MAPPINGS AND SPACES

TAKESI ISIWATA

Let φ be a closed continuous mapping from X onto Y. It is an open problem whether the realcompactness of X implies the realcompactness of Y. Concerning this problem, in case φ is an open WZ-mapping, we discuss the structure of the image space Y under φ and give a necessary and sufficient condition that Y be realcompact. We also show that if X is locally compact, countably paracompact, normal space then the image space Y of X under a closed mapping is realcompact when X is realcompact.

The notion of realcompact space was introduced by E. Hewitt [7] under the name of Q-spaces. The importance of this notion has been recognized and investigated by many mathematicians (cf. [4, 7]). In this paper we shall discuss the relations between realcompactness and closed continuous mappings and treat also the relations between pseudocompactness and continuous mappings.

As a generalization of closed mappings¹, we have a Z-mapping. Here we shall introduce the notion of WZ-mappings as a further generalization of closed mappings. In Theorem 2.1, we shall prove that pseudocompactness of a space X is equivalent to any one of the following conditions: 1) any continuous mapping from X onto any weakly separable space is always a Z-mapping, (2) the projection: $Y \times X \rightarrow Y$ is a Z-mapping for any weakly separable space Y. We denote by $\varphi: X \to Y$ a mapping φ from X onto Y; then φ can be extended to a continuous mapping $\Phi: \beta X \to \beta Y$, called the Stone extension of φ , where βX and βY are the Stone Čech compactifications of X and Y resp. (In the sequel we denote always by Φ the Stone extension of φ). In §4, we shall deal with an extension of an open mapping, and show, in Theorem 4.4, that if $\varphi: X \to Y$ is a WZmapping, then Φ is open if and only if φ is open. This plays an important role in §6. We shall consider in §5 the inverse images of realcompact space under Z-mappings. It is known that if φ is a mapping from a given space X onto a realcompact space Y, then $\Phi^{-1}(Y)$ is realcompact [4, p. 148]. In Theorem 5.3, we shall show

¹ Throughout this paper we assume that all our spaces are completely regular T_1 -spaces and mappings are continuous. We use, in the sequel, the same notations as in [4]. For instance, C(X) is the set of all continuous functions defined on X. A subset F of X is said to be a zero set if $F = \{x; f(x) = 0\}$ (briefly, $F = Z(f) = Z_X(f)$) for some $f \in C(X)$. Cl₄ denotes a closure operation in a space A.

that if φ is a Z-mapping from a space X onto a realcompact space Y such that every $\varphi^{-1}(y)$, $y \in Y$, is a C*-embedded realcompact subset of X, then X is realcompact. In particular, if X is normal and every $\varphi^{-1}(y)$, $y \in Y$, is realcompact, then realcompactness is invariant under φ^{-1} .

It is an open problem [4, p. 149] whether the realcompactness of X implies the real compactness of Y where φ is a closed mapping from X onto Y, or even whether the realcompactness of $\Phi^{-1}(Y)$ implies the realcompactness of Y. Concerning this problem, in Theorem 6.2, we shall discuss the structure of a space Y which is the image of a realcompact space X under an open WZ-mapping. From this theorem, we shall give a necessary and sufficient condition that Y be realcompact. Moreover, from Theorem 6.2, we shall establish that if φ is an open WZ-mapping from a realcompact space X onto Y such that the boundary $\mathscr{L}\varphi^{-1}(y)$ (or $\mathscr{L}_{x}\varphi^{-1}(y)$) of $\varphi^{-1}(y), y \in Y$, is compact, then Y is also realcompact. This is a generalization of Frolik's theorem [2] (Theorem 6.5). As a further consequence of 6.2, the realcompactness is invariant under an open WZ-mapping if a space X is any one of the following types; (1) X is locally compact, (2) X is weakly separable, (3) X is connected, (4) X is locally connected and (5) X is perfectly normal. In Theorem 7.5, we shall prove, using Frolik's theorem [3], that if X is locally compact, countably paracompact, normal space, then the image of X under a closed mapping is realcompact when X is realcompact. It seems to me that this is only one case for which realcompactness is proved to be invariant under a closed mapping without any additional condition. In the process of the proof of this theorem, we obtain that the image Y of a locally compact, realcompact, normal space under a closed mapping φ is locally compact if and only if $\mathscr{L}\varphi^{-1}(y)$ is compact for every $y \in Y$.

