ENDOMORPHISM RINGS OF PRIMARY ABELIAN GROUPS

Robert W. Stringall

This paper is concerned with the study of certain homomorphic images of the endomorphism rings of primary abelian groups. Let $E(G)$ denote the endomorphism ring of the abelian p-group G, and define $H(G)=\{\alpha \in E(G) \mid x \in G, p x=0$ and height $x<\infty$ imply height $\alpha(x)>$ height $x\}$. Then $H(G)$ is a two sided ideal in $E(G)$ which always contains the Jacobson radical. It is known that the factor ring $E(G) / H(G)$ is naturally isomorphic to a subring R of a direct product $\prod_{n=1}^{\infty} M_{n}$ with $\sum_{n=1}^{\infty} M_{n}$ contained in R and where each M_{n} is the ring of all linear transformations of a Z_{p} space whose dimension is equal to the $n-1$ Ulm invarient of G. The main result of this paper provides a partial answer to the unsolved question of which rings R can be realized as $E(G) / H(G)$.

Theorem. Let R be a countable subring of $\Pi_{\aleph_{0}} Z_{p}$ which contains the identity and $\sum_{\aleph_{0}} Z_{p}$. Then there exists a p group G with a standard basic subgroup and containing no elements of infinite height such that $E(G) / H(G)$ is isomorphic to R. Moreover, G can be chosen without proper isomorphic subgroups; in this case, $H(G)$ is the Jacobson radical of $E(G)$.

1. Preliminaries.
(1.1) Throughout this paper p - represents a fixed prime number, N the natural numbers, Z the integers and $Z_{p^{n}}$ the ring of integers modulo p^{n}. All groups under consideration will be assumed to be p primary and abelian. With few exceptions, the notation of [3], [5], and [8] will prevail.

Let $h_{G}(x)$ and $E(x)$ denote, respectively, the p-height of x in G and the exponential order of x. If A is any subset of the group G, then $\{A\}$ will denote the subgroup of G generated by A. Denote the p^{n} layer of G by $G\left[p^{n}\right]$. Finally, if A is any set, let $|A|$ be the cardinal number of A.
(1.2) Let G be a p-primary group and B a basic subgroup of G. The group B can be written as $B=\sum_{n \epsilon_{N}} B_{n}$ where each B_{n} is a direct sum of, say $f(n)$, copies of $Z_{p^{n}}$. That is, $B_{n}=\sum_{f(n)}\left\{b_{i}\right\}$ where $E\left(b_{i}\right)=n$. Define $H_{n}=\left\{p^{n} G, B_{n+1}, B_{n+2}, \cdots\right\}$. It is readily verified that $G=B_{1} \oplus \cdots \oplus B_{n} \oplus H_{n}$ for each $n \in N$. Thus, it is possible to define the projections $\pi_{n}(n=1,2, \cdots)$ of G onto H_{n} corresponding to the decomposition $G=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{n} \oplus H_{n}$. Define $\rho_{1}=1-\pi_{1}$ and
$\rho_{n}=\pi_{n-1}-\pi_{n}$ for $n>1$. It follows that $\rho_{n}(G)=B_{n}$ and that ρ_{n} is the projection of G onto B_{n}.
2. Endomorphism rings. A few preliminary notions are needed before the main results can be presented. Although given in a different context, many of the results of this section are patterned after those of R. S. Pierce in his work [8].

Lemma 2.1. Let G be a p-group and $B=\sum_{n \in N} B_{n}$ a basic subgroup of G. If α is an endomorphism of $B_{n}[p]$, then α can be extended to an endomorphism β of G such that $j \neq n$ implies $\beta\left(B_{j}\right)=0$.

Proof. Since $G=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{m} \oplus H_{m}$ for each $m \in N$, for each $m \in N$, it is enough to show that α can be extended to B_{n}. Let

$$
B_{n}=\sum_{i=1}^{f(n)}\left\{b_{i}\right\}
$$

where, for each $i, E\left(b_{i}\right)=n$. For $b_{i} \in B_{n}$, write

$$
\begin{aligned}
\alpha\left(p^{n-1} b_{i}\right) & =a_{1} p^{n-1} b_{1}+\cdots+a_{k} p^{n-1} b_{k} \\
\beta\left(b_{i}\right) & =a_{1} b_{1}+\cdots+a_{k} b_{k}
\end{aligned}
$$

where k and the integers $a_{j}\left(0 \leqq a_{j}<p\right)$ are determined by α. Compute $\beta\left(b_{i}\right)$ in this way for each $b_{i} \in B_{n}$, and extend β linearly to B_{n}. It follows that β is the desired extension of α to B_{n}.

Lemma 2.2. If G is a p-group and B a basic subgroup of G, then any bounded homomorphism of B into G can be extended to a bounded endomorphism of G.

Proof. By definition, G / B is divisible. Consequently,

$$
G / B=p^{n}(G / B)=\frac{B+p^{n} G}{B}
$$

for each positive integer n. It follows that $G=B+p^{n} G$ for each $n \in N$. Let $k \in N$ be such that $p^{k} \alpha=0$, and write $x \in G$ as $x=$ $b+p^{k} y$ where $b \in B$ and $y \in G$. It is easy to check that $x \rightarrow \alpha(b)$ defines a bounded extension of α to an endomorphism of G.

For proof of the following lemma see [8], Lemma 13.1.
Lemma 2.3. An endomorphism α of the p-group G is an automorphism if and only if $\operatorname{ker} \alpha \cap G[p]=0$ and $\alpha\left(G[p] \cap p^{n} G\right)=$ $G[p] \cap p^{n} G$ for each integer $n=0,1,2, \cdots$.

For the p-group G, let $E(G)$ denote the ring of all endomorphisms of G. If $E_{p}(G)$ denotes the subcollection of $E(G)$ consisting of all bounded endomorphisms of G, then it is not difficult to show that $E_{p}(G)$ is a two sided ideal of $E(G)$.

Lemma 2.4. Let

$$
\begin{aligned}
H_{p}(G) & =\left\{\alpha \in E_{p}(G) \mid x \in G[p] \text { and } h_{G}(x) \in N \text { imply } h_{G}(\alpha(x))>h_{G}(x)\right\}, \\
K_{p}(G) & =\left\{\alpha \in E_{p}(G) \mid \alpha(G[p])=0\right\}, \text { and } \\
L_{p}(G) & =\left\{\alpha \in E_{p}(G) \mid \alpha(G) \subseteq p G\right\} .
\end{aligned}
$$

Then $H_{p}(G), K_{p}(G)$ and $L_{p}(G)$ are two sided ideals of $E_{p}(G)$ contained in the Jacobson radical, $J\left(E_{p}(G)\right)$, of $E_{p}(G)$. What is more, $K_{p}(G)+L_{p}(G) \subseteq H_{p}(G)$.

Proof. It is easy to check that $H_{p}(G), K_{p}(G)$ and $L_{p}(G)$ are two sided ideals of both $E_{p}(G)$ and $E(G)$. It is also easy to verify that $K_{p}(G) \subseteq H_{p}(G)$. It remains only to show that $L_{p}(G) \subseteq H_{p}(G) \subseteq J\left(E_{p}(G)\right.$). To this end, suppose $\alpha \in L_{p}(G), x \in G[p]$ and $h_{G}(x)=k \in N$. Since $h_{G}(x)=k$, it is possible to write $x=p^{k} y$ for some $y \in G$. It follows that

$$
\alpha(x)=\alpha\left(p^{k} y\right)=p^{k} \alpha(y) \in p^{k} p G=p^{k+1} G
$$

Hence, $h_{G}(\alpha(x)) \geqq k+1>h(x)$ and $\alpha \in H_{p}(G)$. Therefore, $L_{p}(G)$ is contained in $H_{p}(G)$. To show that $H_{p}(G)$ is contained in $J\left(E_{p}(G)\right)$, let $\alpha \in H_{p}(G)$. Since $\alpha \in E_{p}(G)$, there exists a positive integer k such that $p^{k} \alpha=0$. Thus, if $x \in G[p]$ and $h_{G}(x) \geqq k$, then $\alpha(x)=0$. Since $x \in G[p]$ implies $h_{G}\left(\alpha^{k}(x)\right)>k$, it follows that $\alpha^{k+1}(x)=0$ for all $x \in G[p]$. If $x \in G[p]$ and $(1-\alpha)(x)=0$, then

$$
x=\alpha(x)=\alpha^{2}(x)=\cdots=\alpha^{k+1}(x)=0
$$

Thus, $1-\alpha$ is one-to-one on $G[p]$. Also, if $x \in G[p]$, then

$$
(1-\alpha)\left(x+\alpha(x)+\cdots+\alpha^{k}(x)\right)=x .
$$

Therefore, $(1-\alpha)\left(G[p] \cap p^{n} G\right)=G[p] \cap p^{n} G$ for each $n=0,1,2, \cdots$. Applying 2.3, it is seen that $1-\alpha$ has an inverse. Since $H_{p}(G)$ is an ideal of $E(G), \alpha \in J(E(G)) \cap E_{p}(G)=J\left(E_{p}(G)\right.$) (see [4], pp. 9 and 10).

It becomes necessary, at least for the remainder of this section, to fix the basic subgroup B and a decomposition $B=\sum B_{n}$. This, naturally, determines the subgroup H_{n}, the cardinals $f(n)$ and the maps π_{n} and β_{n}.

Lemma 2.5. There are group homomorphisms ρ of $E_{p}(G)$ into $E_{p}(G), \sigma$ of $E_{p}(G)$ into $K_{p}(G)$ and τ of $E_{p}(G)$ into $L_{p}(G)$ such that for $\alpha \in E_{p}(G)$

$$
\left(^{*}\right)(\sigma \alpha)\left(b_{n}\right)=\left(1-\pi_{n-1}\right)\left(\alpha\left(b_{n}\right)\right),(\tau \alpha)\left(b_{n}\right)=\pi_{n}\left(\alpha\left(b_{n}\right)\right)
$$

and $(\rho \alpha)\left(b_{n}\right)=\rho_{n}\left(\alpha\left(b_{n}\right)\right)$ for $b_{n} \in B_{n}, n=1,2, \cdots$. Moreover, $\rho^{2}=\rho, \sigma^{2}=\sigma, \tau^{2}=\tau, \rho \sigma=\sigma \rho=\rho \tau=\tau \rho=\sigma \tau=\tau \sigma=0, \rho+\sigma+\tau=1$, and $\rho_{n}(\rho \alpha) \rho_{n}\left(b_{n}\right)=\rho \alpha\left(b_{n}\right)$ for all $b_{n} \in B_{n}, n=1,2, \cdots$.

