
PACIFIC JOURNAL OF MATHEMATICS

Vol. 20, No. 3, 1967

ENDOMORPHISM RINGS OF PRIMARY
ABELIAN GROUPS

ROBERT W. STRINGALL

This paper is concerned with the study of certain homo-
morphic images of the endomorphism rings of primary abelian
groups. Let E(G) denote the endomorphism ring of the abelian
p-group G, and define H(G) = {ae E{G) \ x e G, px = 0 and height
x < oo imply height a(x) > height x}. Then H(G) is a two
sided ideal in E(G) which always contains the Jacobson radical.
It is known that the factor ring E(G)/H(G) is naturally iso-
morphic to a subring R of a direct product Π~=i Mn with
2Γ=i Mn contained in R and where each Mn is the ring of all
linear transformations of a Zp space whose dimension is equal
to the n — 1 Ulm invarient of G. The main result of this
paper provides a partial answer to the unsolved question of
which rings R can be realized as E(G)/H(G).

THEOREM. Let R be a countable subring of Ώχ0Zp which
contains the identity and ΣχQZp. Then there exists a p
group G with a standard basic subgroup and containing no
elements of infinite height such that E(G)IH(G) is isomorphic
to R. Moreover, G can be chosen without proper isomorphic
subgroups; in this case, H(G) is the Jacobson radical of E{G).

1* Preliminaries •

(1.1) Throughout this paper p- represents a fixed prime number,
N the natural numbers, Z the integers and Zp% the ring of integers
modulo pn. All groups under consideration will be assumed to be p-
primary and abelian. With few exceptions, the notation of [3], [5],
and [8] will prevail.

Let hΘ(x) and E(x) denote, respectively, the p-height oί x m G
and the exponential order of x. If A is any subset of the group G,
then {A} will denote the subgroup of G generated by A. Denote the
pn layer of G by G[pn], Finally, if A is any set, let \A\ be the
cardinal number of A.

(1.2) Let G be a p-primary group and B a basic subgroup of G.
The group B can be written as B = 2%ejv B* where each Bn is a
direct sum of, say f(ri), copies of Zpn. That is, Bn = Σ/<*> {&<} where
E(bi) = n. Define Hn = {pnG, Bn+1, Bn+2, - •}. It is readily verified
that G = B, 0 . 0 Bn 0 Hn for each n e N. Thus, it is possible to
define the projections πn (n = 1, 2, •) of G onto Hn corresponding to
the decomposition G = Bx 0 B2 0 . . - 0 Bn 0 Hn. Define p1 = l-π1 and
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pn = πn-x — πn for n > 1. It follows that pn(G) = Bn and that pn is
the projection of G onto Bn.

2* Endomorphism rings* A few preliminary notions are needed
before the main results can be presented. Although given in a dif-
ferent context, many of the results of this section are patterned
after those of R. S. Pierce in his work [8].

LEMMA 2.1. Let G be a p-group and B = J]nβNBn a basic
subgroup of G. If a is an endomorphism of Bn[p], then a can be
extended to an endomorphism β of G such that j Φ n implies β{Bά) — 0.

Proof. Since G = Bx 0 B2 φ .. 0 Bm 0 Hm for each meN, for
each meN, it is enough to show that a can be extended to Bn. Let

fin)

B g{6}

where, for each i, E(bi) = n. For b{ e Bn, write

a(pn~%) = alP

n~% + + akp
n-%

β(bi) = afi, + + akbk

where k and the integers aά (0 ̂  aά < p) are determined by a. Com-
pute βφi) in this way for each b{ e Bn, and extend β linearly to Bn.
It follows that β is the desired extension of a to Bn.

LEMMA 2.2. If G is a p-group and B a basic subgroup of G,
then any bounded homomorphism of B into G can be extended to a
bounded endomorphism of G.

Proof. By definition, G/B is divisible. Consequently,

GIB = p«(G/B) = B + PnG

B

for each positive integer n. It follows that G = B + pnG for each
ne N. Let ke N be such that pka = 0, and write xeG as x =
b + pky where b e B and y e G. It is easy to check that x —> a(b)
defines a bounded extension of a to an endomorphism of G.

For proof of the following lemma see [8], Lemma 13.1.

LEMMA 2.3. An endomorphism a of the p-group G is an auto-
morphism if and only if ker a Π G[p] = 0 and oc(G[p\ Π pnG) =
G[p] Π pnG for each integer n — 0, 1, 2, .
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For the p-group G, let E(G) denote the ring of all endomorphisms of
G. If EP(G) denotes the subcollection of E(G) consisting of all bounded
endomorphisms of G, then it is not difficult to show that EP(G) is a
two sided ideal of E(G).

LEMMA 2.4. Let

HP{G) = {a e EP(G) | x e G[p] and hG(x) e N imply hQ{a(x)) > hΘ(x)} ,

KP(G) = {ae EP(G) \ a(G[p]) = 0} , and

LP(G) = {ae Ep(G)\a(G) g pG} .

Then HP(G), KP(G) and LP(G) are two sided ideals of EP(G) contained
in the Jacobson radical, J(EP(G)), of EP(G). What is more,
KP{G) + LP(G) g HP(G).

Proof. It is easy to check that HP{G), KP(G) and LP(G) are two
sided ideals of both EP(G) and E(G). It is also easy to verify that
KP(G) S HP(G). It remains only to show that LP(G) S HP(G) g J(EP(G)).
To this end, suppose a e LP(G), x e G[p] and hΘ(x) = ke N. Since
hG(x) = ky it is possible to write x = pky for some y eG. It follows
that

a(x) = a(pky) = pka(y) e pkpG = pk+1G

Hence, hG(a(x)) ^ k + 1 > h(x) and aeHp(G). Therefore, LP(G) is
contained in HP(G). To show that HP(G) is contained in J(EP(G)), let
aeHp(G). Since aeEp(G), there exists a positive integer k such
that ^ α = 0. Thus, if x e G[p] and hσ(x) ^ k, then α(α ) = 0. Since
x e G[p] implies hG(ak(x)) > fc, it follows that αfc+1(x) = 0 for all x e
If x 6 G[p] and (1 - a)(x) = 0, then

α2(ίc) = . . = ak+1(x) = 0 .

Thus, 1 — α is one-to-one on G[p]. Also, if xeG[p], then

(1 - a)(x + a(x) + +

Therefore, (1 - a)(G[p] Π pwG) = G[p] Π P%G for each n = 0, 1, 2, . . .
Applying 2.3, it is seen that 1 — a has an inverse. Since HP(G) is
an ideal of E(G),aeJ(E(G)) Π ̂ ( G ) = J(EP(G)) (see [4], pp. 9 and 10).

It becomes necessary, at least for the remainder of this section,
to fix the basic subgroup B and a decomposition B — J^Bn. This,
naturally, determines the subgroup Hn, the cardinals f(n) and the
maps πn and βn.

