leq 1$.

The conjugate points belonging to points $x_{n\nu} \neq 0$ can according to (11.1) be obtained from the function

$$g(x) = x \left[\frac{1 - q - (1 - 2p - q)x^2}{(2p + q)x^2 - q} \right]$$

in the places $x_{n\nu}$. In the interval $-1 \leq x \leq 1$, g'(x) < 0. Therefore the function g(x) in the interval $(-\sqrt{q/2p+q}, \sqrt{q/2p+q})$ which on account of 0 and <math>0 < q < 1 forms a part interval of [-1, 1]diminishes continuously, is continuous and its value includes all values from $+\infty$ to $-\infty$. There must also be two points a_1 and b_1 different from each other within the interval $[-\sqrt{q/2p+q}, \sqrt{q/2p+q}]$ so that $g(a_1) = -1$ and $g(b_1) = 1$. Since g'(x) < 0 it follows that $-1 \leq g(x) \leq 1$ holds in the interval $b_1 \leq x \leq a_1$. Let a_2 and b_2 be again two different real values for which $-1 < a_2 < b_2 < 1$ holds.

258

Then there must obviously lie in the interval (a_1, b_1) two different points a_3 and b_3 such that $g(a_3) = a_2$ and $g(b_3) = b_2$. Since we have already proved that at least one point of each series of the point-system (4.3) or (4.4) must belong to the index n within the interval (a_3, b_3) . Therefore it follows that the conjugate points belonging to the fundamental points lying within the interval (α, β) must owing to monotony of g(x) from this index onwards lie within the interval (a_2, b_2) , a_2 and b_2 can lie as near to each other as we please. Thus Theorem 2 is proved.

References

1. J. Balázs, On the convergence of Hermite-Fejér interpolation process, Acta. Math. Acad. Sci. Hungar, 9 (1958), 363-377.

2. E. Egerváry, and P., Turan, Notes on interpolation V, Acta Math. Acad. Sci. Hunger. 9 (1958), 259-267.

3. L. Fejér, Lagrangesche interpolation und die zugehoriegen konjugiertch Punkte, Math. Annalen **106** (1932), 1-55.

, On the characterization of some remarkable systems of points of interpolation by means of conjugate points, Amer. Math. Monthly **41** (1934), 1-14.

5. K. V. Laščenov, On a class of orthogonal polynomial, Leningrad Gos. Ped. Inst. Zap. **89** (1953), 167-187.

6. P. Szász, On Quasi-Hermite-Fejer interpolation., Acta Math. Acad. Sci. Hungar., **10** (1959), 413-439.

7. G. Szegö, Orthogonal polynomials, Amer. Math. Soc., Colloquium Publications. Vol. 23.

Received September 12, 1962, and in revised form May 12, 1964.

DEPARTMENT OF MATHEMATICS AND ASTRONOMY THE UNIVERSITY, LUCKNOW, INDIA