Proof. It is clear that conditions (*) determine bounded homomorphisms of B into G, which by 2.2 extend to G as bounded endomorphisms. The remainder of the proof is similar to that of 13.4 in [8] and will not be given.
(2.6) Lemma. The mapping

$$
\lambda: \alpha \rightarrow\left((\rho \alpha)\left|B_{1}[p],(\rho \alpha)\right| B_{2}[p], \cdots\right)
$$

is a ring homomorphism of $E_{p}(G)$ onto the ring direct sum

$$
\sum_{n=1}^{\infty} E\left(B_{n}[p]\right) .
$$

The kernel of λ is $\left\{\alpha \in E_{p}(G) \mid \rho \alpha \in K_{p}(G)\right\}$.
Proof. It is clear that λ maps onto $\sum_{n \in N} E\left(B_{n}[p]\right)$. In fact, if $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}, 0,0, \cdots\right) \in \sum_{n \in N} E\left(B_{n}[p]\right)$ where $\alpha_{k} \in E\left(B_{k}[p]\right)$ for $k=$ $1,2, \cdots, n$, then by 2.1 , each of the α_{k} have extensions β_{k} to G such that $j \neq k$ implies $\beta_{k}\left(B_{j}\right)=0$. Obviously,

$$
\lambda\left(\sum_{i=1}^{n} \beta_{i}\right)=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}, 0,0, \cdots\right)
$$

and $p^{n} \sum_{i=1}^{n} \beta_{i}=0$. Thus, λ is onto $\sum_{n \in N} E\left(B_{n}[p]\right)$. Clearly, λ is additive. To show that λ preserves products, let $b \in B_{n}[p]$. Then $h(b)=n-1$, so that for some $c \in B_{n}, b=p^{n-1} c$. Also,

$$
\rho(\alpha \beta(b))=\rho_{n}(\alpha \beta(b))=\rho_{n}(\alpha((\sigma \beta)(b)+(\rho \beta)(b)+(\tau \beta)(b)))
$$

Now, $\sigma \beta \in K_{p}(G)$ and $b \in G[p]$. Thus, $\sigma \beta(b)=0$. Also, $\tau \beta \in L_{p}(G)$ implies that $\tau \beta(b)=\tau \beta\left(p^{n-1} c\right)=p^{n-1} \tau \beta(c) \in p^{n} G$, so that

$$
\rho_{n} \alpha(\tau \beta(b)) \in p^{n} G \cap B_{n}=p^{n} B_{n}=0 .
$$

Finally, $\rho \beta(b)=\rho_{n} \rho \beta(b)$. Thus,

$$
\rho(\alpha \beta(b))=\rho_{n}(\alpha \beta(b))=\rho_{n} \alpha((\rho \beta)(b))=(\rho \alpha)((\rho \beta)(b)) .
$$

Consequently, $\quad \lambda(\alpha \beta)=\lambda(\alpha) \lambda(\beta)$. To show that the kernel of λ is $\left\{\alpha \in E_{p}(G) \mid \rho \alpha \in K_{p}(G)\right\}$, observe that $\lambda(\alpha)=0$ if and only if $\rho \alpha \mid B_{n}[p]=0$ for all $n \in N$. This condition is equivalent to $\rho \alpha(B[p])=$

0 which, since ρx is bounded, is equivalent to $\rho \alpha(G\lceil p\rceil)=0$. Therefore, $\operatorname{Ker}(\lambda)=\left\{\alpha \in E_{p}(G) \mid \rho \alpha \in K_{p}(G)\right\}$.

Theorem 2.7. The Jacobson radical of $E_{p}(G)$ is $H_{p}(G)$, and $K_{p}(G)+L_{p}(G)=H_{p}(G)$. Also, $E_{p}(G) / H_{p}(G)$ is ring isomorphic to the ring direct sum $\sum_{n \in N} M_{n}$ where each M_{n} is the ring of all linear transformations of a Z_{p}-space of dimension $f(n)$.

Proof. By 2.6 there is a ring homomorphism λ of $E_{p}(G)$ onto a ring isomorphic to $\sum_{n \in N} M_{n}$. Moreover, the kernel, of λ is $\left\{\alpha \in E_{p}(G) \mid \rho \alpha \in K_{p}(G)\right\}$. The rings M_{n} are surely primitive. Thus, by [4], proposition 1, p. 10, the Jacobson radical of $E_{p}(G)$ is contained in $\bigcap_{n \in N} \operatorname{Ker}\left(\delta_{n} \lambda\right)=\operatorname{Ker} \lambda$ where $\delta_{n}(n=1,2, \cdots)$ is, temporarily, the projection map of $\sum_{n \in N} M_{n}$ onto M_{n}. Hence by 2.4,

$$
K_{p}(G)+L_{p}(G) \subseteq H_{p}(G) \cong J\left(E_{p}(G)\right) \cong \operatorname{Ker} \lambda .
$$

To show that the kernel of λ is contained in $K_{p}(G)+L_{p}(G)$, let $\alpha \in E_{p}(G)$ be such that $\rho \alpha \in K_{p}(G)$. By 2.5, $\rho \alpha+\sigma \alpha+\tau \alpha=\alpha$. It follows that $\alpha \in K_{p}(G)+L_{p}(G)$. Thus,

$$
\operatorname{Ker} \lambda=\left\{\alpha \in E_{p}(G) \mid \rho \alpha \in K(G)\right\} \cong K_{p}(G)+L_{p}(G) .
$$

Hence,

$$
\operatorname{Ker} \lambda=J\left(E_{p}(G)\right)=K_{p}(G)+L_{p}(G)=H_{p}(G)
$$

For proof of the following lemma, the reader is directed to R. S. Pierce's work [8], p. 284.

Lemma 2.8. Suppose R is an associative ring and S any twosided ideal of R. Let $J(S)$ be the Jacobson radical of S and

$$
J(R, S)=\{x \in R \mid x z \in J(S) \text { for all } z \in S\}
$$

Then the following statements are valid:
(a) $J(R, S)$ is a two-sided ideal of R containing $J(R)$ the Jacobson radical of R;
(b) $J(R, S)=\{x \in R \mid w x z$ is quasi-regular for all z, w in $S\}$;
(c) $J(R, S)=\{x \in R \mid z x \in J(S)$ for all $z \in S\}$;
(d) $J(R, S) \cap S=J(S)$;
(e) the image of S under the natural projection of R onto $R / J(R, S)$ is an ideal which isomorphic to $S / J(S)$.

Recall that $M_{n}(n=1,2, \cdots)$ is defined to be the ring of all linear
transformations of a Z_{p}-space of dimension $f(n)$.
If ξ is the natural map of $E(G)$ onto $E(G) / J\left(E(G), E_{p}(G)\right)$, then, by $2.8(e), \xi\left(E_{p}(G)\right)$ is isomorphic to $E_{p}(G) / J\left(E_{p}(G)\right)$. By 2.7 , there is an isomorphism λ of $E_{p}(G) / J\left(E_{p}(G)\right)$ onto the ring direct sum $\sum_{n \in N} M_{n}$. Let δ_{n} be the ring homomorphism of $E_{p}(G)$ onto M_{n} obtained by composing $\lambda \xi$ with the projection of $\sum_{n \in N} M_{n}$ onto M_{n}. That is, for $\alpha \in E_{p}(G)$

$$
\lambda \xi(\alpha)=\left(\delta_{1} \alpha, \delta_{2} \alpha, \cdots\right)
$$

It is easy to see that if $\rho_{n}(n=1,2, \cdots)$ are as defined in 1.2 , then

$$
\delta_{n}\left(\rho_{m}\right)=0 \quad \text { for } m \neq n \quad \text { and } \quad \delta_{n}\left(\rho_{n}\right)=1 .
$$

For $\alpha \in E(G)$, set $\mu(\alpha)=\left(\delta_{1}\left(\alpha \rho_{1}\right), \delta_{2}\left(\alpha \rho_{2}\right), \delta_{3}\left(\alpha \rho_{3}\right), \cdots\right)$.
Theorem 2.9. The correspondence

$$
\alpha \xrightarrow{\mu}\left(\delta_{1}\left(\alpha \rho_{1}\right), \delta_{2}\left(\alpha \rho_{2}\right), \delta_{3}\left(\alpha \rho_{3}\right), \cdots\right)
$$

is a ring homomorphism of $E(G)$ onto a subring R of the ring direct product $\Pi_{n \in N} M_{n}$ with kernel $J\left(E(G), E_{p}(G)\right)$. Moreover, R contains both the identity of $\prod_{n \in N} M_{n}$ and the ring direct sum $\sum_{n \in N} M_{n}$.

Proof. See the proof of Theorem 14.3 in [8].
The following lemma gives an interesting characterization of $J\left(E(G), E_{p}(G)\right)$.

Lemma 2.10. $J\left(E(G), E_{p}(G)\right)=\left\{\alpha \in E(G) \mid x \in G[p] \quad\right.$ and $\quad h_{\theta}(x) \in N$ imply $\left.h_{G}(\alpha(x))>h_{G}(x)\right\}$.

Proof. Suppose $\alpha \in E(G)$ and $h_{G}(\alpha(x))>h(x)$ for all $x \in G[p]$ such that $h(x)$ is finite. Then if $\beta \in E(G)$, the product $\alpha \beta$ satisfies this same condition. That is, for elements x in $G[p]$ of finite height, $h_{G}(\alpha \beta(x))>h_{G}(x)$. In particular, if $\beta \in E_{p}(G)$, then $\alpha \beta$ is bounded and satisfies the foregoing condition. Thus, for $\beta \in E_{p}(G), \alpha \beta \in H_{p}(G)$ which by 2.7 is $J\left(E_{p}(G)\right)$. Consequently, $\alpha \in J\left(E(G), E_{p}(G)\right)$ by definition. Conversely, suppose $\alpha \in J\left(E(G), E_{p}(G)\right), x \in G[p]$ and $h_{\theta}(x)<\infty$. The existence of a bounded endomorphism β such that $\beta(x)=x$ is easy to verify (see, for example, [3], Theorem 24.7). By definition, $\alpha \beta \in J\left(E_{p}(G)\right)$. Consequently, $h_{G}(\alpha(x))=h_{G}(\alpha \beta(x))>h_{G}(x)$.

The following two results will be needed later.
Lemma 2.11. Let α be any automorphism of the p-group G without
elements of infinite height. If $\beta \in J\left(E(G), E_{p}(G)\right)$, then $\alpha-\beta$ is one-to-one.

Proof. Suppose $0 \neq x \in G[p]$ and $(\alpha-\beta)(x)=0$. Then by 2.10,

$$
h_{G}(x)<h_{G}(\beta(x))=h_{G}(\alpha(x)) \leqq h_{G}\left(\alpha^{-1}(\alpha(x))\right)=h_{G}(x),
$$

a contradiction. Thus, $\operatorname{ker}(\alpha-\beta) \cap G[p]=0$. This is enough to ensure that $\alpha-\beta$ is one-to-one.

THEOREM 2.12. If G is without elements of infinite height and has no proper isomorphic subgroups, then $J\left(E(G), E_{p}(G)\right)=J(E(G))$.