LEMMA 2.5. There are group homomorphisms p of EP(G) into
EP(G), σ of EP(G) into KP(G) and τ of EP(G) into LP(G) such that for
a e EP(G)
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(*)(σa)(bn) = (1- πn^)(a(bn)), (τa)(bn) = πn(a(b%))

and (pa)(bn) = pn{Φn)) for bn e Bn, n = 1, 2, . . Moreover,

p* = p,σ2 = σ,τ2 = τ, pσ — σp = pτ = τp = στ = τσ = 0, p + σ + τ = 1,

and pn{ρa)pn(bn) = pa(bn) for all bn e Bn, n = 1, 2, .

Proof. It is clear that conditions (*) determine bounded homo-
morphisms of B into (?, which by 2.2 extend to G as bounded endo-
morphisms. The remainder of the proof is similar to that of 13.4 in
[8] and will not be given.

(2.6) LEMMA. The mapping

X:a-+((pa)\B1[p],((xx)\Bt[pl . . .)

is a ring homomorphism of EP(G) onto the ring direct sum

Σ E(Bu\p\)
w = l

The kernel of X is {ae EP(G) | pa e K,(G)}.

Proof. It is clear that λ maps onto Σ»ejy E(Bn[p\). In fact, if
(αlf α,, , α,, 0, 0, •) e 2 . β , ί?(B,[p]) where α4 e #(£*|j>]) for fc =
1,2, •••,», then by 2.1, each of the ak have extensions βk to G such
that j Φ k implies /2fc(53) = 0. Obviously,

) = (α l f α f > ••-,«., 0,0,
/

and p*Σ?=i& = 0. Thus, λ is onto Σ ^ e ^ ^ ^ M ) . Clearly, λ is
additive. To show that λ preserves products, let beBn[p], Then
&(δ) = n — 1, so that for some c e Bn, b = p%-1c. Also,

j0(α/3(6)) = ^(«i8(6)) = ^(α((σ/3)(6) + (pβ)(b) + (τ/S)(δ))) .

Now, σβeKp(G) and 6eG[p]. Thus, σβ(b) = 0. Also, τβeLp(G)
implies that r£(δ) = τβip^c) = pn^τβ{c) e p%G, so that

pna(τβ(b)) e pnG Π Bn = pnBn - 0 .

Finally, ,0/3(6) = pnpβ(b). Thus,

- pM(pβ)Φ)) = (ρa)((pβ)(b)) .

Consequently, X(aβ) = λ(α)λ(/5). To show that the kernel of λ
is {a e EP(G) \ pa e KP(G)}, observe that \(a) = 0 if and only if
pa I Bn[p] — 0 for all ne N. This condition is equivalent to pa(B[p]) =
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0 which, since pa is bounded, is equivalent to poc(G\p\) — 0. There-
fore, Ker (λ) = {a e EP(G) \ pa e KP(G)}.

THEOREM 2.7. The Jacobson radical of EP(G) is HP(G), and
KP(G) + LP(G) = HP(G). Also, EP(G)/HP(G) is ring isomorphic to the
ring direct sum ^neN Mn where each Mn is the ring of all linear
transformations of a Zp-space of dimension f(n).

Proof. By 2.6 there is a ring homomorphism λ of EP(G) onto a
ring isomorphic to Σnejy-^n. Moreover, the kernel, of λ is
{a e EP(G) | pa e KP{G)}. The rings Mn are surely primitive. Thus, by
[4], proposition 1, p. 10, the Jacobson radical of EP(G) is contained
in ΓinβN Ker(<?wλ) = Ker λ where δn (n = 1, 2, •) is, temporarily, the
projection map of ΣnβN Mn

 o n t ° Mn. Hence by 2.4,

KP{G) + LP{G) s HP{G) s J(#,(G)) g K e r λ .

To show that the kernel of λ is contained in KP(G) + LP(G), let
aeEp(G) be such that ρaeKp(G). By 2.5, pa + σa + τa = a. It
follows that a e KP(G) + LP(G). Thus,

Ker λ = {a e EP(G) \ pa e K(G)} s #.(<?) + LP(G) .

Hence,

Ker λ = J(#,(G)) - iΓ,(G) + LP(G) = HP(G) .

For proof of the following lemma, the reader is directed to R. S.
Pierce's work [8], p. 284.

LEMMA 2.8. Suppose R is an associative ring and S any two-
sided ideal of R. Let J(S) be the Jacobson radical of S and

J{R, S) = {xeR\xze J(S) for all zeS} .

Then the following statements are valid:
(a) J(R, S) is a two-sided ideal of R containing J(R) the

Jacobson radical of R;
(b) J(R, S) = {xeR\ wxz is quasi-regular for all z, w in S};
( c ) J(R, S) = {xeR\zxe J(S) for all z e S};
( d ) J(R, S) Π S = J(S);
(e) the image of S under the natural projection of R onto

R/J(Rf S) is an ideal which isomorphic to S/J(S).

Recall that Mn (n = 1, 2, •) is defined to be the ring of all linear
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transformations of a ^-space of dimension f(n).
If ξ is the natural map of E(G) onto E(G)/J(E(G), EP(G)), then,

by 2.8 (β), ζ(Ep(G)) is isomorphic to EP(G)/J(EP(G)). By 2.7, there is
an isomorphism λ of EP(G)/J(EP(G)) onto the ring direct sum Σ^e^ Λf».
Let δM be the ring homomorphism of EP(G) onto Mn obtained by com-
posing \ξ with the projection of Σ ^ e ^ ^ o n t ° Mn. That is, for
a e #P(G)

It is easy to see that if ρn (n = 1, 2, •) are as defined in 1.2, then

δ ( l θ = 0 for m Φ n and δ.(^) = 1 .

For a e E(G), set μ(a) = (^(αft), δ8(αft), δβ(αft), . •).

THEOREM 2.9. T%β correspondence

^ ), dB(aρΛ), •)

is a ring homomorphism of E(G) onto a subring R of the ring direct
product J\neNMn with kernel J(E(G), EP(G)). Moreover, R contains
both the identity of ΓLejv Mn and the ring direct sum Σneir Mn.

Proof. See the proof of Theorem 14.3 in [8].

The following lemma gives an interesting characterization of

J(E(G), EP(G)).

LEMMA 2.10. J(E(G), EP(G)) = {ae E(G) \ x e G[p] and hG{x) e N
imply ha(a(x)) > hQ{x)}.

Proof. Suppose a e E(G) and hθ(a(x)) > h(x) for all x e G[p] such
that h(x) is finite. Then if β e E(G), the product aβ satisfies this
same condition. That is, for elements x in G[p] of finite height,
hQ{aβ(x)) > hG(x). In particular, if βeEp(G), then aβ is bounded and
satisfies the foregoing condition. Thus, for β e EP(G), aβ e HP{G)
which by 2.7 is J(EP(G)). Consequently, aeJ(E(G), EP(G)) by defini-
tion. Conversely, suppose aeJ(E(G), EP(G)), xeG[p] and hQ(x) < °o.
The existence of a bounded endomorphism β such that β(x) = x is
easy to verify (see, for example, [3], Theorem 24.7). By definition,
aβeJ(Ep(G)). Consequently, hG(a(x)) = hQ{aβ{x)) > hQ{x).

