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EQUILIBRIUM SYSTEMS OF STABLE PROCESSES

SIDNEY C. PORT

We investigate several phenomena connected with the
movement of particles through a compact subset B of cZ-dimen-
sional Eucledian space in a system of infinitely many particles
in statistical equilibrium, where each particle moves indepen-
dently of the other particles according to the laws of the
same symmetric stable process. In particular, we show that
the volume of B governs the rate of flow of particles through
B, and that on the one hand, for transient processes, the
Riesz capacity of B governs the rate at which new particles
hit B and at which particles permanently depart from B,
while on the other hand, for recurrent processes, the rate at
which new particles hit B is independent of B.

In this paper we will consider a system of denumerably many
independent particles, all moving about in cί-dimensional Euclidean
space according to the laws of the same stable process in such a
manner as to maintain statistical equilibrium of the system as a whole.
For simplicity, and for the sake of obtaining explicit formulas, we
restrict our discussion to systems of symmetric stable processes—i.e.,
those stable processes having transition density

f(t,x) = (2π)-*\ e-w^e-w'dθ .

However, all of the results we obtain here, appropriately modified,
remain true for general (not necessarily symmetric) stable processes.
We will always assume that the sample paths of our processes are
right continuous and have left-hand limits at every point.

Following Doob ([1], p. 404jf), the system we have in mind may
be described as follows. Let X3 (t) be the location of the ith particle
at time t. At time 0 the particles are Poisson distributed over Rd

with rate 1, and are numbered so that | Xi(0) | < | X(0) | < (Details
on Poisson processes on Rd can be found in [8].) We assume that
Xj(t) — Xj(0), 1 ^ j < <*>, are mutually independent stable processes
having the common transition density/(ί, x). Moreover, the collections

{X, (t) - X, (0), l^j<°o], { χ . ( 0 ) 9 1 ^ j < oo}

are independent. Then, as was shown by Doob, at any subsequent
time t > 0, the distribution of particles over Rd is again Poisson with
rate 1. Consequently, this system maintains itself in macroscopic
equilibrium, and for this reason we refer to such a system as an
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equilibrium system of stable processes.
In applied studies, equilibriums systems (for Brownian motion, of

course) usually arise by a suitable passage to the limit in a system of
N particles. An interesting example of this situation is given in [7]
(P. 132Jf).

Our purpose in this paper will be to investigate the following (for
compact subsets of Rd): (1) the number of distinct particles, LB(t),
that enter B by the time t; (2) the number of particles, DB(t), that

by time t have left B, never to return; and (3) SB(t) = \ AB(s)ds,
Jo

where AB(s) is the number of particles in B at time s. (The quantity
of SB(t) is just the total occupation time in B by time t of all particles
in the system.) Principally, we shall be interested in establishing the
strong law of large numbers and the central limit theorem for these
quantities1, but some additional facts will be developed along the way.
In the Appendix we establish bounds for the rate of convergence in
the central limit theorems for the above quantities.

Previously, these results were established by the author [10] for
equilibrium systems of transient, discrete time, Markov processes.
For equilibrium systems of recurrent Markov chains, the results for
LB(t) may be found in [9], while those for SB(t) will appear in [11].

Our results for equilibrium systems of symmetric stable processes
are as follows.

THEOREM 1. Let B be a compact set in Rd having nonzero volume
\B\. If AB(t) denotes the number of particles in B at time ί, and

if SB(t) = ΓAS(S)<ZS, then
Jo

(1.1)

and
(1 2)

Moreover, if a < d, then

(1.3) Var SB(t) ~ 2ί [ \ g{y - x)dy dx ,

where

(1.4) g(χ) = Γ[^—^)\4"VΨ^)\ \x

1 It is really the explicit norming which yields these results (rather than just
existence) which is of major interest.
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If d = a, then

(1.5) Var SB(t) ~ 2/(1, 0) | B \H log t ,

while for d < <x ̂  2, we m^s£ Λαΐ e c£ = 1, αwd

(1.6) Var SB(t) ~ 2/(1, 0) | B |f 1 - —TT2 - -^TV"1'* .
L α:J L ocA

In all cases {see Eq. (3.2) of [3]),

/(I, 0) - 2 Γ ( ^ ) [ ^ ( γ )