Proof. If $\alpha \in J\left(E(G), E_{p}(G)\right)$, then $1-\alpha$ is an isomorphism by Lemma 2.11. Since G has no proper isomorphic subgroups, $1-\alpha$ is an automorphism. Therefore, α is quasi-regular for each $\alpha \in J\left(E(G), E_{p}(G)\right)$ (see [4], p. 7). Since $J\left(E(G), E_{p}(G)\right)$ is a right ideal, it follows that $J\left(E(G), E_{p}(G)\right) \sqsubseteq J(E(G))$ ([4], Theorem 1, p. 9). Finally, $J(E(G)) \sqsubseteq$ $J\left(E(G), E_{p}(G)\right)$ by 2.8 (a).
3. Realizations of $E(G)$. The primary concern of this paper is with the endomorphism rings of p-primary groups without elements of infinite height. The study of such rings can be greatly eased with the employment of some fairly simple notions.

Let G be a p-group without elements of infinite height and $B=$ $\sum_{n \in N} B_{n}$ a basic subgroup of G. Let \bar{B} denote the closure (or torsion completion) of B. The group \bar{B} can be defined as the torsion subgroup of the direct product $\prod_{n \in N} B_{n}$. That is,

$$
\bar{B}=\left\{x \in \prod_{n \in N} B_{n} \mid p^{k} x=0 \text { for some } k \in N\right\}
$$

Naturally, B is identified with the subgroup of \bar{B} consisting of those elements which have at most a finite number of nonzero components. Thus, B is a pure subgroup of \bar{B}. It is well known that there is a B-isomorphism of G onto a pure subgroup of \bar{B} (see [3], §33). Thus, in a sense, the study of p-groups without elements of infinite height can be reduced to the study of pure subgroups of suitable closed groups \bar{B}.

It has already been asserted that G should be a p-group with fixed basic subgroup B. In order that the above remarks will apply to G, require, in addition, that G be without elements of infinite height. That is, both B and \bar{B} are fixed and G is a pure subgroup of \bar{B} which contains B.

If α, β are endomorphisms of G which agree on B, then B is contained in the kernel of the difference $\gamma=\alpha-\beta$. Thus, $\gamma(G)$ is a homomorphic image of the divisible group G / B, and, for this reason,
is divisible. Since G is reduced and since $\gamma(G) \subseteq G$, it follows that $\gamma(G)=(\alpha-\beta)(G)=0$. Thus, $\alpha=\beta$. Consequently, if G is a reduced p-group, then every endomorphism of G is completely determined by its effect on the elements of any basic subgroup.

By 2.2 and the above remarks, it follows that each bounded endomorphism of B has a unique extension to an endomorphism of G. Because of this, it may be assumed that $E(G)$, the endomorphism ring of G, contains an embedded copy, denoted by $E_{p}(B)$, of the ring of all bounded endomorphisms of B. Thus, identify $E_{p}(B)$ with

$$
\left\{\alpha \in E_{p}(G) \mid \alpha(B) \subseteq B\right\}
$$

Suppose that $B \subseteq G \subseteq \bar{B}$ where G is a pure subgroup of \bar{B}. It has been shown that every endomorphism of G has a unique extension to \bar{B} (see, for example, [6], pp. 84-85). Thus, it is possible to adopt the very useful convention of identifying the endomorphism ring of G with the subring of the endomorphism ring of \bar{B} consisting of endomorphisms of \bar{B} which map G into itself. That is,

$$
E(G)=\{\alpha \in E(\bar{B}) \mid \alpha(G) \subseteq G\}
$$

With this identification, $E_{p}(G)$ (the torsion subring of $E(G)$) becomes a subring of $E_{p}(\bar{B})$; namely,

$$
E_{p}(G)=\left\{\alpha \in E_{p}(\bar{B}) \mid \alpha(G) \subseteq G\right\}
$$

It is reasonable to expect the above identifications to carry over in some way to the images $\mu(E(G))$ where μ is the map defined in Theorem 2.9. The following results show that this is indeed the case.

Let ξ be the map of Theorem 2.9 developed for $E(\bar{B})$. Then by using the definition of ξ and the above convention, it is not hard to show, for pure subgroups G of \bar{B} containing B, that $\xi \mid E(G)$ and the map μ, defined in 2.9 for $E(G)$, are identical. Because of this, it is possible to confine the investigation of all such maps μ to the map ξ and its restrictions to subrings of $E(\bar{B})$.

By way of summation, the following is given.
Lemma 3.1. Let G be pure subgroup of \bar{B} which contains B. Let ξ be the map of Theorem 2.9 defined for the p-group \bar{B}. The restriction of ξ to $E(G)$ and the map of 2.9 developed for G agree. Moreover, $J\left(E(G), E_{p}(G)\right)=J\left(E(\bar{B}), E_{p}(\bar{B})\right) \cap E(G)$.

Lemma 3.2. If $G=B$ or $G=\bar{B}$, then $\xi(E(G))=\Pi M_{n}$.
Proof. Suppose $\left(\alpha_{1}, \alpha_{2}, \cdots\right)$ is an arbitrary element of ΠM_{n}.

Each $\alpha_{i}(i=1,2, \cdots)$ may be considered as an endomorphism of $B_{i}[p]$. By 2.1, each α_{i} has an extension to an endomorphism β_{i} of B such that $\beta_{i}\left(B_{j}\right)=0$ if $i \neq j$. Let α be the endomorphism of B determined by the conditions:

$$
\alpha\left(b_{i}\right)=\beta_{i}\left(b_{i}\right) \text { for } b_{i} \in B_{i} i=1,2, \cdots
$$

By Lemma 2.2, α can be extended to \bar{B}. In either case, $\xi(\alpha)=$ $\left(\alpha_{1}, \alpha_{2}, \cdots\right)$.

Up to this point it has been shown that ΠM_{n} can be realized as a homomorphic image of $E(B)$ and $E(\bar{B})$. Using an example of R. S. Pierce, it can be shown that not every pure subgroup G of \bar{B} which contains B can be so classified.

First, consider the ring of p-adic integers, R_{p} (see [3], §6). This ring can be thought of as the collection of all infinite sums of the form

$$
r=r_{0}+r_{1} p+r_{2} p^{2}+\cdots
$$

where $0 \leqq r_{i}<p$. Suppose $x \in G$, and $r \in R_{p}$ where

$$
r=r_{0}+r_{1} p+r_{2} p^{2}+\cdots
$$

and $0 \leqq r_{i}<p$. It is possible to assign a meaning to the product $r x$, namely,

$$
r x=r_{0} x+r_{1} p x+r_{2} p^{2} x+\cdots+r_{n} p^{n} x
$$

where n is any integer greater than $E(x)$. Clearly, this definition is independent of the integer n. It is easy to check that with this definition, G becomes an R_{p}-module. Consequently, every element r of R_{p} induces an endomorphism of $G, x \rightarrow r x$, which will also be labeled r. What is more important, it is not difficult to show that this correspondence, between the elements of R_{p} and the elements of $E(G)$, is a ring isomorphism. With this in mind, it is possible to assume that R_{p} is a subring of the ring of all endomorphisms of G.

Definition 3.3. An endomorphism α of the p-group G is said to be a small endomorphism of G provided the following condition is satisfied:
$\left(^{*}\right)$ for all $k \geqq 0$ there exists an integer n such that $0(x) \leqq k$ and $h_{G}(x) \geqq n$ imply $\alpha(x)=0$.

Remark. The concept of small endomorphism is due to R. S. Pierce and can be found in his paper [8]. The equivalence of the above definition and that appearing in [8] can be shown using 3.1 and 2.10 in the above mentioned paper.

It is an easy consequence of the above definition that the collection of all small endomorphisms forms a subring $E_{s}(G)$ of the ring $E(G)$. Moreover, $E_{s}(G)$ is an ideal of $E(G)$.
R. S. Pierce has shown that there exists a p-group H without elements of infinite height such that $E(H)=E_{s}(H)+R_{p}$ ([8], p. 297). The following results demonstrate a few of the many curious properties of such groups.

Lemma 3.4. If $E(H)=E_{s}(H)+R_{p}$, then $E_{s}(H)$ and R_{p} are disjoint.

Proof. Let $r \in R_{p}$ and $r=\sum_{i=0}^{\infty} r_{i} p^{i}$ where $0 \leqq r_{i}<p$. By definition, r is a small endomorphism if and only if for all $k \geqq 0$ there exists an integer n such that $x \in H, E(x) \leqq k$ and $h_{H}(x) \geqq n$ collectively imply $r(x)=0$. Let h be the least index such that $r_{h} \neq 0$. Let $k>h$, and for $l>k$ let $x_{l}=p^{l-k} b_{l}$ where $b_{l} \in B_{l}, E\left(b_{l}\right)=l$ and $h_{H}\left(b_{l}\right)=$ 0. (Recall that $B=\sum_{n \epsilon_{N}} B_{n}$ is a basic subgroup of H). Then $x_{l} \in B \cong H, E\left(x_{l}\right)=k, r\left(x_{l}\right) \neq 0$, and $h_{H}\left(x_{l}\right)$ increases indefinitely as l increases. Thus r is not a small endomorphism, and $E_{s}(H) \cap R_{p}=0$.

Lemma 3.5. $\xi\left(E_{s}(H)\right)=\sum M_{n}$ and $\xi\left(R_{p}\right)=\{1\}$ where 1 is the identity of $\Sigma^{c} M_{n}$.

Proof. It is easy to see from the definitions of ξ and $E_{\mathrm{s}}(H)$ that $\xi\left(E_{s}(H)\right) \subseteq \sum M_{n}$. Since $E_{p}(B) \subseteq E_{p}(H) \subseteq E_{s}(H)$ and $\xi\left(E_{p}(B)\right)=\sum M_{n}$, it follows that $\xi\left(E_{s}(H)\right)=\sum M_{n}$. Suppose $r=$ $\sum_{i=0}^{\infty} r_{i} p^{i} \in R_{p}$. Write $r=r_{0}+p s$ where $s=\sum_{i \in_{N}} r_{i} p^{i-1}$. Clearly,

$$
\xi(r)=\xi\left(r_{0}+p s\right)=\xi\left(r_{0}\right)+\xi(p s)=\xi\left(r_{0}\right) \in\{1\}
$$

Lemma 3.6.

$$
\operatorname{Ker}(\xi \mid E(H))=J\left(E_{s}(H)\right)+J\left(R_{p}\right)=J\left(E(H), E_{p}(H)\right)
$$

Proof. By 3.1, $\operatorname{Ker}(\xi \mid E(H))=J\left(E(H), E_{p}(H)\right)$. To show that $\operatorname{Ker}(\xi \mid E(H))=J\left(E_{s}(H)\right)+J\left(R_{p}\right)$, let $\alpha+r$ be an arbitrary element in $E(H)$ where $\alpha \in E_{s}(H)$ and $r \in R_{p}$. Suppose, in addition, that $\xi(\alpha+r)=0$. Since $\sum M_{n}$ and $\{1\}$ are obviously independent and since $\xi(\alpha+r)=\xi(\alpha)+\xi(r) \in \sum M_{n}+\{1\}$ by the foregoing lemma, $\xi(\alpha+r)=$ 0 if and only if both $\xi(\alpha)=0$ and $\xi(r)=0$. Surely, $\xi(r)=0$ if and only if $r \in p R_{p}$. Since $p R_{p}$ is the unique maximal ideal in $R_{p}, J\left(R_{p}\right)=p R_{p}$ (see [4], p. 9). Thus, the conditions $\xi(r)=0$ and $r \in J\left(R_{p}\right)$ are equivalent. Moreover, $\xi(\alpha)=0$ and $\alpha \in E_{s}(H)$ if and only if $\alpha \in J\left(E(H), E_{p}(H)\right) \cap E_{s}(H)$. By Lemmas 2.9 and $2.8(\mathrm{~d})$ of this paper and 14.4 of [8], $\xi(\alpha)=0$ if and only if

$$
\alpha \in J\left(E(H), E_{\mathrm{s}}(H)\right) \cap E_{\mathrm{s}}(H)=J\left(E_{\mathrm{s}}(H)\right) .
$$

Thus,

$$
\operatorname{Ker}(\xi \mid E(H))=J\left(E_{s}(H)\right)+J\left(R_{p}\right)=J\left(E(H), E_{p}(H)\right) .
$$

Lemma 3.7. If $K(G)=\{\alpha \in E(G) \mid \alpha(G[p])=0\}$, then $K(G)$ is a two sided ideal of $E(G)$ which is contained in the Jacobson radical of $E(G)$.