The following two results will be needed later.

LEMMA 2.11. Let a be any automorphism of the p-group G without
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elements of infinite height. If β eJ(E(G), EP(G)), then a — β is
one-to-one.

Proof. Suppose 0 φ x e G[p] and (a - β)(x) = 0. Then by 2.10,

hG(x) < hG(β(x)) = hG(a(x)) ^ hG{a-\a{x))) = hG{x) ,

a contradiction. Thus, ker (a — β) f] G[p] = 0. This is enough to
ensure that a — β is one-to-one.

THEOREM 2.12. // G is without elements of infinite height and
has no proper isomorphic subgroups, then J(E(G), EP(G)) = J(E(G)).

Proof. If aeJ(E(G), EP(G)), then I — a is an isomorphism by
Lemma 2.11. Since G has no proper isomorphic subgroups, 1 — a is an
automorphism. Therefore, a is quasi-regular for each a e J(E(G), EP{G))
(see [41, p. 7). Since J(E{G), EP(G)) is a right ideal, it follows that
J(E(G), EP(G)) g J(E(G)) ([4], Theorem 1, p. 9). Finally, J(E(G)) g
J(E(G), EP{G)) by 2.8 (a).

3* Realizations of E(G). The primary concern of this paper is
with the endomorphism rings of p-primary groups without elements
of infinite height. The study of such rings can be greatly eased with
the employment of some fairly simple notions.

Let G be a p-group without elements of infinite height and B =
ΣineN Bn a basic subgroup of G. Let B denote the closure (or torsion
completion) of B. The group B can be defined as the torsion subgroup
of the direct product ΠLe# Bn. That is,

B = {xe H Bn\pkx = 0 for some keN} .

Naturally, B is identified with the subgroup of B consisting of those
elements which have at most a finite number of nonzero components.
Thus, B is a pure subgroup of B. It is well known that there is a
jB-isomorphism of G onto a pure subgroup of B (see [3], § 33). Thus,
in a sense, the study of p-groups without elements of infinite height
can be reduced to the study of pure subgroups of suitable closed
groups B.

It has already been asserted that G should be a p-group with
fixed basic subgroup B. In order that the above remarks will apply
to G, require, in addition, that G be without elements of infinite
height. That is, both B and B are fixed and G is a pure subgroup of
B which contains B.

If α, β are endomorphisms of G which agree on S, then B is
contained in the kernel of the difference Ύ = a — β. Thus, j(G) is a
homomorphic image of the divisible group G/B, and, for this reason,
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is divisible. Since G is reduced and since j(G) £ G, it follows that

7(G) = (a - β)(G) = 0. Thus, α = β. Consequently, if G is a reduced
p-group, then every endomorphism of G is completely determined by
its effect on the elements of any basic subgroup.

By 2.2 and the above remarks, it follows that each bounded endomor-
phism of B has a unique extension to an endomorphism of G. Because
of this, it may be assumed that E(G), the endomorphism ring of G,
contains an embedded copy, denoted by EP(B), of the ring of all
bounded endomorphisms of B. Thus, identify EP(B) with

{aeE,(G)\a(B)£B\.

Suppose that B £ G £ B where G is a pure subgroup of B. It has
been shown that every endomorphism of G has a unique extension to B
(see, for example, [6], pp. 84-85). Thus, it is possible to adopt the
very useful convention of identifying the endomorphism ring of G
with the subring of the endomorphism ring of B consisting of endo-
morphisms of B which map G into itself. That is,

E(G) = {a e E(B) \ a{G) £ G) .

With this identification, EP(G) (the torsion subring of E(G)) becomes
a subring of EP(B); namely,

Ep(G) = {aeEp(B)\a(G)^G}.

It is reasonable to expect the above identifications to carry over
in some way to the images μ(E(G)) where μ is the map defined in
Theorem 2.9. The following results show that this is indeed the case.

Let ξ be the map of Theorem 2.9 developed for E{B). Then by
using the definition of ξ and the above convention, it is not hard to
show, for pure subgroups G of B containing B, that ζ | E(G) and the
map μ, defined in 2.9 for E(G), are identical. Because of this, it is
possible to confine the investigation of all such maps μ to the map ξ
and its restrictions to subrings of E(B).

By way of summation, the following is given.

LEMMA 3.1. Let G be pure subgroup of B which contains B.
Let ξ be the map of Theorem 2.9 defined for the p-group B. The
restriction of ξ to E(G) and the map of 2.9 developed for G agree.
Moreover, J(E(G), EP{G)) - J(E(B), EP(B)) n E(G).

LEMMA 3.2. If G = B or G = B, then ξ(E(G)) = Π Mn.

Proof. Suppose (al9 a2i •••) is a n a r b i t r a r y e l e m e n t of ΐl Mn.
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Each a{ (i = 1, 2, •) may be considered as an endomorphism of B^p],
By 2.1, each a{ has an extension to an endomorphism βi of B such
that βi(Bj) = 0 if ΐ =£ j . Let α: be the endomorphism of B determined
by the conditions:

Φi) = βi(bi) for bteB* i = 1,2, . . . .

By Lemma 2.2, a can be extended to B. In either case, ξ(a) —
( a l 9 a 2 , •••).

Up to this point it has been shown that Π Mn can be realized as
a homomorphic image of E(B) and E(B). Using an example of R. S.
Pierce, it can be shown that not every pure subgroup G of B which
contains B can be so classified.

First, consider the ring of p-adic integers, Rp (see [3], §6). This
ring can be thought of as the collection of all infinite sums of the
form

r = r0 + rφ + r2p
2 +

where 0 ^ rt < p. Suppose x e G, and reRp where

r = r0 + rφ + r2p
2 +

and 0 ^ Ti < p. It is possible to assign a meaning to the product rx,
namely,

rx = rQx + Tipx + r2p
2x + + rnp

nx

where n is any integer greater than E(x). Clearly, this definition is inde-
pendent of the integer n. It is easy to check that with this defini-
tion, G becomes an iϋ^-module. Consequently, every element r of Rp

induces an endomorphism of G, x —> rx, which will also be labeled r.
What is more important, it is not difficult to show that this corre-
spondence, between the elements of Rp and the elements of E(G), is a
ring isomorphism. With this in mind, it is possible to assume that
Rp is a subring of the ring of all endomorphisms of G.

DEFINITION 3.3. An endomorphism a of the p-group G is said
to be a small endomorphism of G provided the following condition
is satisfied:

(*) for all k ^ 0 there exists an integer n such that 0(x) ^ k
and hG(x) Ξ> n imply a(x) = 0.

