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ON THE CONVERGENCE OF QUASI-HERMITE-FEJER
INTERPOLATION

K. K. MATHUR AND R. B. SAXENA

The present paper deals with the convergence of quasi-
Hermite-Fejer interpolation series {Sn(x, /)} satisfying the
conditions

S«(l, / ) = /(I), Sn(Xn>, f) = ffrn) 1 =£ V £ 71, S n ( - 1, / ) = / ( - 1)

and

where /3%i,'s are arbitrary numbers; #w0 = 1, ff»,«+i = — 1 and
{xnv} are the zeros of orthogonal polynomial system {pn(x)}

belonging to the weight function (1 — x2)p\ x\g, 0 < p ^ — ,

0 < q < 1 (which actually vanishes at a point in the interval
[— 1, + 1]). Further it has been proved that quasi-conjugate
pointsystem {Xn)} (similar to Fejer conjugate pointsystem)
belonging to the fundamental pointsystem {xnv} lie everywhere
thickly in the interval [— 1, + 1],

Let there be given a point system

( ' (w = l ,2 , . . . )

on the real axis and arbitrary real numbers

(Λ »v VnOi Vnlί Vn2i " * ' > 2/w%> Vn>n+l >

'ϊ/ Ẑ 'ϊ/
i/ ?ιl> i/«2j > tfnn

Then sett ing

(1.3) ωn(x) = cn(ίc - a;wl) (a? - a;^) (x - xnn) (cn Φ 0)

and

(1.4) l%v(x) = y (v = 1, 2, . , n) ,

the quasi-Hermite-Fejer interpolation polynomial Sn(x) [6] is given by

(1.5) sn(x) - "ΣvnsM + ΣvtpnM

where rnv(x) and /t)ΛV(a?) are called the fundamental polynomials of the

1st and the second kind of quasi-Hermite-Fejer interpolation.

For the fundamental polynomials of the 1st kind we have
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„ M - 1 + x . ωn(xY

(1.6) rntu+1(x)

2

1 -

rn,(x) = ~^~- vw(x)hM* - (y = 1, 2, n)

where

(1.7) vn,(x) = 1 + cn.ix - *,„) ,

(1.8) cTCV = Y ^ Γ - ~ ^ # 4 - (y = 1, 2, , n)

and those of second kind

(1.9) pnu(x) = 1~ x

2 (x - xnv)lnu(xf (v = 1, 2, , n) .

The polynomials SΛ(α?) are the unique polynomials of degree
^ 2 w + l which satisfy the requirements:

Sn(x«u) = ynu v - 0, 1, 2, . . , n + 1 ,

From the unicity of the polynomials Sn(x) it follows that for each
polynomial Π(x) of degree g 2π

(1..11)

holds.

(1..12)

For

/7(a) =

the special

n+l

case Π(x)

n+l

# ( * ) Ξ

v = l

we

, 1 .

/7'(,,

have

2. Let /(#) be continuous in - H a ^ l and /(£cnϊ;) its values
at the points x^{v-= 0,1,2, ,n+ 1). Further let y%v(v = 1,2, w)
be arbitrary real numbers then the polynomials SΛ(cc) in (1.5) written
as

n+l n

are called the generalised quasi-Hermite-Fejer interpolation polynomials.
For ytυ = 0, they are called quasi-step parabolas. In this case for
ωn(x) = PΛ(a?), where PJx) stands for the nth Legendre polynomial,
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the interpolatory polynomials

Λ.(«0 = /(I) ̂ ^ PΛ*Y + / ( - 1) ̂ ~ PΛxf

( 2 ' 2 ) +Yf(x ) 1~χl

l 1 ί»
V = l

have been obtained by E. Egervary and P. Turan [2]. They have
shown that if f(x) is a function continuous in the closed interval
[— 1, 1], then the polynomials in (2.2) converge uniformly to f(x) in
[— 1, 1], The convergence of the polynomials Sn(x, f) in (2.1)
constructed on the roots of PJx) has been investigated by P. Szasz
[6]. He has shown that assuming f(x) to be continuous and | y*v \<A,
where Δ is a constant independent of n and v the series Sn(x, f) m (2.1)
converges uniformly to f(x) in [— 1, 1].

