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RIEMANN SURFACES WHICH ARE DOUBLES
OF PLANE DOMAINS

N. S. HAWLEY AND M. M. SCHIFFER

In our investigations of Riemann surfaces we have had
occasion to need a criterion which will distinguish from among
all closed Riemann surfaces those which are doubles of plane
domains. We give here a criterion which we have found useful
in practice.

The technique of doubling a plane domain, as a tool in conformal
mapping, was introduced by Schottky in 1875 and used by him, by
Picard, by KJein and by many others since [3], In particular this idea
led Klein to introduce the symmetric Riemann surfaces.

Let us denote by Pn(C) the complex protective n space. A point
ζ of Pn{C) is given by the (n + 1) homogeneous coordinates (ζu , ζn+1).
Let Pn(R) denote the real projective n space, which we consider
imbedded in Pn{C): it consists of those points (ζ1? •••, ζn+1) such that
the ratios of the homogeneous coordinates are real.

Consider a compact Riemann surface & of genus p, and let
&>i, , (*>P be a basis of differentials of the first kind on &. Any
such basis defines an analytic mapping

v: <& - > J V C )

obtained explicitly as follows: for q e ^ ,

v(q) = (ωx(q), . . . , ωp(q)) e

This mapping, known as the Noethβr mapping [1], is an analytic
homeomorphism of & into P?,_1(C

r) if p > 2 and & is not hyperelliptic.
(The mapping appears to depend on the basis ωu , ωp of differentials
of the first kind chosen on ^?; but if to any change of the basis
ωu , ωp we introduce the cogredient change of coordinates in P9^(C)y

the mapping is even unique!)
Now let & be a (p + l)-ply connected plane domain bounded by

p + 1 analytic Jordan curves Co, Cly , Cp, and let & be its double
[3]. Then & is a compact Riemann surface of genus p. Let ωlf , ωp

be a basis of Schottky (or "real") differentials on &. This basis has a
natural (and unique) extension to a basis of differentials of the first kind
on ^ and thereby defines an analytic mapping of & (and therefore
2&) into PP_X{C). Since the ratios of the ωs are real on the boundary
curves Ck, the images c^k of these curves under v lie in P^R), the
real projective space. If & is nonhyperelliptic, the c^k are mutually
disjoint, since v is a homeomorphism.

217



218 N. S. HAWLEY AND M. M. SCHIFFER

That & intersects PP^{C) in this manner discloses an interesting
property of Riemann surfaces which are the doubles of plane domains.
It is a property not shared by all closed Riemann surfaces, for some of
them have images under the Noether map which do not even intersect
Pp-iiR) at all. In fact, we are going to show that this intersection
property is almost completely characteristic of those Riemann surfaces
which are the doubles of plane domains.

In order to state the assertion precisely, we make the following
definition:

DEFINITION 1. The compact Riemann surface & of genus p is
said to have the property Π1 if p > 2 and there exists a basis ωl9 , ωp

of differentials of the first kind on & such that the image &» of ξ̂>
under the Noether map v defined by this basis, intersects FJJ_1(iί) in
p + 1 mutually disjoint Jordan curves.

We can now introduce our assertion as a theorem.

THEOREM 1. The Riemann surface & is nonhy per elliptic and
the double of a plane domain if and only if it has the property Πί%

In order to prove Theorem 1 we first prove several lemmas which are
of some interest in themselves and which, in fact, contain information
beyond that necessary to prove Theorem 1.

On each P,Λ(C) there is a natural antianalytic involution

*:Pn(C)-+Pn(C)

defined by

*C = (Ci, , ζ*+i), where ζ - (ζ1? . . . , ζw+ι) .

If έ% c Pn(C) is a Riemann surface which is a complex analytic
submanifold of Pn(C), and if we denote its image under the mapping
* by * ^ , then * ^ is an antianalytic submanifold of Pn(C). In any
case, we can consider Pn(C) as a 2^-dimensional real analytic manifold
and with respect to this real structure both έ% and %& are real
analytic submanifolds of Pn(C).

As real analytic submanifolds of an analytic manifold, if & and
*^? coincide in a neighborhood of any common point, they must
coincide globally. This follows from the uniqueness of analytic con-
tinuation; for if & and * , ^ coincide in a neighborhood of some point,
there is a neighborhood of that point in which both submanifolds can
be defined (locally) by the same analytic equations. But each manifold
is defined globally by analytic continuations of these equations.