REMARK. The concept of small endomorphism is due to R. S.
Pierce and can be found in his paper [8]. The equivalence of the
above definition and that appearing in [8] can be shown using 3.1 and
2.10 in the above mentioned paper.
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It is an easy consequence of the above definition that the collec-
tion of all small endomorphisms forms a subring E8(G) of the ring
E(G). Moreover, ES(G) is an ideal of E(G).

R. S. Pierce has shown that there exists a p-group H without
elements of infinite height such that E(H) = ES(H) + Rp ([8], p. 297).
The following results demonstrate a few of the many curious properties
of such groups.

LEMMA 3.4. // E(H) = E.(H) + Rp, then E8(H) and Rp are
disjoint.

Proof. Let reRp and r = Σ^ofiP* where 0 ̂  r< <p. By defi-
nition, r is a small endomorphism if and only if for all k ^ 0 there
exists an integer n such that xeH, E(x) ^ k and hH(x) Ξ> n collectively
imply r(x) — 0. Let h be the least index such that rh Φ 0. Let
k > h, and for I > k let xt = p^bi where 6Z e Bz, E{bt) = I and hH(bt) =
0. (Recall that B = ̂ neirBn is a basic subgroup of H). Then
xte B Q H, E(xt) = k, r(xt) Φ 0, and hH(Xι) increases indefinitely as I
increases. Thus r is not a small endomorphism, and ES(H) Π Rp = 0.

LEMMA 3.5. ζ(E,(H)) - Σ MΛ α^d f (iίp) = {1} wAere 1 is ίΛβ
identity of Tf Mn.

Proof. It is easy to see from the definitions of ζ and
E8(H) that ξ(E.(H))sΣ*Mn. Since EP(B) Q EP(H) Q ES(H) and
£(#,(£)) - Σ Λί», it follows that ξ(Es(H)) - Σ Mn. Suppose r -
ΣΓ=o ̂ ^* e JSp. Write r = r0 + ps where s = Σie* r^-1. Clearly,

ξ{r) = ξ(r0 + ps) = ξ(r0) + ξ(ps) = ξ(r0) e {1}.

LEMMA 3.6.

Ker (ξ I E(H)) = J{ES(H)) + J(RP) = J(E(H), EP{H)) .

Proof. By 3.1, Ker (ξ \ E(H)) = J(E(H), EP(H)). To show that
Ker (ζ I E{H)) = J(ES(H)) + J(RV), let a + r be an arbitrary element
in £/(ii) where a e ES(H) and r e Rp. Suppose, in addition, that
ζ(a + r) — 0. Since Σ Aί* a n ( i {1} a r e obviously independent and since
ζ(a + r) = £(α) + ί(r) e Σ Jkfn + {1} by the foregoing lemma, ζ(a + r) =
0 if and only if both ζ(a) = 0 and ζ(r) = 0. Surely, ζ(r) = 0 if and
only if r e pJϊp. Since pRp is the unique maximal ideal in Rp, J(RP) = î?p
(see [4], p. 9). Thus, the conditions ζ(r) = 0 and r e J(RP) are equivalent.
Moreover, £(α) = 0 and α: e #.(#) if and only if a e J(E(H), EP(H)) n #.(#).
By Lemmas 2.9 and 2.8 (d) of this paper and 14.4 of [8], ξ(a) = 0 if
and only if
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aeJ(E(H), E.(H)) Π E.(H) = J(ES(H)).

Thus,

Ker (ξ I E(H)) = J(ES(H)) + J{RV) = J(E(H), EP(H)) .

LEMMA 3.7. If K{G) = {a e E(G) \ a(G[p]) = 0}, then K{G) is a
two sided ideal of E(G) which is contained in the Jacobson radical
of E(G).

Proof. It is obvious that K(G) is an ideal of E(G). Moreover,
if a e K(G), then ker (1 - a) n G[p] = 0 and (1 - a)(G[p] Π pnG) =
G[p] Π pnG. Thus, 1 — a is an automorphism by 2.3. It follows that
K(G) is a quasi regular ideal in E(G); and is, therefore, contained in
the Jacobson radical of E(G) (see [4], p. 9, Theorem 1).

THEOREM 3.8. E(H)/J(E(H)) = E(H)/J(E(H), EP(H)) is ring
isomorphic to 2, Mn + {1}.

Proof. By 3.5 and 3.6, ζ maps E(H) onto Σ ΛfΛ + ί1! with kernel
J(E(H), EP(H)) = J(ES(H)) + J(RP). Also, by 2.8 (a), J(E(H)) e
J(ES(H)) + J(RP). Thus, it remains only to show that J(RP) and
J(ES(H)) are contained in J{E(H)). Since ES(H) is a two sided ideal
of E(H), J(ES(H)) - «/(#(#)) ΓΊ ES(H) (see [4], p. 10). Thus, J(ES(H)) s
J(E(H)). Since J(i?p) = pi?p (pί2p is the unique maximal ideal of Rp)
and since J(E(H)) is an ideal, Lemma 3.7 is enough to insure that
J(RP) s J(E(H)).

4* An extension property* In § 3, it was shown, using suitable
pure subgroups of B, that there are at least two distinct rings of
the form E{G)jJ{E{G), EP{G)), namely, Π Mn and Σ,Mn + {1}. It is
the objective of the remainder of this paper to investigate some of
the possible images ζ(E(G)) for B^G^B.

For the duration, assume that B = Σneir B% where each B{ = {6J
is of rank one and of order p\ In this case each M{ automatically
becomes fixed as a single copy of Zp. That is, each Mi will be the
ring of all endomorphisms of a cyclic group, {ci}, of order p.

For a subset A of N, let t(A) be the element of Π^e^ Mn defined
by the conditions

(Cί if j e A

(0 if j 0 A .

It is obvious that if r is any element of TίnβN Mn and if for each
i = 0, 1, , p — 1 Ai(r) = {j e N\ r(cά) = ic3), then r can be written
in the form r = J . U ίt(Ai(r)).
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LEMMA 4.1. Let R be any subrίng of E L e i r ^ with identity
e. (The identity of Y[neir Mn and e are not assumed to be identical.)
Then e = t(M) for some subset M of N. Moreover, the collection
K{R) = {A S NI t(A) e R} forms a Boolean algebra of subsets of M.

Proof. Using Fermat's theorem

e = e*-1 - CzitiMe)))''1 = Σ i^tiMe)) = &(A;(e)) = t(M)
\t=0 / ί=0 t=l

where M = {i e N\ e(c<) Φ 0}. If t(A),t(B) are members of i2, then
t(A f)B) = t(A)t(B) e R and t(A f] B) = t(A) + t(B) - t(A ΠB)eR. Since
t(A) = e-t(A) = t(M)-t(A) - ί(Af Π A), it follows that A s M for all
A G JΓ(12). Thus, t(M - A) = t(M) -t(A) = e - t(A) e R for all A e K{R).
This shows that K(R) does indeed form a subalgebra of P{M) = {A | A S Λί}.