In this paper we answer the question of P. Turan for the quasi-
Hermite-Fejer interpolation polynomials Sn(x, f) which Balazs has
answered [1] in the case of Hermite-Fejer interpolation polynomials.

Does there exist in [—1, 1] an orthogonal polynomial system
{dΛx)} whose weight function vanishes some where in this interval
while the series {Sn(x,f)} in (2.1) constructed on the roots of {gn(x)}
converges uniformly to the continuous function f(x) in the closed
interval [— 1, 1] provided {y*J\ are bounded?

The answer to this question is explained in our Theorem 1.

3* Similar to the normal and strongly normal point system due
to L. Fejer [3, 4], the notion of quasi-normal and strongly quasi-normal
point systems have been defined by Szasz [6]. Thus an infinite
sequence of point system,

(3.1) xnl, xn2, , xnn, (n = 1, 2, •)

lying in — 1 < x < 1, is called strongly quasi-normal if by the nota-
tion of (1.3) and (1.7)

(3.2) 1 + cnu(x - xnv) ^p>0 , - 1 ^ s ^ 1

(v = l ,2, . . . ,w; n = l ,2, . . . )

where p is a positive number independent of x, v and n.
If Xnv indicates a zero of vnv(x) in (1.7), then

(3.3) Xnv - xnu + - i - , v = 1, 2, . , n .

These points will be called quasi-conjugate points similar to the
conjugate points due to L. Fejer [4]. The quasi-conjugate points lie
outside [— 1, 1] when the fundamental point system is quasi-strongly
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normal. In this connection we shall answer another question of P.
Turan for the case of quasi-Hermite-Fejer interpolation polynomials
which Balazs [1] has answered for the Hermite-Fejer interpolation
polynomials.

Is it possible to assume in the interval [— 1, 1] a fundamental
point system whose quasi-conjugate points (3.3) lie thickly in [— 1, 1J
and the interpolation series {Sn(x, /)} belonging to this fundamental
point-system converges uniformly to the continuous function f(x) in
[— 1, 1] provided the numbers {#*„} are bounded.

In Theorem II we answer this in affirmative.

4. K. V Lascenov [5] has defined orthogonal polynomials

2tf ffϊ(s) = ocnx
n + an_2x

n~2 + • , α n =5* 0, p > - 1, g > - 1

over the interval [— 1, 1] with respect to the weight function
(1 — x2)p\ x \q which are constant multiples of

(P%'q-ll2)(2x2 - 1), n = 2m

Pia'β)(t) being the classical Jacobi polynomial of degree n with para-
meters a and β satisfying the differential equation

(4.2) (1 - f)y" + [β-a-(a + β + 2)t]y' + n(n + a + β + ΐ)y - 0 .

The position of the roots of (4.1) is given by

(4.3) - 1 < xn7n+1 < xnm+2 < < xnn < 0 < xnl < < xnm < 1

for n — 2m

and

(4.4) - 1 < xnm+2 < xnm+3 < . < xnn < 0 = xnm+1 < xnl < < xnm < 1

for n = 2m + 1 ,

Since the roots are symmetrical, we have

(4.5) xnv + %n,n+1-» - 0, v = 1, 2, [n/2] .

We shall prove the following:

THEOREM 1. The quasi-Hermite-Fejer interpolation series

{Sn(χ, /)}> constructed on the point system

(4.5) 1 = xn0, xnl, . xntn_u xn,n, xnn+1 = — 1 n = 1, 2, - -

1 From now onward we shall write pn(x) to mean p(

n

p>q)(x).
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where xnι,(ι> = 1, 2, , n) are the zeros of the orthogonal polynomial
system belonging to the weight function2

(1 - x2y\ x\q 0 < p ^ —, Q <q <l ,

converges uniformly to the continuous function f(x) in [— 1, 1] when
Vnu I ̂  on71, 1 > δ/2 > Ύ] ̂  0 and 3 — min (2p, g).