REMARK 1. The results in this theorem show that in every
equilibrium system of stable processes, the asymptotic number of
particles per unit time in B is (with probability one) just the volume
of B, when the mean number of particles per unit volume is 1. In
other words, the process AB(t) is ergodic. However, the fluctuations
around the mean depend on the processes in question and on the
dimension. In every case when the processes are transient (a < d),
the variance, Var SB(t), is asymptotically proportional to t, while
when the processes are recurrent (a^d), [Var S^ί)]*"1 increases to
infinity at a rate proportional to the mean sojourn time by time t of
a single particle in B. This, of course, is to be expected since, after
a long time, most of the particles in B will be particles that have
previously been there. In the transient case, particles can permanently
wander away from B, so in order to maintain an equilibrium condition
we must have a larger input of new particles per unit time than in
the recurrent case. More precisely, we have the following result.

THEOREM 2. Let B be a compact subset of Rd. If a < d, assume
the d — a dimensional Riesz capacity, C(B) > 0. (The Riesz capacity
is defined in the proof.) When a > d assume that B is nonempty,
while for a — d assume PX(VB < °°) — 1 for all xeRd2, where for
a stable path X(t),

(1.7) VB = inf {t > 0: X(t) eB}(=c* if X(t) g B, all t > 0) .

Let LB(t) denote the number of distinct particles to visit B by time
t. Then LB(t) is a nonhomogeneous Poisson process on (0, oo)? and

(1.8) ELB{t) = f Px(VB£t)dx.

2 It is known that for the processes with a — d, PX(VB < °°) = 1 for all x if
PX(VB < °°) > 0 for some x. [A proof of this fact can be found in a forthcoming
book on Markov processes by Blumenthal and Getoor.]



490 SIDNEY C. PORT

Moreover,

(1.9)
B(t)

and

(1.10) ιimpίLB(t)- ELz(t) ^ x \ = (2π)-ll2\X e~uΦdu
\ [ELit)]1' J

Finally, if a < d,

(1.11)

wΛiZe for d — a,

(1.12) #L*(ί) - [/(I, 0)]-

ewwZ /or 1 = d < a ^ 2,

(1.13) SLΛ(ί) ~ [/(I, 0)r(l - l ) r ( l + -^)]"V/β .

REMARK 2. We note first of all that whenever the processes are
transient, the number of new particles that enters B is asymptotically
proportional to ί, while in the recurrent case, ELB{t)t~x —>0. Thus,
as previously anticipated, the rate at which new particles enter a
compact set is greater for transient processes than for recurrent
processes. Observe next that since LB(t) is a Poisson process, the
probability that no new particle enters B by time t is just e~ELjB{t).
Finally, we note in passing that the capacity inequalities ([6] p. 250)
can easily be derived from (1.8) and (1.11).

THEOREM 3. Assume that a < d, and let B be a compact set
having nonzero d — a dimensional Riesz capacity C(B). If DB(t)
denotes the number of particles that during the time interval (0, t]
have been in B and left, never to return, then DB(t) is a homogeneous
Poisson process on (0, oo) with rate C(B). Moreover

(1.14) P[lim DB(t)/t - C(B)] = 1

and

( 1 Λ 5 ) l^ p ( DB([tciB)rB) - x ) =

REMARK 3. Using well-known facts about Poisson processes we
at once obtain the probability that every particle which has been in
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B during (0, t] will return to B at least once during (ί, oo) is e~0{B)t.
Also for any time ί, the waiting time from t till the time that the
next particle leaves j?, never to return, is exponentially distributed
with mean C(B)~1. Since the waiting time between two successive
events in the DB(t) process is exponential with mean C(B)~1, we see
that the mean time between successive permanent departures is C(B)~\
Finally the capacity inequalities yield facts about EDB{t) as a set
function that are not at all apparent. For example, if A c B then
EDA(t) £ EDB{t).

REMARK 4. The results of Theorems 2 and 3 show that the
electrostatic (Riesz) capacity of a compact set B can be interpreted as
the (asymptotic) rate per unit time at which new particles enter B
and also as the rate per unit time at which particles wander off of B,
never to return, in the appropriate equilibrium system of stable
processes. The number of particles, RB(t), that will reenter B after
time t is just LB(t) — DB(t). Proceeding as in the proofs of Theorems
2 and 3 we may show that for each fixed t, RB(t) is Poisson distributed
with mean

(1.16) ERB(t) = ELB(t) - EDB(t) = ( PX(VB ^ t)dx - tC(B) .
JRd

(However, RB(t) is not a Poisson process, since RB(t) clearly doesn't
have independent increments.) Now the asymptotic behavior of the
expression on the right in (1.16) was investigated by Getoor in [3].
In our terminology Getoors' results show that ERB(t) is a nondecreasing
function of t, and that if a < d/2,

(1.17) E R B ( t ) 1 [ EX(VΛ < o^γdx +\B\.