LEMMA 4.2. Lei R be a subring of ΐ[neirMn with identity
e = t(M). If reR, then t(Ak(r)) e R for each k = 0,1, ., p - 1.

Proof.

r = 0 ί(Λ(r)) + tiA^r)) + 2t(A2(r)) + . + (p - l)ί(Apβl(r)) .

Consider the product

s = Π (ie - r) .
i^k,ί=0,l, "',p—I

It follows that seR. Clearly, if i £ Ak(r), then s(c5 ) = 0 since i e A^(r)
for some i and

(ίβ — r)(Cj) — iCj — r(Cj) = ic^ — ic^ = 0 .

Also, if j G Ak(r), then

8(Ci) = (0 - k)(l - k)(2 - k) . . . ((/c - 1) -

. . . ((p - 1) - fc)(cy) = (p - 1)! cy .

By Wilson's theorem, (p — 1)! = — 1 (modulo p); consequently, t(Ak(r)) =
- S G J B .

Suppose iί is a subring of Π Mn which contains ^Mu + {1}. For
each AeK(R), let ρ(A) = ΣaeApi. Define Γ(R) to be the subgroup
of E(B) generated by the collection {p(A) \ A G K(R)}. Using Lemma
4.1 and 4.2 some elementary properties of Γ(R) can be stated.

LEMMA 4.3. // aeΓ(R), then there exists an integer n^O,
integers au α2, , an and disjoint elements Alf A2, , An in K(R)
such that
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a = aφiA,) + a2p(A2) + + anρ{An) .

Moreover, the group Γ{R) is a subring of E(B).

Proof. For the first statement, induction can be used. For the
induction step, it is enough to show that if

a = aφiAJ + a2ρ(A2) + + αw_ljo(AΛ.1) + anp(An)

where Au •••, An^ are disjoint, then the result holds. Using 4.1,
Au , An e K{R) imply that

and An — U?=ί A{ are members of K(R). Moreover, these sets are
disjoint. Thus, if a is written

a = a.piA, - An) + . + a^φiA^ - An) + (a, + a^piA, Π An)

1 - A n ) + α w i o ( A w - { J A ) ,
\ i—l /

then it is easily checked that this is the desired decomposition. To
show that Γ(R) and the subring of E(B) generated by Γ(R) are
identical, it is enough to show that Γ(R) is closed under composition. It
suffices to note that if Au A2 e K(R), then piA^piA,) = p(A1 Π Λ) e Γ(R).
This is obvious by Lemma 4.1 and the definition of Γ(R).

LEMMA 4.4. R = ξ(Γ(R)).

Proof. If reR, then r = Σ U i<(Λ(r)) where A{(r) e K{R) (see
4.2). Let tf = ΣS5fV>(Ai(r)). Then aeΓ(R) and f(α) = r. Thus,

On the other hand, suppose

a = aφiAJ + + anp(An) e Γ(R) ,

where αx, , an e Z and Au , An e K(R). Applying ξ,

ξ(a) = a.ζpiA,) + + aJpiA,) + . . . +

+ αnί(Aw) e β

(see the definition of K(R) in Lemma 4.1).

The following lemma is needed before the main result of this
section can be given.

LEMMA 4.5. Let y = h J ^ * ajPj~kbj where heZ,keN and each
aό(j Ξ> k) is an integer such that 0 ̂  aό < p. If A g N and ie N,
then p^y Φ 0 and ρ{A){pι~ιy) e B imply that p(A)(y) e B.
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Proof. Suppose p(A)(y) ί B. Then if Ao = {% e A \ at Φ 0}, Ao is
infinite. Since piA^p^y) e B, there is some n e Ao such that

'y) = 0. Thus,

0 -

so that pA:+1-ί divides &. Since pl~ly Φ 0, this cannot be the case.

THEOREM 4.6. Let G be a pure subgroup of B such that B g G
and J(G)QG for each jeΓ(R). Suppose xeB[p] is such that
Γ(R)(x) Π G[p] ξΞ: B[p]. Then there is a pure subgroup H of B such
that

(i) δ S GQH
(ii) H[p] = G[p] + Γ(R)(x)
(iii) j(H) S H for each 7 e Γ(R).

Proof. Write x = Σ^fe0 ^P^^i where k0 > 0, 0 <£ α̂  < p for i ^ fc0

and αΛo ^ 0. Let iΓ be the subgroup of B generated by B and the
collection consisting of all sums of the form Σί** αip

ί~*6ί where fc ^/b0.
Consider the group K generated by all elements of the form y(z) for
zeK and y(R). It is claimed that the group H = K + G has all
the desired properties. First, note that K is exactly the subset of B
consisting of all elements which can be written as b + h Σj>k ajPj-kbj
for some be B, he Z and he N (the integers a3- for j ^ k are deter-
mined by the element x). Also, if y = b + A Si** ajPj~kbj e if, then
?/ may be written as # = &' + p ^ Σi^+™ ajPj~{k+n)bj, where 6' =
b + h Σ i ί Γ 1 0 , ^ - % e B and £;**+» cijPj~{k+n)bj e K. Thus, iΓ/J? is
divisible. Suppose ne N,yl9 , yk e Γ(R) and xu , xk e K. Using
the divisibility of K/B, choose yly - - -,yke K such that x{ — pnyt e B
for each i = 1, , k. Since 7 e Γ{R) implies 7(5) §Ξ B, it follows that

7i(xi) + + 7*(a?*) - j)"(7i(i/i) + + yk(yk))

This shows that K/B is divisible. (Note that B^K since 1 eΓ(R)
and B £ iί.) Now, both Z/.B and G/JB are divisible. Consequently,
H = ^ + G is a pure subgroup of I? since (^ + G)/B = (K/B) + (G/β)
is a sum of divisible groups and hence divisible. Since, a, BeΓ{R)
imply that aβeΓ(R) (see 4.3), it follows that j(K) Q K for all
yeΓ(R). Thus, j(H) Q H for each jeΓ(R). It remains only to
show that H[p] = G[p] + Γ(R)(x). First, suppose that

y = hΣ aάp
i~kbύ eK and
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Then p(A)(y) e G if and only if p(A)(y) e B. To show that this asser-
tion is correct, suppose that p(A)(y) is a member of G. Then, if
i = E(y), pι~ιy = h'x — bf for suitable K e Z and br e B. Thus, since
Γ(R)(x) Γ)G^ B and B g G , it follows that piAjip^y + 6') =
ρ(A)(h'x)eB and that ^(A)^-1?/) e J5. But, p(A)(pi-1y)eB,pi-1y^O
and y — h Σ , ^ ^jPj~kbj imply, via 4.5 and the restriction on the
a,i(ί ^ k), that p(A)(y) e B. The converse is trivial. Let

xu x2, , xn e K, z e G and 7i, 72, , 7« e Γ .