1. Definitions and preliminaries. $\varphi: X \to Y$ is said to be a Z-mapping, according to Frolik [2], if φ maps every zero set of X to a closed set of Y. Moreover we shall define a WZ-mapping as a further generalization of a closed mapping. φ is called a WZ-mapping if $\operatorname{cl}_{\beta x}(\varphi^{-1}(y)) = \varphi^{-1}(y)$ for every $y \in Y$. We shall say that a subset F of X has the property (*) if we have $\inf \{f(x); x \in F\} > 0$ for every $f \in C(X)$ which is positive on F. A subset F of X is said to be relatively pseudocompact if f is bounded on F for every $f \in C(X)$. A pseudocompact subset has the property (*) and a subset with the property (*) is always relatively pseudocompact. We now list some properties with respect to these concepts.

MAPPINGS AND SPACES

1.1. A closed mapping is always a Z-mapping.

1.2. A Z-mapping is always a WZ-mapping.

Proof. Let $z \in \Phi^{-1}(y) - \operatorname{cl}_{\beta x} \varphi^{-1}(y)$; then there is $f \in C(\beta X)$ such that f(z) = 0, f = 1 on $\operatorname{cl}_{\beta x} \varphi^{-1}(y)$ and $0 \leq f \leq 1$.

$$M=X\cap \{x; f(x)\leq 1/2,\, x\ineta X\}$$

is a zero set of X. Since φ is a Z-mapping and $M \cap \varphi^{-1}(y) = \phi$, $\varphi(M)$ is closed and does not contain y. On the other hand, f(z) = 0, and hence $z \in cl_{\beta x}$ M; this implies that

$$y = \Phi(z) \in \Phi(\mathrm{cl}_{\beta x}M) \subset \mathrm{cl}_{\beta y}\Phi(M) = \mathrm{cl}_{\beta y}\varphi(M)$$
.

Since $\varphi(M)$ is closed in Y, $\operatorname{cl}_{\beta Y}\varphi(M) \cap Y = \varphi(M)$, and hence, $y \in Y$ implies $y \in \varphi(M)$. This is a contradiction.

1.3. Let $\varphi: X \to Y$ be a WZ-mapping. If either X is normal or the boundary $\mathscr{L}\varphi^{-1}(y)$, for every $y \in Y$ is compact, then φ is a closed mapping.

Proof. Let F be a closed subset of X and let $y \notin \varphi(F)$. It is easy to see, under the assumption of 1.3, that there is $f \in C(X)$ such that f = 0 on $\varphi^{-1}(y)$, f = 1 on F and $0 \leq f \leq 1$. Since φ is a WZmapping $\operatorname{cl}_{\beta X} \varphi^{-1}(y) = \varphi^{-1}(y)$ and g = 0 on $\varphi^{-1}(y)$ where g is the extension of f over βX . φ being closed, Y - M is an open set containing y and $\varphi(F) \subset M$ where $M = \varphi(\{z; z \in \beta X, g(z) \geq 1/2\})$ ($y \notin M$ is obvious). This means that $y \notin \overline{\varphi(F)}$, that is, φ is closed.

1.4. Let F be a closed relatively pseudocompact subset of X. If either X is normal or F is a zero set of X, then F has the property (*) (see 3.3 below).

Proof. Let f be a function of C(X) and f > 0 on F. Now suppose that $Z(f) = E \neq \phi$. If either X is normal or F = Z(g) for some $g \in C(X)$, then E and F are completely separated, i.e., there is a function $h \in C(X)$ such that h = 1 on E, h = 0 on F and $0 \leq h \leq 1$. Then we have $Z(|f| + h) = \phi$ which implies $k = 1/(|f| + h) \in C(X)$. If $\inf \{f(x); x \in F\} = 0$, then it is easy to see that k is not bounded on the closed relatively pseudocompact subset F. This is a contradiction.

1.5. Every zero set of a pseudocompact space has the property (*) (by 1.4).

1.6. Suppose that φ is a mapping from X onto Y and every point of Y is G_{δ} . If a closed subset F of X has the property (*), then $\varphi(F)$ is closed.

Proof. Let F be a closed subset of X having the property (*) and let $y \notin \varphi(F)$. Since y is a G_{δ} -point, there is a function $f \in C(Y)$ with $f^{-1}(0) = \{y\}$ and $0 \leq f \leq 1$. $h = f\varphi$ is positive on F, and hence $h > \alpha > 0$ on F because F has the property (*). If $z \in \varphi(F)$, then there is a point $x \in F$ with $\varphi(x) = z$. Thus $f(z) = f(\varphi(x)) = h(x) > \alpha$. This means that $\varphi(F) \subset f^{-1}[\alpha/2, 1]$, and hence $y \notin \overline{\varphi(F)}$, that is, $\varphi(F)$ is closed.

1.7. If, in 1.6, X is pseudocompact, then φ is always a Z-mapping (by 1.5 and 1.6).

The following theorems are known and useful in the sequel.