On the other hand, if a = d/2, then

(1.18) ERB(t)~ f^>°lC{By log t,
(d/a) — 1

while for d/2 < a < d,

(1.19) ERB(t) C(£)2/(l, 0) f_{dla)

[(d/a)-1][2-(d/a)]

Consequently, we see that if a < d/2, RB(t) converges in law to a
Poisson random variable RB, while for d/2 ^ a < d, RB(t) ] oo with
probability one. (However, [RB(t)-ERB(t)][ERB(t)]~112 is asymptotically
normally distributed.)
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2* Proofs*

Proof of Theorem 1. It is a known fact (which can be verified
directly by a slightly tedious computation) that the process AB(t) is
strictly stationary. Hence by the pointwise ergodic theorem, there is
a random variable S% such that

Pllir
> t-+oo

To conclude that P(«S| = \B\) = 1, it suffices to show that for any
ε > 0 ,

«-*- VI ί [ ' / °"

By Chebechev's inequality, this will be the case provided

(2.1) lim [Var Ss(t)]t-2 = 0 .
ί->oo

At time 0 the particles are Poisson distributed over Rd with rate 1.
Then for a Borel set DaRd, the number of particles in D at time 0
is AQ(D), where AQ(dx) is the random counting measure with generating
functional

E exp I log s(x)A0(dx) = exp I [s(x) — l]dx ,

and s(x) is a bounded complex valued function. (A discussion of
generating functionals can be found in [8]). For a stable process X(t)f

let NB(t) be the occupation time in B by time t, i.e.,

NB(t) =

where lB(x) is the indicator function of B. Then

E{eiθs*{t)) = E exp Γ [ log Ex(eieN*{t))A0(dx)\
(2.2) l U d J

= exp I [E.(ei$"*{t)) - l]dx .
JRd

From this we readily obtain that

Var SB(t) - ( ExNB(t)2dx .
JRd

Setting g(t, x, B) — \ \ f(s, y - x)ds dy, we obtain
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dx\ \ I I /(<!, y — x)f(t2 — tuz — y)dtβtβydz

= 2[t[ gis,x,B)dxds .

Now /(£, #) is a bounded continuous function in x9 and satisfies the
well-known scaling property (see, e.g., [3]) fit, x) = t~dl"f(l, t~u<xx).
Consequently,

(2.4) f(t, x) , 0) ,

uniformly in x on compacts. A simple computation now shows that,
uniformly in x on compacts,

(2.5) g(t, x, B) ~ ΐ-Wfil, 0)[l - ^ \ B \ , d < α ^ 2 ,

(2.6) git, x, B) ~ (log ί)/(l, 0) | B |, α = d ,

(2.7) g(t, x, B) ΐ ( 0(0 - x ) # < - , a < d ,

where by Eq. (1.2) of [3],

g(x) = — ) ] I a?

In all cases then, we see by (2.3) that (2.1) holds.
From (2.2) we see that

(2.8)

where

(2.9)

iθ[SB(t) - t \ B |]) = exp {- - | Var SB(t)

EaNB(t)*dx .

Hence, to establish (1.2) it suffices to show

, EβNB(t)*dx

*-.- [Var SBit)f2

In order to do this we need the asymptotic behavior, for large ί, of
the quantities in the numerator and denominator of the above expression.
As for the denominator, we see at once from (2.3) and eqs. (2.5) —
(2.7) that (1.6) holds, for d < a ^ 2, that (1.5) holds for a = d, and
that (1.3) holds for a < d. As to the numerator, an easy computation
shows
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f ExNB(tfdx = 3lΓ( g(s, x, B)g(t - s, x, B)dxds .
JRd JojB

In view of Eqs. (2.5) — (2.7), an appeal to a well-known Abelian theorem
on convolutions (Theorem 42 of [4]) shows at once that that for a < d,

(2.10) 1 g(s, x, B)g(t — s, x, B)ds ~ t\ \ g(y — x)g(z — x)dydz ,
JO JBJB

while for a = df

(2.11) [g(s, x, B)g(t - s, x, B)ds - t(log ί)«/(l, 0)21 B |2 ,
Jo

and for d < a ^ 2 (i.e., d = 1, and 1 < a ^ 2),

f ( 1 - 1 / α ) + 1 / ( l , 0 ) 2 iY l - — Y I B I2

(2.12) (V(s, a?, B)g(t - β, a?, 5 ) d s V ^ 7

J

Consequently,

Var SB(t)-*12\ ExNB(tγdx = 0(r1/2) , a < d ,

= 0(r1/2α), d < a ^ 2 .