Suppose

?i) + 72(^2) + + 7 (a?n) + z) = 0 .

For each i = 1, 2, , n, let ^ = ^ + ht Σj^ki cLjPj~kibj where dt e B,
hiβ Z and ki e N. Let kf be any positive integer greater than each
of the integers kl9 k2, •••,&„. It is easily checked that there exist
integers mly m2, , mn and elements d[, d'2, , d'n of B such that for
each i = 1, , n

Thus, if 7/ = Σy^*' ajPj~k'bj, then

Ύi(̂ i) + + Tn(»n) = Ti(dί + m^) + + 7»(d» + mny)

= b + 7(2/)

where 6 e B and 7 e Γ. Since ye Γ, it is possible to write 7 =
βίpiAj) + + emρ(Am) where Al9 , Am are disjoint members of
K(R) and where eu *--,emeZ (see 4.3). Now,

PiΎiiXi) + 72(^2) + + 7Λ(&n) + «) = 0

implies p(δ + 7(2/) + z) = 0; and, therefore, 2)7(2/) eG + B = G. Suppose
that eip{Ai){y) g I? for some i = 1, , m. Then since & e G, p7(2/) e G
and piA^G) S G, it follows that

= peiP(At)(y) = piA^pe.y) e G .

Thus, as was noted, p(Ai)(peiy) e B. Now,

p(Ai)(peiy) =
\

= P#i Σ ajp
j~k'bj e B .

Since, by assumption, β^AOd/) ί J?, it follows that p(Ai)(y) 0 B. Thus,

β.# Therefore, ety = ejcc — 6' for suitable e e Z and δ' e β.
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Consequently, e^A^y) = piA^e^) e Γ(R)(x) + B. It follows that
Tito) + + 7n(xn) e Γ(J2)(α) + B and that

7i(«i) + + 7»(α») + 2 e Γ(Λ)(a?) + G .

Thus, y^Xj) 4- + 7Λ(ί»») + 2 = y + w where y e Γ(R)(x) and weG.
Also,

0 = p(7i(&i) + + 7«(&«) + «) = P(2/ + w) = PW

and weG[p], This shows that H[p] S G[j>] + Γ(R)(x). The opposite
inclusion is obvious.

5* The image* This section is devoted to the construction of
a class of pure subgroups of B having suitably restricted endomorphism
rings. The methods used here are similar to those employed by P.
Crawley in [2] and R. S. Pierce in [7].

DEFINITION 5.1. (R. S. Pierce) A family JΓ of subsets of a
set F is called weakly independent if whenever Ao, Al9 , An are
distinct elements of ^ 7 then Ao is not contained in the union of the
remaining sets Au A2, , An.

THEOREM 5.2. (R. S. Pierce) Let F be a set of infinite cardi-
nality φ. If ψ is a cardinal number such that 0 < ψ ^ φ, then
there is a family J^~ of subsets of F such that

( a ) ^ is weakly independent,
( b) I A I - ψ for all A e J
( C )

Proof. (See [8], p. 261.)
At this point it is convenient to set Θ = {a | B[p] \ a e E(B)}. It

is clear that Θ is a ring with identity. For the moment, only the
additive group structure of Θ will be considered.

LEMMA 5.3. Let Γ — {a0 — 0, au az, •} be any countable sub-
group of Θ satisfying the following condition:

(*) for all nonzero a e Γ, a{cό) Φ 0 for an infinite number of
indices j e N.

There is a collection T(Γ) of element in B[p] such that
( i ) I T(Γ) I = 2*o,

(ϋ) Σ.er(n Γ{x) is direct (Γ(x) = {a(x) \aeΓ}).
(iii) ai(x)Φa3 (x) for all xe T(Γ) and for all iφj,
(iv) 0Li(x) — 0 for some x e T(Γ) implies a{ = 0.
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Proof. Let K = N x N. Well order K in the following way:
(i, j) < (k, h) if i + j < k -)- h or if i + i = ft + Λ and i < k. Now,
each element of Γ1 satisfies (*). Thus, since the set

is finite for all elements (ft, A) e if, it is possible to define, inductively,
an order preserving one-to-one map f oί K into N such that hs(ai(cf[itj)))
is finite (i.e., αί(c / ( i f i )) =£ 0) and is greater than the height or every
nonzero element in the finite subgroup of B[p] generated by the
collection {ock{cf[min)) \k <£ i and (m, n) < (i, i)}. Let ^ be any weakly
independent collection of subsets of N such that | ά?" [ = 2Ko. If
S G ̂ 7 let a (S) e B[p] be defined by the expression:

= Σ

Let Γ(Γ) - {x(S) I S G

xt = aj(Si) for i = 1, 2,

Suppose Su S2,
, n0 and

, Sno e &~ are distinct,

for positive integers fcx, k2i , feΛo. Since , ^ is weakly independent,
there exists for each i = 1, 2, , w0 an integer

, G S, -

Let kt be the largest integer in the collection {kί9

Λ* - hs{aφnhitmi))) + 1. It follows that

( 1 )

and

( 2 )

(1 - πh.)ak.(cf{ki,mi)) Φ 0

(<V(v̂ >) + (! - πn^M -

,feΛo}. Let

Now,

- πh.)ak.(x - c/(,.,m.)) + (1 - πh.) Σ
i2

Λ .)(α.

- πh.) Σ.
i=l,2, * ,w0

Since m̂  G S^ it follows from the definition of α̂  = »(S) and the order
preserving property of the mapping / that
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(1 7Γhi)(Xi — Cf{ki,mi)) = 2-1 Cf{m>n)

Hence, ak.(l — /κh){^i — of{kitmi)) belongs to the subgroup S of B[p]
generated by the collection

Also, if j Φ i, then mf g S3 and k3- ̂  k{. Therefore,

(l-πhi)(xj)=^^Σ^cfim,n)

and because of this, akj((l - πhj){xό)) e S. Thus, from (1), (2) and the
above, (1 - πh.)ak.(cm.9iΛi)) = (1 - πh.)(z) Φ 0 for some z in S. It
follows that hs(ak^{Cf{k m)) = hβ{z), a contradiction of the definition of
the map /. Thus, X^i-ίn Γ{x) is direct. Condition (i) is clear from
the definition of T(Γ). Condition (iv) follows from the preceding
argument with n = 1. Since Γ is a group, condition (iii) follows
easily from (iv).

DEFINITION 5.4. Let Γ b e a subgroup of Θ. An element a in
Θ will be called Γ-exceptional provided there exists a collection T(Γ, a)
of elements in B[p] such that

( i ) I T(Γ, a) I = 2**°,
(ii) Γ(x),Γ(y),{a(x)},{a(y)} are independent for all distinct

x,yeT(Γ,a),
(iii) a(x) Φ 0 for all x e T(Γ, a).