Proof. It is obvious that $K(G)$ is an ideal of $E(G)$. Moreover, if $\alpha \in K(G)$, then $\operatorname{ker}(1-\alpha) \cap G[p]=0$ and $(1-\alpha)\left(G[p] \cap p^{n} G\right)=$ $G[p] \cap p^{n} G$. Thus, $1-\alpha$ is an automorphism by 2.3. It follows that $K(G)$ is a quasi regular ideal in $E(G)$; and is, therefore, contained in the Jacobson radical of $E(G)$ (see [4], p. 9, Theorem 1).

Theorem 3.8. $\quad E(H) / J(E(H))=E(H) / J\left(E(H), E_{p}(H)\right) \quad$ is ring isomorphic to $\sum M_{n}+\{1\}$.

Proof. By 3.5 and $3.6, \xi$ maps $E(H)$ onto $\sum M_{n}+\{1\}$ with kernel $J\left(E(H), E_{p}(H)\right)=J\left(E_{s}(H)\right)+J\left(R_{p}\right)$. Also, by 2.8 (a), $J(E(H)) \cong$ $J\left(E_{s}(H)\right)+J\left(R_{p}\right)$. Thus, it remains only to show that $J\left(R_{p}\right)$ and $J\left(E_{s}(H)\right)$ are contained in $J(E(H))$. Since $E_{s}(H)$ is a two sided ideal of $E(H), J\left(E_{s}(H)\right)=J(E(H)) \cap E_{s}(H)$ (see [4], p. 10). Thus, $J\left(E_{s}(H)\right) \cong$ $J(E(H))$. Since $J\left(R_{p}\right)=p R_{p}\left(p R_{p}\right.$ is the unique maximal ideal of $\left.R_{p}\right)$ and since $J(E(H)$) is an ideal, Lemma 3.7 is enough to insure that $J\left(R_{p}\right) \cong J(E(H))$.
4. An extension property. In § 3, it was shown, using suitable pure subgroups of \bar{B}, that there are at least two distinct rings of the form $E(G) / J\left(E(G), E_{p}(G)\right)$, namely, ΠM_{n} and $\sum M_{n}+\{1\}$. It is the objective of the remainder of this paper to investigate some of the possible images $\xi(E(G))$ for $B \subseteq G \subseteq \bar{B}$.

For the duration, assume that $B=\sum_{i \in_{N}} B_{i}$ where each $B_{i}=\left\{b_{i}\right\}$ is of rank one and of order p^{i}. In this case each M_{i} automatically becomes fixed as a single copy of Z_{p}. That is, each M_{i} will be the ring of all endomorphisms of a cyclic group, $\left\{c_{i}\right\}$, of order p.

For a subset A of N, let $t(A)$ be the element of $\prod_{n \in_{N}} M_{n}$ defined by the conditions

$$
t(A)\left(c_{j}\right)= \begin{cases}c_{j} \text { if } j \in A \\ 0 & \text { if } j \notin A .\end{cases}
$$

It is obvious that if r is any element of $\Pi_{n \in N} M_{n}$ and if for each $i=0,1, \cdots, p-1 A_{i}(r)=\left\{j \in N \mid r\left(c_{j}\right)=i c_{j}\right\}$, then r can be written in the form $r=\sum_{i=0}^{p-1} i t\left(A_{i}(r)\right)$.

Lemma 4.1. Let R be any subring of $\Pi_{n \in N} M_{n}$ with identity e. (The identity of $\Pi_{n \in N} M_{n}$ and e are not assumed to be identical.) Then $e=t(M)$ for some subset M of N. Moreover, the collection $K(R)=\{A \subseteq N \mid t(A) \in R\}$ forms a Boolean algebra of subsets of M.

Proof. Using Fermat's theorem

$$
e=e^{p-1}=\left(\sum_{i=0}^{p-1} i t\left(A_{i}(e)\right)\right)^{p-1}=\sum_{i=0}^{p=1} i^{p-1} t\left(A_{i}(e)\right)=\sum_{i=1}^{p=1} t\left(A_{i}(e)\right)=t(M)
$$

where $M=\left\{i \in N \mid e\left(c_{i}\right) \neq 0\right\}$. If $t(A), t(B)$ are members of R, then $t(A \cap B)=t(A) t(B) \in R$ and $t(A \cap B)=t(A)+t(B)-t(A \cap B) \in R$. Since $t(A)=e \cdot t(A)=t(M) \cdot t(A)=t(M \cap A)$, it follows that $A \subseteq M$ for all $A \in K(R)$. Thus, $t(M-A)=t(M)-t(A)=e-t(A) \in R$ for all $A \in K(R)$. This shows that $K(R)$ does indeed form a subalgebra of $P(M)=\{A \mid A \subseteq M\}$.

Lemma 4.2. Let R be a subring of $\Pi_{n \in N} M_{n}$ with identity $e=t(M)$. If $r \in R$, then $t\left(A_{k}(r)\right) \in R$ for each $k=0,1, \cdots, p-1$.

Proof.

$$
r=0 \cdot t\left(A_{0}(r)\right)+t\left(A_{1}(r)\right)+2 t\left(A_{2}(r)\right)+\cdots+(p-1) t\left(A_{p-1}(r)\right)
$$

Consider the product

$$
s=\prod_{i \neq k, i=0,1, \ldots, p-1}(i e-r)
$$

It follows that $s \in R$. Clearly, if $i \notin A_{k}(r)$, then $s\left(c_{j}\right)=0$ since $j \in A_{i}(r)$ for some i and

$$
(i e-r)\left(c_{j}\right)=i c_{j}-r\left(c_{j}\right)=i c_{j}-i c_{j}=0 .
$$

Also, if $j \in A_{k}(r)$, then

$$
\begin{aligned}
s\left(c_{j}\right)= & (0-k)(1-k)(2-k) \cdots((k-1)-k)((k+1)-k) \\
& \cdots((p-1)-k)\left(c_{j}\right)=(p-1)!c_{j}
\end{aligned}
$$

By Wilson's theorem, $(p-1)!\equiv-1(\operatorname{modulo} p)$; consequently, $t\left(A_{k}(r)\right)=$ $-s \in R$.

Suppose R is a subring of ΠM_{n} which contains $\sum M_{n}+\{1\}$. For each $A \in K(R)$, let $\rho(A)=\sum_{i \in_{A}} \rho_{i}$. Define $\Gamma(R)$ to be the subgroup of $E(\bar{B})$ generated by the collection $\{\rho(A) \mid A \in K(R)\}$. Using Lemma 4.1 and 4.2 some elementary properties of $\Gamma(R)$ can be stated.

Lemma 4.3. If $\alpha \in \Gamma(R)$, then there exists an integer $n \geqq 0$, integers $a_{1}, a_{2}, \cdots, a_{n}$ and disjoint elements $A_{1}, A_{2}, \cdots, A_{n}$ in $K(R)$ such that

$$
\alpha=a_{1} \rho\left(A_{1}\right)+a_{2} \rho\left(A_{2}\right)+\cdots+a_{n} \rho\left(A_{n}\right) .
$$

Moreover, the group $\Gamma(R)$ is a subring of $E(\bar{B})$.

Proof. For the first statement, induction can be used. For the induction step, it is enough to show that if

$$
\alpha=a_{1} \rho\left(A_{1}\right)+a_{2} \rho\left(A_{2}\right)+\cdots+a_{n-1} \rho\left(A_{n-1}\right)+a_{n} \rho\left(A_{n}\right)
$$

where A_{1}, \cdots, A_{n-1} are disjoint, then the result holds. Using 4.1, $A_{1}, \cdots, A_{n} \in K(R)$ imply that

$$
A_{1} \cap A_{n}, \cdots, A_{n-1} \cap A_{n} ; A_{1}-A_{n}, \cdots, A_{n-1}-A_{n}
$$

and $A_{n}-\bigcup_{i=1}^{n-1} A_{i}$ are members of $K(R)$. Moreover, these sets are disjoint. Thus, if α is written

$$
\begin{aligned}
\alpha= & a_{1} \rho\left(A_{1}-A_{n}\right)+\cdots+a_{n-1} \rho\left(A_{n-1}-A_{n}\right)+\left(a_{1}+a_{n}\right) \rho\left(A_{1} \cap A_{n}\right) \\
& +\cdots+\left(a_{n-1}+a_{n}\right) \rho\left(A_{n-1}-A_{n}\right)+a_{n} \rho\left(A_{n}-\bigcup_{i-1}^{n-1} A_{i}\right)
\end{aligned}
$$

then it is easily checked that this is the desired decomposition. To show that $\Gamma(R)$ and the subring of $E(\bar{B})$ generated by $\Gamma(R)$ are identical, it is enough to show that $\Gamma(R)$ is closed under composition. It suffices to note that if $A_{1}, A_{2} \in K(R)$, then $\rho\left(A_{1}\right) \rho\left(A_{2}\right)=\rho\left(A_{1} \cap A_{2}\right) \in \Gamma(R)$. This is obvious by Lemma 4.1 and the definition of $\Gamma(R)$.