This completes the proof.

Proof of Theorem 2. Let 0 = t0 < tx < < tn be any n points
on (0, oo), and let 0 < s{ < 1. Then it is not hard to see that

log [ l + g (8i - l)Pβ(ί ί β l < VB ^ ί<

- exp[g (s4 - l^P^t^ <VB^ U)dx\ ,

where A0(dx) is the Poisson process on Rd with rate 1. Thus LB(t)
is a nonhomogeneous Poisson process on (0, co)? and

ELB(t)= \ Px(VB^t)dx.

For a < d it was shown in [3] that

ί P.(VB ^ t)dx ~ tC(B) ,
JRd
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where C(B) is the natural capacity of B, this being just the d — a
dimensional Riesz capacity determined by the kernel (1.4). (A discussion
of Riesz capacity may be found in [6], p. 290#.) This establishes
(1.11).

Next we establish (1.12) and (1.13). For λ ^ 0 let

Hi(x, A) = Ex[e~^lΛ(X(VB)); VB < <*>]

denote the λ-hitting measure of B, and for λ > 0 let U\x) denote the
Laplace transform of f(t, x). The dual process to X(t) is the process
— X(t), Since X(t) is symmetric, a fundamental relation of Hunt ([5]
Eqn. (18.3)), connecting a process to its dual, becomes in this case
the following identity:

(2.14) ( HB(x, dz)U\y - s) = ( H&y, dz)U\x - z) .
)B )B

Integrating x over Rd in (2.14) then yields the relation

(2.15) ( E$(dz)U\y - z) = X~ιEy(e^v*) VB
JB

where

Ek

B{dz) = [ dxHk

B{x, dz) .

Consider the case a > d. It is a known fact about these processes
(see, e.g., sec. 2 of [12]) that Py(VB < oo) = 1 for all y whenever B
is nonempty. From (2.4) we readily obtain, by standard Abelian
arguments, that

U\y - s) ~ /(I, 0)r(l - λ)x~1+lίa , a > d
V a/

uniformly in ze B. Using this, we easily obtain from (2.15) that

(2.16) E$(B) ~ [/(I, 0)r(l - ^)Y^lla ,

from which (1.13) follows by Karamatas' Tauberian theorem.

Now consider the case a = d. Then it easily follows from (2.4)
that for y&B,

uniformly in zeB. Using (2.15), we may conclude that

(2.17) E$(B) ~ [/(I, 0)λ log (i)]""1 ,
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from which equation (1.12) follows by Karamatas' theorem.
We will now establish a simple result on Poisson processes which

will be used to finish the proof of Theorem 2 and will also be used
in the proof of Theorem 3.

LEMMA 2.1. Let Z(t) be a (not necessarily homogeneous) Poisson
process such that EZ(t) —• oo f t —• oo. Then

(2 18) S? p ( z%mr] * x ) =
If, in addition, EZ([t]) ~ EZ([t] + 1), then

Proof. The first assertion follows at once from the well-known
fact that a normalized Poisson variate is asymptotically normally
distributed when its mean tends to infinity. For each integer n ^ 1,
let In = Z(n) — Z(n — 1). Then {In} are independent Poisson variates.
Since EZ(n) —• oo 9 we obtain by the well-known theorem of Abel-Dini
that

v, EIn ^ Var/. .

• [EZ(n)f » [EZ(n)Y

The strong law of large numbers now yields the conclusion that

Pflim
EZ(n)

from which (2.19) follows since

£ Z(t) £ Z([t]

To complete the proof of Theorem 2 we need now only apply the
above lemma to the process LB(t).