An endomorphism a e E(B) will be called Γ-exceptional if a \ B[p] is
Γ-exceptional.

REMARK. If a e E(B) and a | B[p] = 0, then by 3.7 and 2.8 (a)
aeJ{E{B),Ep(B)). Thus, the kernel of the map a—>a\B[p] is con-
tained in J(E(B), EP(B)). It follows that ξ can be considered as a
map from Θ to Π Mn by defining for each a e Θ, ξ(a) = ξ(β) where
βeE(B) and a — β\B[p]. Extensive use will be made of this con-
vention in what follows.

LEMMA 5.5. Let Γ be any countable subgroup of Θ. Suppose
aeΘ is such that a$Γ and Δ = {Γ, a} satisfies the following condition:

(*) for all nonzero β e Δ, β(c3-) Φ 0 for an infinite number of
indices j e N. Then a is Γ-exceptional.

Proof. Since Δ = {Γ, a} is obviously countable and satisfies (*),
Lemma 5.3 can be applied to conclude that there exists a collection
T(Δ) with the properties:
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(i ) I T(Δ) I = 2*o,

(ϋ) Σ*er(j)^(α) is direct.
(iii) y(x) Φ β(x) for all x e T(Δ) and distinct β, 7 e Δ,
(iv) /5 e Δ and £(&) = 0 for some x e T(Δ) implies β = 0.

Set Γ(Γ, α) = T(Λ) Clearly, conditions (i) and (iii) of 5.4 are satisfied.
Let x, y e T(Γ, a) be distinct, and suppose there is a relation of the
form β{x) + ka(x) + Ί(V) + ha(y) = 0 where β, 7 e Γ and h,keZ. By
(ii), it is clear that both /3(x) + ka(x) = 0 and 7(1/) + ha(y) = 0. It follows
by (iv) that /3 + ka = 0 and 7 + ha = 0. Since 2£(α) = 1 and α ί Γ ,
this last condition implies that both ha = 0 and ka = 0. Thus /3(ίc) =
A α(a ) = 7(7/) = ha(y) = 0, and condition (ii) of 5.4 is also satisfied.
This completes the proof.

COROLLARY 5.6. Let Γ by any countable subgroup of Θ satisfying
(*) for all nonzero γeΓ,7(Ci)^0 for an infinite number of

indices j e JV.
Suppose aeΘ is such that ξ(a) is not a member of ξ(Γ) + (X Mn).
Then a is Γ-exceptional.

Proof. Clearly, a $ Γ since ξ(a) S ί(-Γ). Consequently, it is enough
to show that A = {Γ, a) satisfies condition (*). Suppose, to the con-
trary, that there exist ne N and βeΔ such that β Φ 0 and β(cά) = 0
for all j > n. It is possible to write β = 7 + ka where yeΓ and
keZ. Since Γ satisfies (*) and E(a) = 1, it can be assumed that
k ^ 0 (modulo p). Now, /5 = 7 + ka and

ί(fcα') = £(̂ 9 - 7) - ξ(β) - ί(7) 6 Σ Λf» + f(Γ) .

Since k is relatively prime to p, it follows that ξ(a) e^jMn + ζ(Γ),
a contradiction.

COROLLARY 5.7. Lβί F δβ any countable subgroup of Θ satisfying
the following condition:

(**) for all nonzero yeΓ there exists a sequence of integers
{&i}ieN such that j(d) — did for each ie N, and afii Φ 0 for an
infinite number of indices i e No

Let aeΘ be such that aid) — Pia{cζ) Φ 0 for an infinite number
of indices ie N. Then a is Γ-exceptional.

Proof. If 7eΓ, then y{c{) - paid) = a^i - a^ = 0 for all ie N.
Thus, ag Γ. As before, let Δ = {Z7, α}, suppose 7 + kae Δ. It k = 0
(modulo p), then either 7 = 0 or (7 + ka)(Ci) = 7(c<) ^ 0 for an infinite
number of indices ie N. If 7 = 0, then y + ka = 0; and there is
nothing to show. Suppose k Φ- 0 (modulo #>). It follows that
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) = (7 + ka)(d) - pay

= (7 - ft7)fe) + k(a

= k(a - pia)(Ci) Φ 0

for an infinite number of indices i e N. Consequently, 7 + ka must
have this same property, and by 5.5, a is /^-exceptional.

Let R be any countable subring of Π Mn which contains 2, Mn + {1}.
Let Γ(R) be as defined in § 4. That is, Γ(R) is the subgroup of E(B)
generated by the collection {p(A)\AeK(R)}. Define Γ to be the
subgroup of Θ defined by Γ = {7 I B[p] \ ye Γ(R)}. Note that Γ is a
p-group in which every element has order p. By Zorn's lemma, it is
possible to choose a subgroup Δ of Γ which contains the identity and
which is maximal with respect to having only the zero element in
common with the subgroup {7 e Γ \ ζ(7) e 2, Mn}. Obviously, Δ is a
countable subgroup of θ which satisfies condition (*) of 5.3. Let g?
be the collection of all those elements in Θ which are J-exceptional.
By 5.6, if aeΘ and ξ(cc)$ζ(Δ) + ΣιMn9 then a is ^-exceptional. Since
ί(^) + ( Σ Mn) is countable and since ξ maps onto Π Mn by Lemma
3.2, it follows that | g* | = 2*°. Let Ω be the first ordinal of cardi-
nality 2*°, and let φ <-• aφ be a one-to-one correspondence between the
elements of i? and the ordinals φ < Ω.

LEMMA 5.8. There exist collections {Gφ | φ < Ω}, {Pφ \ φ < Ω) and
{JJΨ I φ < Ω} such that

(i ) for all φ <C Ω, Gφ is a pure subgroup of B containing S,

Pφ = Gφ[p] and Uφ is a subset of B[p],
(ii) Gφ ξΞ= Gχ and Uφ S ί7χ whenever φ ^ χ < Ω,
(iii) | P , | ^ ( | 9 > | + l ) K 0 α^d |C7, | ^ (| φ | + l ) « 0 ,

(iv) y(Gφ) S G<p for all 7 e Γ(β) and each φ < Ω,
(v) P^ n Uφ = 0 /or all ψ < Ω,
(vi) for each φ < Ω there exists zφePψ such that aφ(zφ) e Uφ.