THEOREM 2. The quasi-conjugate points (3.3)

(4.6) xnu = xnυ + - i - v = 1, 2, w; w = 1, 2, ,

belonging to the fundamental point system (4,5) ϊΐβ thickly in the
interval [— 1, 1],

5* Preliminaries* We shall use some well-known facts about
Jacobi polynomials. We have

(5.1) *** W - ^ m

(b.Δ) rm> (— i) = {- i) „ m ^ v - ' y m

(5.3) Pi?' β ) (ί) = ( - l)mPLβ'a)(- t) .

Further we have for — 1 < x < 1

(5.4) PLa'β)(x) - O ( n ~ ί l 2 ) , a , β > - 1

(5.5)

p(α+i,/3)/ \ 2 {m Λ- a Λ- ϊ)P^'β)(x) -~ (m •

(2m + a + β + 2) (1 - a;)

and

(5.6) jLp£>v(t) = A ( m + α: + /9 + l J P i ^ ' ^ ^ ί ) .
dί 2

Further let ίv = cos θv be the root of the polynomial

then for - 1/2 ^ α ^ 1/2, - 1/2 g /S ̂  1/2,

(5.7) 2 v ~ X 2T < <?, < — π (v = 1, 2, , m) .
2m + 1 ~ 2m + 1

2 (1 - x2)"| x |« for 0 < j) S — , 0 < q < 1, actually vanishes at x = 0.
Δ
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For 0 < θ, S π/2 we have

(5.8) P^β)(cos θv) ^ c^-α-3 / 2mα + 2

where c1 is positive numerical constant.

6. In this section we shall obtain certain estimations for the
polynomial pn(x).

We shall first prove:

LEMMA 6.1. For — 1 ^ x ^ 1 we have

(6.1) (1 - x2)pl(x) = O^-1) .

Proof of this lemma follows at once from (4.1) using (5.4).

LEMMA 6.2. For the roots xnv (v = 1, 2, - , Γ—1, n = 1, 2,) •

of the polynomial pn(x), we have

(6.2)

Proof. Let 2x2

v — 1 = cos ^Λ1;, then (1 — x2

nv) — sin2 ^ΛV/2, and
l, — cos2 ^ n v/2. Hence

A n ft Λ
junv\L — tbnv) c o s b in i

4 2 2 4

But from (5.7) we have

which gives

Therefore

9
7

sin θnv

•Λ χ

> sin v π

2n

1 * 2

4

n

> v"
4n2

7 We shall need the following lemmas for the estimation of the
fundamental polynomials of the first kind.
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LEMMA 7.1. Let xnu be a root of pjx), then

(1-xl) 2J

except when n — 2m + 1, and v = m + 1. In this case we have

Proof. It follows from (4.1) by differentiating with respect to x,
for n ~ 2m

(7.1)

By the substitution £ = 2x2 — 1, α: = p, β = g —1/2, and w = m, the
differential equation (4.2) gives

(7-2)

Substituting (7.2) in (7.1) we get

(7β3) ^ ί ^

[_ 2(p + 1) + (2p + « + 3) (1 - xL)] .

I — x

If however, % = 2m + 1 and y Φ m + 1, then it follows on account
of (4.1) and (4.4) that

(7.4) P'ήfrnv) __

But from (4.2) by putting £ = 2x2 - 1, a = p, β = g + 1/2 and
== m we get
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(7.5) dt

Xnv)
[- 2(p + 1) + (2p + q + 5) (1 - xl

substituting (7.5) in (7.4) we get

PX)
— ^ JL~\ .

In case n = 2m + 1 and v = m + 1, x%i, = 0 on account of (4.4).
But the polynomial pn(x) is an odd function of x, therefore p"n(xnv) = 0
and in this case

(7.7)

8* Estimation of the fundamental polynomials of the first
kind*

LEMMA 8.1. For — 1 ^ x S 1, we

(8.1) ΣVnv(«)| = 0 ( 1 ) .