Lemma 4.4. $\quad R=\xi(\Gamma(R))$.
Proof. If $r \in R$, then $r=\sum_{i=0}^{p-1} i t\left(A_{i}(r)\right)$ where $A_{i}(r) \in K(R)$ (see 4.2). Let $\alpha=\sum_{i=0}^{p=1} i \rho\left(A_{i}(r)\right)$. Then $\alpha \in \Gamma(R)$ and $\xi(\alpha)=r$. Thus, $R \subseteq \xi(\Gamma(R))$. On the other hand, suppose

$$
\alpha=a_{1} \rho\left(A_{1}\right)+\cdots+a_{n} \rho\left(A_{n}\right) \in \Gamma(R),
$$

where $a_{1}, \cdots, a_{n} \in Z$ and $A_{1}, \cdots, A_{n} \in K(R)$. Applying ξ,

$$
\begin{gathered}
\xi(\alpha)=a_{1} \xi \rho\left(A_{1}\right)+\cdots+a_{n} \xi \rho\left(A_{1}\right)+\cdots+a_{n} \xi\left(\rho\left(A_{n}\right)\right)= \\
a_{1} t\left(A_{1}\right)+\cdots+a_{n} t\left(A_{n}\right) \in R
\end{gathered}
$$

(see the definition of $K(R)$ in Lemma 4.1).
The following lemma is needed before the main result of this section can be given.

Lemma 4.5. Let $y=h \sum_{j \geq k} a_{j} p^{j-k} b_{j}$ where $h \in Z, k \in N$ and each $a_{j}(j \geqq k)$ is an integer such that $0 \leqq a_{j}<p$. If $A \subseteq N$ and $i \in N$, then $p^{i-1} y \neq 0$ and $\rho(A)\left(p^{i-1} y\right) \in B$ imply that $\rho(A)(y) \in B$.

Proof. Suppose $\rho(A)(y) \notin B$. Then if $A_{0}=\left\{i \in A \mid a_{i} \neq 0\right\}, A_{0}$ is infinite. Since $\rho(A)\left(p^{i-1} y\right) \in B$, there is some $n \in A_{0}$ such that $\rho_{n} \rho(A)\left(p^{i-1} y\right)=0$. Thus,

$$
0=\rho_{n} \rho(A)\left(p^{i-1} y\right)=\rho_{n}\left(p^{i-1} y\right)=p^{i-1} h a_{n} p^{n-k} b_{n}=h a_{n} p^{n+i-k-1} b_{n}
$$

so that p^{k+1-i} divides h. Since $p^{i-1} y \neq 0$, this cannot be the case.

Theorem 4.6. Let G be a pure subgroup of \bar{B} such that $B \cong G$ and $\gamma(G) \subseteq G$ for each $\gamma \in \Gamma(R)$. Suppose $x \in \bar{B}[p]$ is such that $\Gamma(R)(x) \cap G[p] \subseteq B[p]$. Then there is a pure subgroup H of \bar{B} such that
(i) $B \cong G \cong H$
(ii) $H[p]=G[p]+\Gamma(R)(x)$
(iii) $\gamma(H) \cong H$ for each $\gamma \in \Gamma(R)$.

Proof. Write $x=\sum_{i \geqq k_{0}} a_{i} p^{i-1} b_{i}$ where $k_{0}>0,0 \leqq a_{i}<p$ for $i \geqq k_{0}$ and $a_{k_{0}} \neq 0$. Let K be the subgroup of \bar{B} generated by B and the collection consisting of all sums of the form $\sum_{i \geqq k} a_{i} p^{i-k} b_{i}$ where $k \geqq k_{0}$. Consider the group \bar{K} generated by all elements of the form $\gamma(z)$ for $z \in K$ and $\gamma(R)$. It is claimed that the group $H=\bar{K}+G$ has all the desired properties. First, note that K is exactly the subset of \bar{B} consisting of all elements which can be written as $b+h \sum_{j \geqq k} a_{j} p^{j-k} b_{j}$ for some $b \in B, h \in Z$ and $k \in N$ (the integers a_{j} for $j \geqq k$ are determined by the element x). Also, if $y=b+h \sum_{j \geqq k} a_{j} p^{j-k} b_{j} \in K$, then y may be written as $y=b^{\prime}+p^{n} h \sum_{j \geq k+n} a_{j} p^{j-(k+n)} b_{j}$, where $b^{\prime}=$ $b+h \sum_{j=k}^{k+n-1} a_{j} p^{j-k} b_{j} \in B$ and $\sum_{j \geq k+n} a_{j} p^{j-(k+n)} b_{j} \in K$. Thus, K / B is divisible. Suppose $n \in N, \gamma_{1}, \cdots, \gamma_{k} \in \Gamma(R)$ and $x_{1}, \cdots, x_{k} \in K$. Using the divisibility of K / B, choose $y_{1}, \cdots, y_{k} \in K$ such that $x_{i}-p^{n} y_{i} \in B$ for each $i=1, \cdots, k$. Since $\gamma \in \Gamma(R)$ implies $\gamma(B) \subseteq B$, it follows that

$$
\begin{aligned}
& \gamma_{1}\left(x_{1}\right)+\cdots+\gamma_{k}\left(x_{k}\right)-p^{n}\left(\gamma_{1}\left(y_{1}\right)+\cdots+\gamma_{k}\left(y_{k}\right)\right) \\
& \quad=\gamma_{1}\left(x_{1}\right)-\gamma_{1}\left(p^{n} y_{1}\right)+\cdots+\gamma_{k}\left(x_{k}\right)-\gamma_{k}\left(p^{n} y_{k}\right) \\
& \quad=\gamma_{1}\left(x_{1}-p^{n} y_{1}\right)+\cdots+\gamma_{k}\left(x_{k}-p^{n} y_{k}\right) \in B
\end{aligned}
$$

This shows that \bar{K} / B is divisible. (Note that $B \subseteq \bar{K}$ since $1 \in \Gamma(R)$ and $B \subseteq K$.) Now, both \bar{K} / B and G / B are divisible. Consequently, $H=\bar{K}+G$ is a pure subgroup of \bar{B} since $(\bar{K}+G) / B=(\bar{K} / B)+(G / B)$ is a sum of divisible groups and hence divisible. Since, $\alpha, B \in \Gamma(R)$ imply that $\alpha \beta \in \Gamma(R)$ (see 4.3), it follows that $\gamma(\bar{K}) \subseteq \bar{K}$ for all $\gamma \in \Gamma(R)$. Thus, $\gamma(H) \cong H$ for each $\gamma \in \Gamma(R)$. It remains only to show that $H[p]=G[p]+\Gamma(R)(x)$. First, suppose that

$$
y=h \sum_{j \geq k} a_{j} p^{i-k} b_{j} \in K \quad \text { and } \quad A \in K(R)
$$

Then $\rho(A)(y) \in G$ if and only if $\rho(A)(y) \in B$. To show that this assertion is correct, suppose that $\rho(A)(y)$ is a member of G. Then, if $i=E(y), p^{i-1} y=h^{\prime} x-b^{\prime}$ for suitable $h^{\prime} \in Z$ and $b^{\prime} \in B$. Thus, since $\Gamma(R)(x) \cap G \subseteq B$ and $B \subseteq G, \quad$ it follows that $\rho(A)\left(p^{i-1} y+b^{\prime}\right)=$ $\rho(A)\left(h^{\prime} x\right) \in B$ and that $\rho(A)\left(p^{i-1} y\right) \in B$. But, $\rho(A)\left(p^{i-1} y\right) \in B, p^{i-1} y \neq 0$ and $y=h \sum_{j \geq k} a_{j} p^{j-k} b_{j}$ imply, via 4.5 and the restriction on the $a_{i}(i \geqq k)$, that $\rho(A)(y) \in B$. The converse is trivial. Let

$$
x_{1}, x_{2}, \cdots, x_{n} \in K, z \in G \quad \text { and } \quad \gamma_{1}, \gamma_{2}, \cdots, \gamma_{n} \in \Gamma
$$

Suppose

$$
p\left(\gamma_{1}\left(x_{1}\right)+\gamma_{2}\left(x_{2}\right)+\cdots+\gamma_{n}\left(x_{n}\right)+z\right)=0
$$

For each $i=1,2, \cdots, n$, let $x_{i}=d_{i}+h_{i} \sum_{j \geqq k_{i}} a_{j} p^{j-k_{i}} b_{j}$ where $d_{i} \in B$, $h_{i} \in Z$ and $k_{i} \in N$. Let k^{\prime} be any positive integer greater than each of the integers $k_{1}, k_{2}, \cdots, k_{n}$. It is easily checked that there exist integers $m_{1}, m_{2}, \cdots, m_{n}$ and elements $d_{1}^{\prime}, d_{2}^{\prime}, \cdots, d_{n}^{\prime}$ of B such that for each $i=1, \cdots, n$

$$
x_{i}=d_{i}^{\prime}+m_{i} \sum_{j \geqq k^{\prime}} a_{j} p^{j-k^{\prime}} b_{j}
$$

Thus, if $y=\sum_{j \geqq k^{\prime}} a_{j} p^{j-k^{\prime}} b_{j}$, then

$$
\begin{aligned}
\gamma_{1}\left(x_{1}\right)+\cdots+\gamma_{n}\left(x_{n}\right) & =\gamma_{1}\left(d_{1}^{\prime}+m_{1} y\right)+\cdots+\gamma_{n}\left(d_{n}^{\prime}+m_{n} y\right) \\
& =\gamma_{1}\left(d_{1}^{\prime}\right)+\cdots+\gamma_{n}\left(d_{n}^{\prime}\right)+\left(m_{1} \gamma_{1}+\cdots+m_{n} \gamma_{n}\right)(y) \\
& =b+\gamma(y)
\end{aligned}
$$

where $b \in B$ and $\gamma \in \Gamma$. Since $\gamma \in \Gamma$, it is possible to write $\gamma=$ $e_{1} \rho\left(A_{1}\right)+\cdots+e_{m} \rho\left(A_{m}\right)$ where A_{1}, \cdots, A_{m} are disjoint members of $K(R)$ and where $e_{1}, \cdots, e_{m} \in Z$ (see 4.3). Now,

$$
p\left(\gamma_{1}\left(x_{1}\right)+\gamma_{2}\left(x_{2}\right)+\cdots+\gamma_{n}\left(x_{n}\right)+z\right)=0
$$

implies $p(b+\gamma(y)+z)=0$; and, therefore, $p \gamma(y) \in G+B=G$. Suppose that $e_{i} \rho\left(A_{i}\right)(y) \notin B$ for some $i=1, \cdots, m$. Then since $b \in G, p \gamma(y) \in G$ and $\rho\left(A_{i}\right)(G) \cong G$, it follows that

$$
\rho\left(A_{i}\right)(p \gamma(y))=p e_{i} \rho\left(A_{i}\right)(y)=\rho\left(A_{i}\right)\left(p e_{i} y\right) \in G
$$

Thus, as was noted, $\rho\left(A_{i}\right)\left(p e_{i} y\right) \in B$. Now,

$$
\begin{aligned}
\rho\left(A_{i}\right)\left(p e_{i} y\right) & =\rho\left(A_{i}\right)\left(p e_{i} \sum_{j \geqq k^{\prime}} a_{j} p^{j-k^{\prime}} b_{j}\right) \\
& =p e_{i} \sum_{\substack{j \geq k_{i}^{\prime} \\
j \in A_{i}}} a_{j} p^{j-k^{\prime}} b_{j} \in B
\end{aligned}
$$

Since, by assumption, $e_{i} \rho\left(A_{i}\right)(y) \notin B$, it follows that $\rho\left(A_{i}\right)(y) \notin B$. Thus, $p^{k^{\prime}-1}$ divides e_{i}. Therefore, $e_{i} y=e_{i}^{\prime} x-b^{\prime}$ for suitable $e_{i}^{\prime} \in Z$ and $b^{\prime} \in B$.