Proof of Theorem 3. Let TB = inf {t > 0: X(s) g B, all s > t}9

where X(s) is a stable process. Then for any 0 = ί0 < tγ < < ίΛ,
and 0 < Si < 1,

π

- £/{exp j Λ d log [ l + g (8* - l)P.(ί*-i < Tβ ^ ί4)]

= exp
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where, as before, A0(dx) is the Poisson process on Rd with rate 1.
Consequently, DB(t) has independent Poisson increments. Thus for any

E[DB(t + h)- DB{t)] = \ Px(t < TB^t + h)dx
JRd

(2.20) = ( dx\ f(t, y - x)Pυ(VB g h, X(s) $ B, all s > h)dy
JRd JRd

= \ Py( VB ^ h, X(s) g B, all s > h)dy ,
JRd

which shows that the increments are stationary as well. To compute
the rate, we observe that from the above it is evident that

( Py( VB ^ h, X(s) $ B, all s > h)dy
jRd

is a linear function of h, and thus the quantities

eB(Rd) = — I Py(VB ^ h, X(s) g B, all s > h)dy
h }Rd

are independent of h. Now in [5] (p. 290) it is shown that there is a
subsequence of the measures {eB(dy)} that converges weakly to the
d — a dimensional Riesz capacitory measure eB(dy) of B. This, of
course, is the equilibrium distribution on B producing the potential
Pχ(VB < oo) and having total charge eB(Rd) = C(B). Thus the rate of
DB(t) is C(B).

The remainder of the theorem now follows by applying Lemma
2.1 to the process DB(t).

Appendix* The following well-known result on distributions and
their corresponding characteristic functions will play a key role in
obtaining the error terms for the central limit theorems in the preceed-
ing section. A proof may be found in [2], p. 512.

LEMMA A.I. Let F be a probability distribution having charac-
teristic function φ(θ), and let Φ{x) be the standard normal distribu-
tion, having characteristic function e~θ2'2. Then for any x, and
T > 0,

(A.I) I F{x) - Φ(x) I ^ πAT \θ\-'\ φ(θ) - e~θ212 \ dθ + 2 . 4 - ^ Γ" 1 .
JT Ttv 2ττ

Let

(A.2) t t{χ) - p{ [ V a r S β ( ί ) ] 1 / 2 ^ η ,
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and let φt(θ) be the corresponding characteristic function. Setting

[Var SB(t)]-A ExNB{tfdx = y^t)-1 ,

we see from (A.I) and (2.8) that

(A.3) I Ft(x) - Φ(x) I ^ π-A V*2 / 21 e ^ ( ί ) - 11 | θ I"1 ^
πv2π

where by (2.9)

(A.4) M

Let T = yB(t), and remembering that | eR*{t) - 1| ^ \RB{t)\dB*m, we
see that the integrand (A.3) is dominated by

\7Γ/~3!

Since

we see that

! Ft(x) - Φ(x) I ^

From (2.13) we now obtain the following.

THEOREM A.I. // Ft(x) is as in (A.2), then

I Ft(x) - Φ(x) I ^ 0(r1/2) , α < d

(A.5) ^ ° ( [ l ^ τ ] " 1 / 2 ) a-d

^ 0(ί-d/2α) , d = 1 < α: ̂  2 .

To find the rate of convergence to the normal distributions in
Theorems 2 and 3 we make use of the following.

LEMMA A.2. Let Z(t) be a (not necessarily homogeneous) Poisson
process, and let EZ(t) = λ(£). Then if λ(ί) f °o, and

( A . 6 )
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we have

(A.7) I Ft(t) - Φ(x) I fS \Vψ + 2 t — 1 M * ) " 1 / 2 ^ 5Mt)-lil .
L 4 πi/ 2τr J

Proof. If <£>,(#) is the characteristic function corresponding to the
distribution in (A.6), then

I ψt(0) - e~θ2'21 ^ e-θiI2[e*t<$) - 1] ,

where

Setting T = λ(ί)1/2 in Lemma A.I and proceeding as before, we see
that (A.7) holds.

From the above lemma and the results in Theorems 2 and 3 we
may easily obtain an estimate of the rate of convergence to the normal
in Theorems 2 and 3. The results are as follows.

THEOREM A.2. Let

Ft{x) - p\ [ELit)r -

and let

[tC{B)Γ

Then if a < d,

and

I Gt(x) - Φ(a?) I ^ δC(S)- 1

F o r α = d,

I Ft(x) - Φ(x) I £ 5[ELB(t)]-112 ^ (

wfeiZe for d < a <^ 2,

I i ^ ) - Φ(x) I ^ 5[^L£(ί)]-1 / 2
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