Proo/. From (1.7), (1.8) and Lemma 7.1 we get for 1 ^ v ^ n

(8.2) Vlιv(α?) = 1 - - A . { .. ^ L

2 . - -2-} (x - xnu) .
»nl; I (1 - x2

nu) 2 J

From the representation (4.4) of xnu's it is clear that for n =
2m + 1, and v — m + 1, #% m + 1 = 0. Whence from Lemma 7.1 (ii) and
(1.7) it follows that

(8.3) vnm+1(x) = 1 .

For x = 0 it follows from (8.2) on account of 0 < g < 1 and

0 < p ^ ±- that

(8.4) = 1 +
(1 - <>

This inequality is also applicable on account of (8.3) when n =
2m + 1, and v = m + 1. For — 1 < a; 5S 0 and aJΛV ί θ we have on
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account of vnu(xn») — 1 and (8.4)

(8.5) vnv{%) ^ 1 - g > 0 (0 < ? < 1) .

Since vnϊi{x) is a linear function in the interval 0 g= x < 1 it follows
from vnu(xnu) = 1 and xnv ^ 0 that

(8.6) vnv(x) ^ 1 - q > 0 since 0 < q < 1 .

We shall now prove the inequality (8.1) in the interval
— 1 < x ^ 0. In this interval rn»(x) έ 0 for xnv <L 0. Also rn0(x) and
^n,n+i(x) & re positive. Hence from (1.12)

n+1

/ 1 I
v = 0

(8.7)

>\ I i V I or (Ύ\

- Σ rnu(x) + Σ I *•»*(&) I

= l - Σ »"..(*) + Σ
>0 >

£ i + 2 Σ I »-.„(*) I.

On account of (8.2), (1.6) and (1.4) we obtain

^ Σ J rnv(aj)

,r/2/r

(8.8) <

4

4

Since — 1 «
Hence from (8.

V 1 T
2Λ \ί n\>

(8.9) Xn*>0

Owing to (4.1)

a

pί{

V
2-f '

- 2 p

(2'

< X

8),

M h
^ *'/1 =

we

Σ -

x)

1 —

i -

*Λl/>0

(9

^ o

have

1 - x2

1 — x2

\ 2

X2

Xlu Pn(

1 χ»» i (i -

and 0 <

1 ^/^ I (/)

i ̂  y
xtΓ>0 (

1

(1
- X

—

— a

v
2-

(1
L -

) (x

— ί

L)2

<

j

v ( Til* a 1

α n v ί 1 ~ α?lv 2 J

f)p\{x)
Pn(X»») (X - Xn»)

1 p\(x)

1, therefore | x — $%v | > | xnv

ι /y»2 "1 ΛΛ2 //y»\

ί. «Λ/ x jrny*^/
1 /γ»2 /v.2 /n'2//v. \

/v»2\ /Q2 //v»"j

\2/y»2 /T)'2//7 \

2))(2xnv — 1) for n = 2m

ίa?ΛV - 1) for w = 2m + 1 .

Thus for n = 2m, using (8.9) and (8.10); for n odd using
(8.10) and x2 < (x — xn])

2, we have
(8.8),
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(8.11)

<

L
16

Γ

L
d p(p,(q-l!2))/f\\

dt Jt=2χ2

nv-1

for n = 2m

2 V r 5 Γ 7̂
Λ ^ Λwl/ I a p(p,(

for ^ = 2m + 1 .

Now Lemmas 6.1 and 6.2, with (5.8) give

/Γ m %4

(8.12) \r.M\=i
for n — 2m

f or w — 2m + 1

and since 0 < p ^ —, 0 < g < l , (8.12) gives

(8.13) Σ
>By a similar reasoning we can obtain for the interval 0 g x < 1

and £^ ^ 0, that

(8.14) Σ I rκ,(a;)

Hence from (8.13) and (8.14) we get the lemma for 1 ̂  v g n, and
— 1 < x < 1. For v = 0 and n + 1 it is easy to see from (1.6) with
ωn{

χ) = P«(#) a n d (5.4) that

rw0(^) = 0(1) and rn>n+1(x) = 0(1) .

At x — ± 1 , the lemma is trivial.