Proof. The proof is by transfinite induction. Suppose Gφ and
Uφ exist for all φ < χ. Let G'χ - \JΨ<1 Gψ + B. P[ = \Jφ<χ Pψ + B[p]
and Uί - U^<x Uφ. Note that G'χ[pJ = Pχ', that τ(Gi) S Gr

χ for each
jeΓ(R), and that G\ is a pure subgroup of B. Suppose there is an
element z in P[ n t/χ'. The existence of 2 implies the existence of
ordinals ψ < χ and (o < χ such that zeUψ and ^ G P W + i?[p] = P ω .
Let cp be largest of <̂  and ω. Then 2 e [Pφ + B[p]\ Γ\ Uφ = Pφf) Uφ,
contrary to the induction hypothesis. Thus, P[ Π U'χ — 0 . Since
I Pφ\ ^ (I φ I + l)No and | ^ | g (| ^ | + l)Ho for each ^ < χ, it follows
that I P[ I g (I χ | + l ) « 0 and | C/; | ^ (| χ | + l ) « 0 . Thus,

;, c/χ', j?[p]} 1 ̂  1 Pi 11 u ί 1 «o ^ (I χ I + i ) « 0 < 2 *
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Since ax is //-exceptional, there is a collection T(aχ) <Ξ B[p] such that
( a ) \T(az)\ = 2P*
( b ) y,ze T(aχ) imply that Δ(y), Δ(z), {aχ(y)}, {aχ(z)}
are independent and aχ(y), aχ(z) are nonzero. Therefore, it is possible
to find zχ e T(aχ) such that aχ(zχ) Φ 0 and

Now suppose yeΓiR). Since every element of Γ has order p and
since A is maximal with respect to having zero intersection with
{7 e Γ I f(7) 6 2 ΛfJ, it is possible to write 7 | B[p] as a + /3 where
α G zί, /9 G Γ and f(/S) G Σ Mn. Since ς(/S) e Σ Λf«, it follows from the
definition of Γ(R) that β(B[p]) Q B[p], Therefore,

y(zz) = a(zχ) + β(zχ) e Δ(zx) + B[p] .

Consequently, if y(zx) e Gf

x[p] = Pz', then (using (#)) 7(»χ) e B[p]. Thus,
G^ and 2;χ satisfy the hypothesis of 4.6. Let Gx be the pure subgroup
of B obtained by the application of 4.6. Then

Px - Gx[p] = G'x[p\ + Γ(R)(zx) = P> + Δ(zx)

and 7(GX) e Gz for each 7 e Γ(β). Also, | Px \ ̂  (| χ | + l ) ^ 0 . Let U
xbe the set obtained by adjoining ax{zx) to Ux. Then | Ux \ S (I Z I +

and conditions (i), (ii), (iii), (iv) and (vi) obviously are satisfied. To
show that (v) holds, suppose zePxf] Ux. There are two cases to
consider:

Case 1. z — ocχ{zχ) and z = y + β{zx) for yePx and / 9 G J . By
(#), ax(zx) — β(zx) = 7/ — 0. Thus, applying (b), it is clear that
#χ(£χ) — 0. This is a contradiction of the choice of zx.

Case 2. z e Ux and z = y + β(zχ) for 7/ e Px and /5 e zί. In this
case, 0 = z - y = β(zx) by (#). Consequently, y = ze U'x. This is a
contradiction since Ux Π Pi = 0 .

LEMMA 5.9. Let G(J2) = \Jz<0Gχ,P(R) = \Jχ<ΩPχ and U(R) =

(i ) G(R) is a pure subgroup of B,
( i i ) G(R)[p] = P(R),
(iii) P(R)f] U(R)= 0,
(iv) Ί(G(R)) S G(.R) /or βαc/?, jeΓ(R),
(v) ΐ/ aeE(B) and if a is Δ-exceptional, then a$E(G{R)).

Proof. The arguments for (i), (ii), (ii), and (iv) are quite easy
and can be found in the proof of 5.8. To show (v), suppose a is
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J-exceptional. Then there exist φ < Ω and zφ e P(R) such that a(zφ) e Uφ

(see (vi) of 5.8). Since P(R) n U(R) = 0 and G(R)[p] = P(R) by (iii)
and (ii), it follows that a$E(G(R)).

THEOREM 5.10. Let R be any countable subring of the ring
direct product Π Mn. Suppose that R contains ΣιMn + {1}. There
is a pure subgroup G of B, containing B, such that ξ(E(G)) = R.
Moreover,

E(G) s R β

J(E{G), EP(G))

Proof. Let G = G(R). By 4.4, 12 = £(Γ(B)). Thus, since Γ(R) g
by (iv) of 5.9, R g ξ(E(G(R))). Suppose α e E(G(R)) and £(α) g i2.

By 4.4, £(J) S f(Γ) g ξ(Γ(R)) = R. Thus, ξ(Δ) + (Σ -M ) g R, and Lemma
5.6 may be applied to infer that a is ^-exceptional. This is contrary
to (v) of 5.9. Therefore, ξ(E(G(R))) = R. It follows from 3.1 that

E(G) s R m

J(E(G), EP(G))

LEMMA 5.12. Let U and V be vector spaces over a field such
that F g U. Let U/V be finite dimensional. Suppose ae E(U), a
is one-to-one and a(V) = V. Then a is an automorphism of U.

Proof. Since a(V) = V, a induces an endomorphism a' of U/V
(af(u + V) = a'(u) + V for u e U). Moreover, a' is one-to-one; and,
consequently, the dimensions of U/V and a'(U/V) are equal and finite.
It follows that a\U/V) = U/V; and therefore, a(U) = Uby a standard
argument.

THEOREM 5.13. The groups G — G(R) have no proper isomorphic
subgroups.

Proof. Let a be an isomorphism of G into G. By (v) of 5.9, a
is not //-exceptional. By 5.6, 5.7 and the definition of the map ξ9

there must exist an integer n and an element β e A such that a(c{) =
β(Ci) for all i > n. Since a is an isomorphism, 0 Φ a(Ci) = ̂ (c )̂ for
all i > n. It follows that α: and β agree on (ττ%G)[p] = πn(G[p]) (see
§ I for the definition of πn). Now, Δ c Γ - {71 S[p] 17 e Γ(R)}, βeΔ
and /3(Ci) Φ 0 for i > n imply, using Fermat's theorem, that βp~ι acts
as the identity on πnG[p]. It follows that β maps (πnG)[p] Π pk(πnG)
onto itself for each k = 0, 1, . Thus,

Π PkG) - α((ττnG)[p] Π Pfe(7r.G) - (πnG)[p] n ί>fc(πnG) - G[p] ΓΊ
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for each k = n,n + 1, . Suppose m Ξ> 1 is the largest integer
such that a(G[p] n pm^G) Φ G[p] n pm~ιG. It has been shown that if
m exists, then m ^ n. An application of 5.12 to Ϊ7 = G[p] f] pm~ιG
and F = G[p] n Pmf? shows that the existence of such an integer m
is impossible. Consequently, a(G\p\ Π pfcG) = G[p] π 2>*G for all /<; ̂  0.
By Lemma 2.3, it follows that a is an automorphism of G.

COROLLARY 5.14. Let R be any countable subring of the ring
direct product Π ^ Suppose that R contains ^ Mn + {1}. There
is a pure subgroup G of B which contains B such that

E(G) „ Ώ

J(E{G)) ~

Proof. Let G = G(R) and apply 5.10, 5.13 and 2.12.
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