Consequently, $e_{i} \rho\left(A_{i}\right)(y)=\rho\left(A_{i}\right)\left(e_{i} y\right) \in \Gamma(R)(x)+B$. It follows that $\gamma_{1}\left(x_{1}\right)+\cdots+\gamma_{n}\left(x_{n}\right) \in \Gamma(R)(x)+B$ and that

$$
\gamma_{1}\left(x_{1}\right)+\cdots+\gamma_{n}\left(x_{n}\right)+z \in \Gamma(R)(x)+G .
$$

Thus, $\gamma_{1}\left(x_{1}\right)+\cdots+\gamma_{n}\left(x_{n}\right)+z=y+w$ where $y \in \Gamma(R)(x)$ and $w \in G$. Also,

$$
0=p\left(\gamma_{1}\left(x_{1}\right)+\cdots+\gamma_{n}\left(x_{n}\right)+z\right)=p(y+w)=p w
$$

and $w \in G[p]$. This shows that $H[p] \subseteq G[p]+\Gamma(R)(x)$. The opposite inclusion is obvious.
5. The image. This section is devoted to the construction of a class of pure subgroups of \bar{B} having suitably restricted endomorphism rings. The methods used here are similar to those employed by P . Crawley in [2] and R. S. Pierce in [7].

Definition 5.1. (R. S. Pierce) A family \mathscr{F} of subsets of a set F is called weakly independent if whenever $A_{0}, A_{1}, \cdots, A_{n}$ are distinct elements of \mathscr{F}, then A_{0} is not contained in the union of the remaining sets $A_{1}, A_{2}, \cdots, A_{n}$.

Theorem 5.2. ($R . S$. Pierce) Let F be a set of infinite cardinality φ. If ψ is a cardinal number such that $0<\psi \leqq \varphi$, then there is a family \mathscr{F} of subsets of F such that
(a) \mathscr{F} is weakly independent,
(b) $|A|=\psi$ for all $A \in \mathscr{F}$,
(c) $|\mathscr{F}|=\varphi^{\psi}$.

Proof. (See [8], p. 261.)
At this point it is convenient to set $\theta=\{\alpha|\bar{B}[p]| \alpha \in E(\bar{B})\}$. It is clear that θ is a ring with identity. For the moment, only the additive group structure of θ will be considered.

Lemma 5.3. Let $\Gamma=\left\{\alpha_{0}=0, \alpha_{1}, \alpha_{2}, \cdots\right\}$ be any countable subgroup of Θ satisfying the following condition:
$\left(^{*}\right)$ for all nonzero $\alpha \in \Gamma, \alpha\left(c_{j}\right) \neq 0$ for an infinite number of indices $j \in N$.

There is a collection $T(\Gamma)$ of element in $\bar{B}[p]$ such that
(i) $|T(\Gamma)|=2^{\aleph_{0}}$,
(ii) $\sum_{x \in T(\Gamma)} \Gamma(x)$ is direct $(\Gamma(x)=\{\alpha(x) \mid \alpha \in \Gamma\})$.
(iii) $\alpha_{i}(x) \neq \alpha_{j}(x)$ for all $x \in T(\Gamma)$ and for all $i \neq j$,
(iv) $\alpha_{i}(x)=0$ for some $x \in T(\Gamma)$ implies $\alpha_{i}=0$.

Proof. Let $K=N \times N$. Well order K in the following way: $(i, j)<(k, h)$ if $i+j<k+h$ or if $i+j=k+h$ and $i<k$. Now, each element of Γ satisfies (*). Thus, since the set

$$
\{(i, j) \in K \mid(i, j)<(k, h)\}
$$

is finite for all elements $(k, h) \in K$, it is possible to define, inductively, an order preserving one-to-one map f of K into N such that $h_{\bar{B}}\left(\alpha_{i}\left(c_{f(i, j)}\right)\right)$ is finite (i.e., $\alpha_{i}\left(c_{f(i, j)}\right) \neq 0$) and is greater than the height or every nonzero element in the finite subgroup of $\bar{B}[p]$ generated by the collection $\left\{\alpha_{k}\left(c_{f(m, n)}\right) \mid k \leqq i\right.$ and $\left.(m, n)<(i, j)\right\}$. Let \mathscr{F} be any weakly independent collection of subsets of N such that $\left|\mathscr{F}^{-}\right|=2^{\aleph_{0}}$. If $S \in \mathscr{F}$, let $x(S) \in \bar{B}[p]$ be defined by the expression:

$$
x(S)=\sum_{j \in S} c_{f(i, j)}
$$

Let $T(\Gamma)=\{x(S) \mid S \in \mathscr{F}\}$. Suppose $S_{1}, S_{2}, \cdots, S_{n_{0}} \in \mathscr{F}$ are distinct, $x_{i}=x\left(S_{i}\right)$ for $i=1,2, \cdots, n_{0}$ and

$$
\sum_{i=1}^{n_{0}} \alpha_{k_{i}}\left(x_{i}\right)=0
$$

for positive integers $k_{1}, k_{2}, \cdots, k_{n_{0}}$. Since \mathscr{F} is weakly independent, there exists for each $i=1,2, \cdots, n_{0}$ an integer

$$
m_{i} \in S_{i}-\underset{\substack{j \neq i \\ j \leqslant n_{0}}}{\bigcup} S_{j}
$$

Let k_{i} be the largest integer in the collection $\left\{k_{1}, \cdots, k_{n_{0}}\right\}$. Let $h_{i}=h_{\bar{B}}\left(\alpha_{k_{i}}\left(c_{f\left(k_{i}, m_{i}\right)}\right)\right)+1$. It follows that

$$
\begin{equation*}
\left(1-\pi_{h_{i}}\right) \alpha_{k_{i}}\left(c_{f\left(k_{i}, m_{i}\right)}\right) \neq 0 \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(1-\pi_{h_{i}}\right) \alpha_{k_{i}}\left(c_{f\left(k_{i}, m_{i}\right)}\right)+\left(1-\pi_{n_{i}}\right) \alpha_{k_{i}}\left(x-c_{f\left(k_{i}, m_{i}\right)}\right) \tag{2}\\
& \quad+\left(1-\pi_{h_{i}}\right) \sum_{\substack{j \neq i, i \\
j=1,2, \ldots, n_{0}}} \alpha_{k_{j}}\left(x_{j}\right)=0 .
\end{align*}
$$

Now,

$$
\begin{aligned}
& \left(1-\pi_{h_{i}}\right) \alpha_{k_{i}}\left(x-c_{f\left(k_{i}, m_{i}\right)}\right)+\left(1-\pi_{h_{i}}\right) \sum_{\substack{j=1,2, \ldots, n_{0} \\
j}} \alpha_{k_{j}}\left(x_{j}\right) \\
& \quad=\left(1-\pi_{h_{i}}\right) \alpha_{k_{i}}\left(1-\pi_{h_{i}}\right)\left(x_{i}-c_{f\left(k_{i}, m_{i}\right)}\right) \\
& \quad+\left(1-\pi_{h_{i}}\right) \sum_{\substack{j \neq i \\
j=1,2, \ldots, n_{0}}} \alpha_{k_{j}}\left(1-\pi_{h_{i}}\right)\left(x_{j}\right)
\end{aligned}
$$

Since $m_{i} \in S_{i}$, it follows from the definition of $x_{i}=x(S)$ and the order preserving property of the mapping f that

$$
(1 - \pi _ { h _ { i } }) (x _ { i } - c _ { f (k _ { i } , m _ { i }) }) = \sum _ { \substack{ \substack { (m , n \\
, n \\
\begin{subarray}{c}{k \\
n \in S_{i}{ (m , n \\
\begin{subarray} { c } { k \\
n \in S _ { i } } } \\
{\left.S_{i}, m_{i}\right)}\end{subarray}} c_{f(m, n)}
$$

Hence, $\alpha_{k_{i}}\left(1-\pi_{h_{i}}\right)\left(x_{i}-c_{f\left(k_{i}, m_{i}\right)}\right)$ belongs to the subgroup S of $\bar{B}[p]$ generated by the collection

$$
\left\{\alpha_{k}\left(c_{f(m, n)}\right) \mid k \leqq k_{i},(m, n)<\left(k_{i}, m_{i}\right)\right\} .
$$

Also, if $j \neq i$, then $m_{i} \notin S_{j}$ and $k_{j} \leqq k_{i}$. Therefore,

$$
\left(1-\pi_{h_{i}}\right)\left(x_{j}\right)=\sum_{(m, n)} \sum_{\left.n \in k_{i}, m_{i}\right)} c_{f(m, n)} ;
$$

and because of this, $\alpha_{k_{j}}\left(\left(1-\pi_{h_{i}}\right)\left(x_{j}\right)\right) \in S$. Thus, from (1), (2) and the above, $\left(1-\pi_{h_{i}}\right) \alpha_{k_{i}}\left(c_{f\left(k_{i}, m_{i}\right)}\right)=\left(1-\pi_{h_{i}}\right)(z) \neq 0$ for some z in S. It follows that $h_{\bar{B}}\left(\alpha_{k_{i}}\left(c_{f\left(k_{i}, m_{i}\right)}\right)=h_{\bar{B}}(z)\right.$, a contradiction of the definition of the map f. Thus, $\sum_{x \in \Psi_{(\Gamma)}} \Gamma(x)$ is direct. Condition (i) is clear from the definition of $T(\Gamma)$. Condition (iv) follows from the preceding argument with $n=1$. Since Γ is a group, condition (iii) follows easily from (iv).

Definition 5.4. Let Γ be a subgroup of Θ. An element α in Θ will be called Γ-exceptional provided there exists a collection $T(\Gamma, \alpha)$ of elements in $\bar{B}[p]$ such that
(i) $|T(\Gamma, \alpha)|=2^{\aleph_{0}}$,
(ii) $\Gamma(x), \Gamma(y),\{\alpha(x)\},\{\alpha(y)\}$ are independent for all distinct $x, y \in T(\Gamma, \alpha)$,

$$
\text { (iii) } \alpha(x) \neq 0 \text { for all } x \in T(\Gamma, \alpha)
$$

An endomorphism $\alpha \in E(\bar{B})$ will be called Γ-exceptional if $\alpha \mid \bar{B}[p]$ is Γ-exceptional.

Remark. If $\alpha \in E(\bar{B})$ and $\alpha \mid \bar{B}[p]=0$, then by 3.7 and 2.8 (a) $\alpha \in J\left(E(\bar{B}), E_{p}(\bar{B})\right)$. Thus, the kernel of the $\operatorname{map} \alpha \rightarrow \alpha \mid B[p]$ is contained in $J\left(E(\bar{B}), E_{p}(\bar{B})\right)$. It follows that ξ can be considered as a map from Θ to ΠM_{n} by defining for each $\alpha \in \Theta, \xi(\alpha)=\xi(\beta)$ where $\beta \in E(B)$ and $\alpha=\beta \mid \bar{B}[p]$. Extensive use will be made of this convention in what follows.