9* Estimation of the fundamental polynomials of the second
kind* In this section we shall estimate the quantity

a
We shall prove the following:

LEMMA 9.1. For and n = 1, 2, we have
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THE CONVERGENCE OF QUASI-HERMITE-FEJER INTERPOLATION 255

= O(n~Sί2) , where δ = min (2p, q) > 0 .

(9.2)

Proof. From (1.9) and (1.4) with ωjx) — pn(x)

_ v λ 1 - x2 pl(x)

Now setting

(9.3) Σ
i . _ l

pnv(x) I = + Σ I /M

and considering the interval — 1 < x g 0, we have for xnv's > 0,

I a? " XuΛ > I Xnu I

Thus from (9.2) and (8.10)

I 1 ^ 1 (1 - .τ2)
I 16 *^>o |x % , | 3 (1 — a?iv)

8
d

Σ
for w = 2m

16 %v>o x % v

) (2x2

xnv)
dt

[ for ^ ~ 2m + 1

which on account of (5.8) and the Lemmas 6.1 and 6.2, gives,

(9.4) Σ ! |O.v(»)! ^ -i
for π = 2m

+
for n — 2m + 1

Since 0 < p ^ — and 0 < q < 1, it follows from (9.4) that
Li

(9.5) Σ, i Λ
> 0

- 1 < x ^ 0

where δ = min (2p, g) > 0.
Again let a?Λ1; g 0, — 1 < x g 0 and

(9.6) Σ
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On account of (9.2) the following holds in the interval — 1 < x g 0.

(9.7) Σ'\ ρM{x) I g n-sι* Σ' (1 - x")pl(x) _

Λ-q\ (1-xL) πΛ
(*„) (x - χnj

From (9.6) we have

Σ"\pnv{x)\ ^nδ<2Σ".

But owing to (8.10), we have

( ΎI^^'^ 1 (Λ • 'T*^^

1 r v V" _ x V1 x )

(1 - xl

16

"1 Λ.(a ) I ^

(1 - χ2

m) Γ—
L at

for % = 2m

16
y , , (1

2

for ti = 2m + 1

which by (5.8), and Lemmas 6.1 and 6.2 gives

(9.8) Σ"\p%y{x)\

|_v=i V2 γι2p+4
} v2 n q + 3 J

for n = 2m

•[- h

for n = 2m + 1 .

For n = 2m + 1 we obtain by using (6.2)

(1 - x*)pl{x) _ ( I - Ϊ V P

m

From this as well as from (9.8) we see that in the interval
- 1 < x ^ 0

(9.9) ±\p
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Similarly it follows in the interval 0 <Z x < 1 that

Σ I pnv(x) I £ 0{n~*») .
V = l

At a; = ± 1, the lemma obviously holds.

10. The proof of the Theorem 1* We now apply the usual
argument. We have Sn(x,f) our interpolating polynomial and Π(x)
an arbitrary polynomial of degree 2n at most. Then there holds

(10.1) S%(x, f) - f{x) - Sn(x, f-Π) + (Π(x) - f(x)) .

Prom (2,1) and (1.11) we get

(10.2)

Sn(x, f) - fix) = Σ {f(xnj) - Π(xnv)}rHU(x) + Σ ivt - Π'(xnv)pnu(x) .
V=0 v=0

Now by Weistrass approximation theorem for - H a ^ l

(10.3) Π(x) - f(x) = o(ΐ) .

Now

(10.4)
^ max |/(OJ) - /7(a?) | X

owing to (10.3) and Lemma 8.1
If M = max. Π\x) then in the interval

(10.5) - + M) Σ I /Ms) I - o(

in consequence of Lemma 9,1 and \βnv\^ en71, where 0 g η < — < 1

and δ = i2p, q) > 0 .
Thus (10.2), (10.3), (10.4) and (10.5) complete the proof of our

Theorem 1.