We can now make the following assertion:
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LEMMA 1. // έ% is a compact Riemann surface which is an
analytic submanifold of Pn{C), and cέ? is an analytic arc which is
contained in the intersection of &» with Pn(R), then *<% = &.

Proof, Since Pn{R) remains pointwise fixed under *, the hypotheses
of the lemma imply that έ% must contain an analytic arc ^ which
remains pointwise fixed under *. Let qoe & and z be a local uniform-
izing parameter defined in a neighborhood Uo of q0 so that z: Uo —•» C,
z(qQ) = 0 and z maps if Π UQ into the real axis in C. (We can choose
Uo small enough so that this is possible.) Next, choose ε so small that
the disc E9 = {z:\z\ < e} is mapped into ί70 by z~x (note: z"1 denotes
the inverse mapping of the uniformizer z, not the quantity 1/z). Let
U{ denote its image, i.e., U£ = z~\Ez). As qe & ranges over Uί, its
coordinates (ζu , ζw+1) in Pn(C) are given by analytic functions
9>iθs(ci)), i.e., ζj = φ3-(z) describes the (inclusion) mapping of Uό into
Pn(C). Since φά(z) is analytic and real for z real, we have

φd(z) •=- φjz) for I z \ < S .

Therefore * maps Uί onto itself. But this means that Uί is also a
neighborhood on *^? therefore %& must coincide with έ% (as a subset
of Pn(C)). This proves the lemma.

Let <% be a surface (not necessarily compact, analytic, or even
orientable) and let Co? , Ct be a collection of mutually disjoint Jordan
curves on & such that the entire collection separates ^ but no proper
subcollection of the curves has this property. We call such a collection
of Jordan curves a minimal separating set of Jordan curves on ̂ E We
can now make the following assertion.

LEMMA 2. // Co, •••, Ct is a minimal separating set of Jordan
curves on &, then it separates & into exactly two connected components.

Proof. Let &l=& -\JCk and let

Then by hypothesis J?t~i i s connected and

Suppose that £/\ has at least three connected components; we may
write

&\ = &' U &"' U &""

where £f\ S^" and Sf" are all nonempty and disjoint. Since & is



220 N. S. HAWLEY AND M. M. SCHIFFER

a surface, Cz is in the boundary (in &) of at most two of the sets
6^f, S?"y Sf'"\ say, for example, it does not lie in the boundary of
(f"n'. By assumption Sff" contains at least one component of &*% —

^t_i — Cu but not all of S^. Since Ct is disjoint, even from the
closure of S^rrr, £fnt also contains at least one component of J5f_i.
But this contradicts the assumption that J5t~i is connected. Therefore
S^i must consist of at most two components. Since S^i is not connected,
it must have exactly two components. This proves the lemma.

We next prove the following lemma.

LEMMA 3. Let &' c Pn{C) intersect Pn{R) in (m + 1) mutually
disjoint Jordan curves ^ 0 , ••-, ^ m , which we suppose separate &'.
Then no proper subcollection of these curves separates &f.

Proof. Let I ^ m be the smallest number such that there are I + 1
curves, say ^ 0 , •••, ̂  which separate ^ ' . Then by Lemma 2

&' - U &*> = &" u ss"

where Sf and £fn are disjoint nonempty connected components of
&' — Ui=o ^fc- Now suppose that I < m. Let qoe ^ 0 and let Uo be
a neighborhood of q0. Since ^ 0 is in the separating set in ^ ? ' , Uo

contains points in both S^r and S^". As we have seen, in the proof
of Lemma 1, we can choose UQ so that *UQ — UQ. Then we can choose
qx G Uo so that q1 e £fr and *qx e ^ ; r . By Lemma 1, * ( ^ ' U ̂ " ) =
£f! U ̂ " . Since >κ: <\1—>*Ϊ\1 and ^ ' is connected, *SS" c ^ " . Likewise
* ^ r ' c ^ \ Therefore (since * ( ^ ' U ^ r / ) = ^ ' U ^ " ) we have * ^ ' =
^ " and %Sf" = ^ ' . Since we assumed ϊ < m, ^ m must be contained
either in ά*r or £f", say ^ ' . But Cm remains pointwise fixed under
*. Therefore Cm c #J5^' = ^ " , which contradicts the assumption that
S^r and S^" are disjoint. Therefore I — m and the lemma is proved.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. First we note that if & is hyperelliptic,
then ^ is of genus zero so that any Jordan curve on . ^ separates it.
Therefore, by Lemma 3, &v cannot meet P^^C) in p + 1 Jordan curves.
Hence if ^ has property Πu then it is not hyperelliptic. Next we
note that since &u is a compact orientable surface of genus p, any
p + 1 mutually disjoint Jordan curves separate it. By Lemma 2
^iί - lK=o ^ = ^ ' U <5^", where ^ ' and £f" are connected, disjoint
from one another and HCP" = ^ " and >κ^" = ^ ' . We can see that
cf is homeomorphic to a plane domain as follows: since ^ is