Lemma 5.5. Let Γ be any countable subgroup of Θ. Suppose $\alpha \in \Theta$ is such that $\alpha \notin \Gamma$ and $\Delta=\{\Gamma, \alpha\}$ satisfies the following condition:
$\left(^{*}\right)$ for all nonzero $\beta \in \Delta, \beta\left(c_{j}\right) \neq 0$ for an infinite number of indices $j \in N$. Then α is Γ-exceptional.

Proof. Since $\Delta=\{\Gamma, \alpha\}$ is obviously countable and satisfies (*), Lemma 5.3 can be applied to conclude that there exists a collection $T(\Delta)$ with the properties:
(i) $|T(\Delta)|=2^{\aleph_{0}}$,
(ii) $\sum_{x \in T(\Delta)} \Delta(x)$ is direct.
(iii) $\gamma(x) \neq \beta(x)$ for all $x \in T(\Delta)$ and distinct $\beta, \gamma \in \Delta$,
(iv) $\beta \in \Delta$ and $\beta(x)=0$ for some $x \in T(\Delta)$ implies $\beta=0$.

Set $T(\Gamma, \alpha)=T(\Delta)$. Clearly, conditions (i) and (iii) of 5.4 are satisfied. Let $x, y \in T(\Gamma, \alpha)$ be distinct, and suppose there is a relation of the form $\beta(x)+k \alpha(x)+\gamma(y)+h \alpha(y)=0$ where $\beta, \gamma \in \Gamma$ and $h, k \in Z$. By (ii), it is clear that both $\beta(x)+k \alpha(x)=0$ and $\gamma(y)+h \alpha(y)=0$. It follows by (iv) that $\beta+k \alpha=0$ and $\gamma+h \alpha=0$. Since $E(\alpha)=1$ and $\alpha \notin \Gamma$, this last condition implies that both $h \alpha=0$ and $k \alpha=0$. Thus $\beta(x)=$ $k \alpha(x)=\gamma(y)=h \alpha(y)=0$, and condition (ii) of 5.4 is also satisfied. This completes the proof.

Corollary 5.6. Let Γ by any countable subgroup of Θ satisfying
${ }^{(*)}$ for all nonzero $\gamma \in \Gamma, \gamma\left(c_{j}\right) \neq 0$ for an infinite number of indices $j \in N$.
Suppose $\alpha \in \Theta$ is such that $\xi(\alpha)$ is not a member of $\xi(\Gamma)+\left(\sum M_{n}\right)$. Then α is Γ-exceptional.

Proof. Clearly, $\alpha \notin \Gamma$ since $\xi(\alpha) \notin \xi(\Gamma)$. Consequently, it is enough to show that $\Delta=\{\Gamma, \alpha\}$ satisfies condition (*). Suppose, to the contrary, that there exist $n \in N$ and $\beta \in \Delta$ such that $\beta \neq 0$ and $\beta\left(c_{j}\right)=0$ for all $j>n$. It is possible to write $\beta=\gamma+k \alpha$ where $\gamma \in \Gamma$ and $k \in Z$. Since Γ satisfies (*) and $E(\alpha)=1$, it can be assumed that $k \not \equiv 0$ (modulo p). Now, $\beta=\gamma+k \alpha$ and

$$
\xi(k \alpha)=\xi(\beta-\gamma)=\xi(\beta)-\xi(\gamma) \in \sum M_{n}+\xi(\Gamma)
$$

Since k is relatively prime to p, it follows that $\xi(\alpha) \in \sum M_{n}+\xi(\Gamma)$, a contradiction.

Corollary 5.7. Let Γ be any countable subgroup of Θ satisfying the following condition:
(**) for all nonzero $\gamma \in \Gamma$ there exists a sequence of integers $\left\{a_{i}\right\}_{i \in N}$ such that $\gamma\left(c_{i}\right)=a_{i} c_{i}$ for each $i \in N$, and $a_{i} c_{i} \neq 0$ for an infinite number of indices $i \in N$.

Let $\alpha \in \Theta$ be such that $\alpha\left(c_{i}\right)-\rho_{i} \alpha\left(c_{i}\right) \neq 0$ for an infinite number of indices $i \in N$. Then α is Γ-exceptional.

Proof. If $\gamma \in \Gamma$, then $\gamma\left(c_{i}\right)-\rho_{i} \gamma\left(c_{i}\right)=a_{i} c_{i}-a_{i} c_{i}=0$ for all $i \in N$. Thus, $\alpha \notin \Gamma$. As before, let $\Delta=\{\Gamma, \alpha\}$, suppose $\gamma+k \alpha \in \Delta$. If $k \equiv 0$ (modulo p), then either $\gamma=0$ or $(\gamma+k \alpha)\left(c_{i}\right)=\gamma\left(c_{i}\right) \neq 0$ for an infinite number of indices $i \in N$. If $\gamma=0$, then $\gamma+k \alpha=0$; and there is nothing to show. Suppose $k \not \equiv 0$ (modulo p). It follows that

$$
\begin{aligned}
\left(1-\rho_{i}\right)(\gamma+k \alpha)\left(c_{i}\right) & =(\gamma+k \alpha)\left(c_{i}\right)-\rho_{i}(\gamma+k \alpha)\left(c_{i}\right) \\
& =\left(\gamma-\rho_{i} \gamma\right)\left(c_{i}\right)+k\left(\alpha-\rho_{i} \alpha\right)\left(c_{i}\right) \\
& =k\left(\alpha-\rho_{i} \alpha\right)\left(c_{i}\right) \neq 0
\end{aligned}
$$

for an infinite number of indices $i \in N$. Consequently, $\gamma+k \alpha$ must have this same property, and by $5.5, \alpha$ is Γ-exceptional.

Let R be any countable subring of ΠM_{n} which contains $\sum M_{n}+\{1\}$. Let $\Gamma(R)$ be as defined in $\S 4$. That is, $\Gamma(R)$ is the subgroup of $E(\bar{B})$ generated by the collection $\{\rho(A) \mid A \in K(R)\}$. Define Γ to be the subgroup of Θ defined by $\Gamma=\{\gamma|\bar{B}[p]| \gamma \in \Gamma(R)\}$. Note that Γ is a p-group in which every element has order p. By Zorn's lemma, it is possible to choose a subgroup Δ of Γ which contains the identity and which is maximal with respect to having only the zero element in common with the subgroup $\left\{\gamma \in \Gamma \mid \xi(\gamma) \in \sum M_{n}\right\}$. Obviously, Δ is a countable subgroup of Θ which satisfies condition (*) of 5.3. Let \mathscr{E} be the collection of all those elements in θ which are Δ-exceptional. By 5.6, if $\alpha \in \Theta$ and $\xi(\alpha) \notin \xi(\Delta)+\sum M_{n}$, then α is Δ-exceptional. Since $\xi(\Delta)+\left(\sum M_{n}\right)$ is countable and since ξ maps onto ΠM_{n} by Lemma 3.2, it follows that $|\mathscr{E}|=2^{\aleph_{0}}$. Let Ω be the first ordinal of cardinality $2^{\aleph_{0}}$, and let $\varphi \leftrightarrow \alpha_{\varphi}$ be a one-to-one correspondence between the elements of \mathscr{E} and the ordinals $\varphi<\Omega$.

Lemma 5.8. There exist collections $\left\{G_{\varphi} \mid \varphi<\Omega\right\},\left\{P_{\varphi} \mid \varphi<\Omega\right\}$ and $\left\{U_{\varphi} \mid \varphi<\Omega\right\}$ such that
(i) for all $\varphi<\Omega, G_{\varphi}$ is a pure subgroup of \bar{B} containing B, $P_{\varphi}=G_{\varphi}[p]$ and U_{φ} is a subset of $\bar{B}[p]$,
(ii) $G_{\varphi} \subseteq G_{\chi}$ and $U_{\varphi} \subseteq U_{\chi}$ whenever $\varphi \leqq \chi<\Omega$,
(iii) $\quad\left|P_{\varphi}\right| \leqq(|\varphi|+1) \boldsymbol{\aleph}_{0}$ and $\left|U_{\varphi}\right| \leqq(|\varphi|+1) \boldsymbol{K}_{0}$,
(iv) $\gamma\left(G_{\varphi}\right) \subseteq G_{\varphi}$ for all $\gamma \in \Gamma(R)$ and each $\varphi<\Omega$,
(v) $P_{\varphi} \cap U_{\varphi}=\varnothing$ for all $\varphi<\Omega$,
(vi) for each $\varphi<\Omega$ there exists $z_{\varphi} \in P_{\varphi}$ such that $\alpha_{\varphi}\left(z_{\varphi}\right) \in U_{\varphi}$.

Proof. The proof is by transfinite induction. Suppose G_{φ} and U_{φ} exist for all $\varphi<\chi$. Let $G_{\chi}^{\prime}=\mathbf{U}_{\varphi<\chi} G_{\varphi}+B . \quad P_{\chi}^{\prime}=\mathbf{U}_{\varphi<x} P_{\varphi}+B[p]$ and $U_{\chi}^{\prime}=\bigcup_{\varphi<\chi} U_{\varphi}$. Note that $G_{\chi}^{\prime}[p]=P_{\chi}^{\prime}$, that $\gamma\left(G_{\chi}^{\prime}\right) \subseteq G_{\chi}^{\prime}$ for each $\gamma \in \Gamma(R)$, and that G_{x}^{\prime} is a pure subgroup of \bar{B}. Suppose there is an element z in $P_{\chi}^{\prime} \cap U_{\chi}^{\prime}$. The existence of z implies the existence of ordinals $\psi<\chi$ and $\omega<\chi$ such that $z \in U_{\psi}$ and $z \in P_{\omega}+B[p]=P_{\omega}$. Let φ be largest of ψ and ω. Then $z \in\left[P_{\varphi}+B[p]\right] \cap U_{\varphi}=P_{\varphi} \cap U_{\varphi}$, contrary to the induction hypothesis. Thus, $P_{\chi}^{\prime} \cap U_{x}^{\prime}=\varnothing$. Since $\left|P_{\varphi}\right| \leqq(|\varphi|+1) \boldsymbol{K}_{0}$ and $\left|U_{\varphi}\right| \leqq(|\varphi|+1) \boldsymbol{K}_{0}$ for each $\varphi<\chi$, it follows that $\left|P_{\chi}^{\prime}\right| \leqq(|\chi|+1) \boldsymbol{K}_{0}$ and $\left|U_{\chi}^{\prime}\right| \leqq(|\chi|+1) \boldsymbol{\aleph}_{0}$. Thus,

$$
\left|\left\{P_{x}^{\prime}, U_{x}^{\prime}, B[p]\right\}\right| \leqq\left|P_{x}^{\prime}\right|\left|U_{x}^{\prime}\right| \boldsymbol{K}_{0} \leqq(|\chi|+1) \boldsymbol{K}_{0}<2^{\aleph_{0}}
$$