11* Proof of Theorem 2* The conjugate points belonging to
our point-system owing to (4.6), (1.8) and Lemma 7.1 (i) are given by

2

(11.1) U-flji, 2
y + (1 - 2p - g)
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If however xnv = 0 i.e., in the case when n — 2m + 1 and v =
m + 1, then it follows from (4.6), (1.8) and Lemma 7.1(ii) that

Now we shall make use of the following statements in the proof
of Theorem 2.

Let {a, β) be a fixed part of the interval [— 1, 1] but as small as
we please. Consider the fundamental point system (4.3) or (4.4). We
prove that for any value of n sufficiently large at least one member
of the series of triangular matrix of the fundamental point-system lies
within the interval (a, β). Let

ίO for - 1 ^ x < a

f(x) = I (x - a) (β - x) for a ^ x ^ β

(o for β < x ^ 1 .

Then f(x) is apparently continuous in the interval — 1 ^ x S 1. Let
us assume that it is not so then there is a series nγ < n2 < n3 < w4

such that no member of the point group belonging to these indices
aw, χm,2, , Xnini (̂  = 1, 2, ) lie in the interval (α, /S). Therefore
in the interval — 1 <̂  x ^ 1 lim^^S^^/, ίc) = 0 holds. On the other-
hand according to Theorem 1 in place of x = α: + /9/2

contradicts the foregoing inference, i.e., point-system (4.3) or (4.4) lie
thickly in the interval — 1 ^ x ^ 1. It can also be proved that the
conjugate point-system belonging to (4.3) or (4.4) thickly cover the
interval — 1 g x ^ 1.

The conjugate points belonging to points xnu Φ 0 can according
to (11.1) be obtained from the function

g(x) = x\ - —— I
v L (2p + q)x2 - g J

in the places xnu. In the interval — 1 S % ^ 1, g'(%) < 0. Therefore
the function g(x) in the interval (— Vqβp + q, i/q/2p + q) which on

account of 0 < p ^ — and 0 < q < 1 forms a part interval of [— 1, 1]
Δ

diminishes continuously, is continuous and its value includes all values
from + oo to — oo. There must also be two points ax and δx different
from each other within the interval [— Vqβp + g, Vqβp + q] so
that g(a^) = — 1 and g(b^) = 1. Since g'(x) < 0 it follows that
— 1 ^ g(x) ^ 1 holds in the interval bλ 5Ξ x <̂  alm Let a2 and b2 be
again two different real values for which — 1 < α2 < b2 < 1 holds.
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Then there must obviously lie in the interval (au 6X) two different
points α3 and 53 such that g(ad) — α2 and g(b3) = δ2. Since we have already
proved that at least one point of each series of the point-system (4.3) or
(4.4) must belong to the index n within the interval (α3, δ8). There-
fore it follows that the conjugate points belonging to the fundamental
points lying within the interval (a, β) must owing to monotony of
g(x) from this index onwards lie within the interval (α2, 62), α2 and 62

can lie as near to each other as we please. Thus Theorem 2 is proved.

REFERENCES

1. J. Balazs, On the convergence of Hermite-Fejer interpolation process, Acta. Math.
Acad. Sci. Hungar, 9 (1958), 363-377.
2. E. Egervary, and P., Turan, Notes on interpolation V, Acta Math. Acad. Sci.
Hunger. 9 (1958), 259-267.
3. L. Fejer, Lagrangesche interpolation und die zugehoriegen konjugiertch Punkte,
Math. Annalen 106 (1932), 1-55.

, On the characterization of some remarkable systems of points of interpolation
by means of conjugate points, Amer. Math. Monthly 4 1 (1934), 1-14.
5. K. V. Lascenov, On a class of orthogonal polynomial, Leningrad Gos. Ped. Inst.
Zap. 89 (1953), 167-187.
6. P. Szasz, On Quasi-Hermite-Fejer interpolation., Acta Math. Acad. Sci. Hungar.,
10 (1959), 413-439.
7. G. Szego, Orthogonal polynomials, Amer. Math. Soc, Colloquium Publications.
Vol. 23.

Received September 12, 1962, and in revised form May 12, 1964.

DEPARTMENT OF MATHEMATICS AND ASTRONOMY

THE UNIVERSITY, LUCKNOW, INDIA