homeomorphic to a sphere with p handles, we can choose the handles
so that ^ , •••, ̂  lie on separate handles. Removal of ^ , •••, ^ ,
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from &υ leaves us with a surface which is homeomorphίc to a sphere
with 2p holes cut in it. Removal of ^ 0 from this residual surface
leaves us with exactly two pieces (which are homeomorphic to one
another under *). Each of these pieces is topologically equivalent to
a plane domain bounded by p + 1 Jordan curves. We could now appeal
to the uniformization theorem of Koebe [2, p. 474], but we can also
sketch an argument here to complete the proof. Let dt(q; q0) denote
a simple Abelian differential of the second kind on &; it has a single
pole of order two at q0 and is regular otherwise. We may also choose
ί(q; q0) so that its periods around Cu •••, Cp are all zero. Since — Co

is homologous to Cu , Cp, the period of t(q; q0) is also zero around Co.
The antianalytic involution * on &v induces an antianalytic involution,
which we also denote by *, on ^ E Clearly, <Z£(*q; *q0) = dt(q; q0). Now
choose q0 on one of the fixed curves Ck, say Co. Then *q0 = q0. Therefore
if q lies on any of the Ck, we have *q = q so <Z£(*q; *q0) = dt(q; q0) =
dt(q; q0), thus we see that dt(q; q0) is real on each of the Ck.

Let &+ denote one of the connected pieces of & — \Jl=0Ck.
Then

t(q;qQ) = \dt(q; q0)

is single valued and regular on &+. Also its imaginary part is constant
on each Ck (and zero on Co) so we can apply the argument principle to
see that t(q; q0) is univalent in &~v. It thus maps ^ + conformally
on to a domain which is the complement of p + 1 slits which are
parallel to the real axis (one of the slits passing through oo). This
type of domain we know is conformally equivalent to one bounded by
p + 1 Jordan curves. (In fact, even equivalent to one bounded by
p + 1 circles [4]-) This completes the proof of the theorem.

We now consider the hyperelliptic case. Suppose the double &
of the plane domain & is hyperelliptic. The Noether mapping v still
exists although it is not one-to-one in this case. The image &v is, in
this case, a nonsingular rational curve in PP_1(C). However, instead
of using linear differentials to define

we can use quadratic differentials to define

This mapping gives an analytic homeomorphism in all cases where
p > 2, hyperelliptic or not. In the case p = 2 the image ,£^ is again
a rational (plane) curve.

For the case p - 2 we must take cubic differentials which will
then define
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τ: & -> P5(C) .

The case p = 1 cannot be handled by this method at all; but we can
deal with it easily in another (known) manner by using the (one)
modulus of the curve. For p = 0 there is no problem to consider.

Returning now to the mapping μ, we make the following definition.

DEFINITION 2β The compact Riemann surface & of genus p is said
to have the property IJ2 if p > 2 and there exists a basis Qu , ζ>33)_3

of quadratic differentials of the first kind (i.e., regular) on & such
that the image ^*μ of & under the mapping μ, defined by this basis,
intersects P3p_{(R) in p + 1 mutually disjoint Jordan curves.

Clearly, the double of a plane domain bounded by p + 1 analytic
Jordan curves (where p > 2) has property /72. We can now state a
second theorem.

THEOREM 2. A closed Riemann surface & of genus p > 2 is the
double of a plane domain if and only if it has the property Π2.

The proof of Theorem 2 is exactly like that of Theorem 1. Lemmas
1, 2, and 3 made no use of the dimension of Pn(C), or of any particular
mapping of & into Pn(C), they only required that &r (the image
of &) should be a complex analytic subvariety of Pn(C).

The case p = 2 can be dealt with in the same manner, except that
we must use cubic differentials. The reason for preferring Theorem 1
over the more inclusive Theorem 2 is that the ordinary differentials
of the first kind are entities readily available for use, whereas the
quadratic differentials are not so easily accessible—especially in the
hyperelliptic case for p > 2, where there exist quadratic differentials
which are not generated from a quadratic form in linear differentials.
Thus Theorem 2 would be much harder to apply in actuality in just
those cases in which it has any advantage over Theorem 1.
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