Since α_{x} is Δ-exceptional, there is a collection $T\left(\alpha_{\chi}\right) \subseteq \bar{B}[p]$ such that (a) $\left|T\left(\alpha_{\alpha}\right)\right|=2^{\aleph_{0}}$
(b) $y, z \in T\left(\alpha_{\chi}\right)$ imply that $\Delta(y), \Delta(z),\left\{\alpha_{\chi}(y)\right\},\left\{\alpha_{\chi}(z)\right\}$
are independent and $\alpha_{\chi}(y), \alpha_{\chi}(z)$ are nonzero. Therefore, it is possible to find $z_{\chi} \in T\left(\alpha_{\chi}\right)$ such that $\alpha_{\chi}\left(z_{\chi}\right) \neq 0$ and

$$
\left\{\Delta\left(z_{\chi}\right), \alpha_{\chi}\left(z_{\chi}\right)\right\} \cap\left\{P_{\chi}^{\prime}, U_{\chi}^{\prime}, B[p]\right\}=0 .
$$

Now suppose $\gamma \in \Gamma(R)$. Since every element of Γ has order p and since Δ is maximal with respect to having zero intersection with $\left\{\gamma \in \Gamma \mid \xi(\gamma) \in \sum M_{n}\right\}$, it is possible to write $\gamma \mid \bar{B}[p]$ as $\alpha+\beta$ where $\alpha \in \Delta, \beta \in \Gamma$ and $\xi(\beta) \in \sum M_{n}$. Since $\xi(\beta) \in \sum M_{n}$, it follows from the definition of $\Gamma(R)$ that $\beta(\bar{B}[p]) \subseteq B[p]$. Therefore,

$$
\gamma\left(z_{\chi}\right)=\alpha\left(z_{\chi}\right)+\beta\left(z_{\chi}\right) \in \Delta\left(z_{\chi}\right)+B[p] .
$$

Consequently, if $\gamma\left(z_{\chi}\right) \in G_{\chi}^{\prime}[p]=P_{\chi}^{\prime}$, then (using (\#)) $\gamma\left(z_{\chi}\right) \in B[p]$. Thus, G_{χ}^{\prime} and z_{χ} satisfy the hypothesis of 4.6. Let G_{χ} be the pure subgroup of \bar{B} obtained by the application of 4.6 . Then

$$
P_{\chi}=G_{\chi}[p]=G_{\chi}^{\prime}[p]+\Gamma(R)\left(z_{\chi}\right)=P_{\chi}^{\prime}+\Delta\left(z_{\chi}\right)
$$

and $\gamma\left(G_{\chi}\right) \subseteq G_{\chi}$ for each $\gamma \in \Gamma(R)$. Also, $\left|P_{\chi}\right| \leqq(|\chi|+1) \not \aleph_{0}$. Let U_{χ} be the set obtained by adjoining $\alpha_{\chi}\left(z_{\chi}\right)$ to U_{χ}^{\prime}. Then $\left|U_{\chi}\right| \leqq(|\chi|+1) \boldsymbol{\aleph}_{0}$, and conditions (i), (ii), (iii), (iv) and (vi) obviously are satisfied. To show that (v) holds, suppose $z \in P_{\chi} \cap U_{\chi}$. There are two cases to consider:

Case 1. $z=\alpha_{\chi}\left(z_{\chi}\right)$ and $z=y+\beta\left(z_{\chi}\right)$ for $y \in P_{\chi}^{\prime}$ and $\beta \in \Delta . \quad$ By (\#), $\alpha_{\chi}\left(z_{\chi}\right)-\beta\left(z_{\chi}\right)=y=0$. Thus, applying (b), it is clear that $\alpha_{\chi}\left(z_{\chi}\right)=0$. This is a contradiction of the choice of z_{χ}.

Case 2. $z \in U_{x}^{\prime}$ and $z=y+\beta\left(z_{\chi}\right)$ for $y \in P_{\chi}^{\prime}$ and $\beta \in \Delta$. In this case, $0=z-y=\beta\left(z_{\chi}\right)$ by (\#). Consequently, $y=z \in U_{x}^{\prime}$. This is a contradiction since $U_{\chi}^{\prime} \cap P_{\chi}^{\prime}=\varnothing$.

Lemma 5.9. Let $G(R)=\bigcup_{\chi<\Omega} G_{\chi}, P(R)=\bigcup_{\chi<\Omega} P_{\chi}$ and $U(R)=$ $\mathbf{U}_{x<\Omega} U_{x}$. Then
(i) $G(R)$ is a pure subgroup of \bar{B},
(ii) $G(R)[p]=P(R)$,
(iii) $P(R) \cap U(R)=\varnothing$,
(iv) $\gamma(G(R)) \subseteq G(R)$ for each $\gamma \in \Gamma(R)$,
(v) if $\alpha \in E(\bar{B})$ and if α is Δ-exceptional, then $\alpha \notin E(G(R))$.

Proof. The arguments for (i), (ii), (ii), and (iv) are quite easy and can be found in the proof of 5.8. To show (v), suppose α is
Δ-exceptional. Then there exist $\varphi<\Omega$ and $z_{\varphi} \in P(R)$ such that $\alpha\left(z_{\varphi}\right) \in U_{\varphi}$ (see (vi) of 5.8). Since $P(R) \cap U(R)=\varnothing$ and $G(R)[p]=P(R)$ by (iii) and (ii), it follows that $\alpha \notin E(G(R))$.

Theorem 5.10. Let R be any countable subring of the ring direct product ΠM_{n}. Suppose that R contains $\sum M_{n}+\{1\}$. There is a pure subgroup G of \bar{B}, containing B, such that $\xi(E(G))=R$. Moreover,

$$
\frac{E(G)}{J\left(E(G), E_{p}(G)\right)} \cong R
$$

Proof. Let $G=G(R)$. By 4.4, $R=\xi(\Gamma(R)$). Thus, since $\Gamma(R) \subseteq$ $E(G)$ by (iv) of 5.9, $R \subseteq \xi(E(G(R)))$. Suppose $\alpha \in E(G(R))$ and $\xi(\alpha) \notin R$. By 4.4, $\xi(\Delta) \subseteq \xi(\Gamma) \subseteq \xi(\Gamma(R))=R$. Thus, $\xi(4)+\left(\sum M_{n}\right) \subseteq R$, and Lemma 5.6 may be applied to infer that α is Δ-exceptional. This is contrary to (v) of 5.9. Therefore, $\xi(E(G(R)))=R$. It follows from 3.1 that

$$
\frac{E(G)}{J\left(E(G), E_{p}(G)\right)} \cong R
$$

Lemma 5.12. Let U and V be vector spaces over a field such that $V \subseteq U$. Let U / V be finite dimensional. Suppose $\alpha \in E(U), \alpha$ is one-to-one and $\alpha(V)=V$. Then α is an automorphism of U.

Proof. Since $\alpha(V)=V, \alpha$ induces an endomorphism α^{\prime} of U / V $\left(\alpha^{\prime}(u+V)=\alpha^{\prime}(u)+V\right.$ for $\left.u \in U\right)$. Moreover, α^{\prime} is one-to-one; and, consequently, the dimensions of U / V and $\alpha^{\prime}(U / V)$ are equal and finite. It follows that $\alpha^{\prime}(U / V)=U / V$; and therefore, $\alpha(U)=U$ by a standard argument.

Theorem 5.13. The groups $G=G(R)$ have no proper isomorphic subgroups.

Proof. Let α be an isomorphism of G into G. By (v) of 5.9, α is not Δ-exceptional. By 5.6, 5.7 and the definition of the map ξ, there must exist an integer n and an element $\beta \in \Delta$ such that $\alpha\left(c_{i}\right)=$ $\beta\left(c_{i}\right)$ for all $i>n$. Since α is an isomorphism, $0 \neq \alpha\left(c_{i}\right)=\beta\left(c_{i}\right)$ for all $i>n$. It follows that α and β agree on $\left(\pi_{n} G\right)[p]=\pi_{n}(G[p]$) (see $\S I$ for the definition of π_{n}). Now, $\Delta \subset \Gamma=\{\gamma|\bar{B}[p]| \gamma \in \Gamma(R)\}, \beta \in \Delta$ and $\beta\left(c_{i}\right) \neq 0$ for $i>n$ imply, using Fermat's theorem, that β^{p-1} acts as the identity on $\pi_{n} G[p]$. It follows that β maps $\left(\pi_{n} G\right)[p] \cap p^{k}\left(\pi_{n} G\right)$ onto itself for each $k=0,1, \cdots$. Thus,
$\alpha\left(G[p] \cap p^{k} G\right)=\alpha\left(\left(\pi_{n} G\right)[p] \cap p^{k}\left(\pi_{n} G\right)=\left(\pi_{n} G\right)[p] \cap p^{k}\left(\pi_{n} G\right)=G[p] \cap p^{k} G\right.$
for each $k=n, n+1, \cdots$. Suppose $m \geqq 1$ is the largest integer such that $\alpha\left(G[p] \cap p^{m-1} G\right) \neq G[p] \cap p^{m-1} G$. It has been shown that if m exists, then $m \leqq n$. An application of 5.12 to $U=G[p] \cap p^{m-1} G$ and $\quad V=G[p] \cap p^{m} G$ shows that the existence of such an integer m is impossible. Consequently, $\alpha\left(G[p] \cap p^{k} G\right)=G[p] \cap p^{k} G$ for all $k \geqq 0$. By Lemma 2.3, it follows that α is an automorphism of G.

Corollary 5.14. Let R be any countable subring of the ring direct product ΠM_{n}. Suppose that R contains $\sum M_{n}+\{1\}$. There is a pure subgroup G of \bar{B} which contains B such that

$$
\frac{E(G)}{J(E(G))} \cong R
$$

Proof. Let $G=G(R)$ and apply 5.10, 5.13 and 2.12.

Bibliography

1. A. L. S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. 52 (1963), 687-710.
2. P. Crawley, An infinite primary Abelian group without proper isomorphic subgroups, Bull. Amer. Math. Soc. 68 (1962), 463-467.
3. L. Fuchs, Abelian Groups, Budapest, 1958.
4. N. Jacobson, Structure of Rings, Providence, 1956.
5. I. Kaplansky, In finite Abelian Groups, Ann. Arbor, 1954.
6. H. Leptin, Zur theorie der überabzählbaren Abelschen p-gruppen, Abh. Math. Sem. Univ. Hamburg 24 (1960), 79-90.
7. R. S. Pierce, Endomorphism rings of primary Abelian groups, Proc. Colloquium on Abelian Groups, Budapest, 1963.
8. -, Homomorphisms of primary Abelian groups, Topics in Abelian Groups, Chicago, 1963.

Received January 20, 1966. This research was partially supported by NSF Grant number GP-3919.

University of california, Davis