1.8. X is realcompact if and only if for every point x in $\beta X - X$ there is a function f of $C(\beta X)$ such that f > 0 on X and f(x) = 0 [4, p. 119].

1.9. X is pseudocompact if and only if any family $\{U_n\}$ of open sets of X, with $\overline{U_n} \cap \overline{U_m} = \phi(n \neq m)$, is not locally finite.

1.10. If $\{U_n\}$ is a locally finite family of open sets of a space X with $\overline{U}_n \cap \overline{U}_m = \phi$ $(n \neq m)$ and $\{a_n\}$ is a set of given positive real numbers and $\{x_n, x_n \in U_n\}$ is given, then there is a function f of C(X)such that f = 0 on $X - \bigcup U_n$, $f(x_n) = a_n$, and $0 \leq f \leq a_n$ on U_n .

2. Z-mappings and pseudocompactness. A weakly separable space is a space with the first axiom of countability. The next conditions which are mutually equivalent, are known; (i) X is compact (resp. countably compact), (ii) any mapping from X onto Y is closed for any space Y (resp. any weakly separable space Y), and (iii) a projection $\varphi: Y \times X \to Y$ is closed for any space Y (resp. any weakly separable space Y) [5, 8, 12]. In this section, we shall establish analogous theorems about pseudocompactness by means of Z-mappings.

Suppose that X is not pseudocompact and let $\{W_n\}$ be a discrete family of open sets with $X - \bigcup W_n = S \neq \phi$. There are functions f and g of C(X) by 1.10 such that (i) $f(x_n) = \varepsilon_n$, $\{\varepsilon_n\} \downarrow 0$ and f = 0 on S where x_n is a given point of W_n and (ii) $g(x_n) = n$, g = 0 on S and g(x) > 0 implies f(x) > 0. Then $F = \{x; g(x) \ge 1/2\}$ is a zero set and

$$\inf \{f(x); x \in F\} = 0$$
.

458

This shows that F has not the property (*) and f is not a Z-mapping from X onto f(X). Combining 1.5, 1.6 and the arguments above, we have the equivalences between (1), (2) and (3) in the following theorem.

THEOREM 2.1. The following conditions are equivalent for a space X.

(1) X is pseudocompact.

(2) Every zero set of X has the property (*).

(3) Any mapping from X onto any space Y such that every point of Y is G_{δ} , is always a Z-mapping.

(4) The projection $\varphi: Y \times X \rightarrow Y$ is a Z-mapping for any weakly separable space Y.

(5) The projection $\varphi: Y \times X \rightarrow Y$ is a Z-mapping for some nondiscrete weakly separable space Y.

Proof. (4) \rightarrow (5) is obvious. We shall show (1) \rightarrow (4). Suppose that there is a function $h \in C(X \times Y)$ such that $y \in \overline{\varphi(E)} - \varphi(E)$ where $E = h^{-1}(0)$. Let $\{W_n\}$ be a base of y with

$${{ar W}_{n+1}} {\subset W_n}\,(n=1,2,\cdots)$$
 .

Since $\varphi^{-1}(y) = \{y\} \times X$ is pseudocompact and h is positive on $\varphi^{-1}(y)$, there is a real number $\alpha > 0$ such that $h \ge \alpha$ on $\varphi^{-1}(y)$. For each n, we choose a point y_n in $W_n \cap \varphi(E)$ (and hence $\{y_n\} \to y$) and a point (y_n, x_n) in E. If $A = \{x_n; n = 1, 2, \dots\}$ has an accumulation point x_0 , then $(y, x_0) \in E$, that is, $y = \varphi(y, x_0) \in \varphi(E)$. This is a contradiction. Thus A must be a closed discrete subset of X. Let

$$M = \{z; h(z) < \alpha/2\}$$

and $F = \{z; h(z) \leq \alpha/2\}$. We choose an open set U_n , in X, containing x_n and an open set $V_n \subset W_n$ in containing y_n Y such that

$$ar{U}_{\scriptscriptstyle n}({
m in}\;X)\cap\,ar{U}_{\scriptscriptstyle m}({
m in}\;X)=\phi\,(n
eq m),\;ar{V}_{\scriptscriptstyle n} imes\,ar{U}_{\scriptscriptstyle n}\,\subset\,M$$
 .

X being pseudocompact, there is an x_0 in $\overline{\bigcup \overline{U}_{n_i}} - \bigcup \overline{U}_{n_i}$ for some $\{n_i\}$. We have $(y, x_0) \in F$, i.e., $y = \varphi(y, x_0) \in \varphi(F)$. On the other hand, we have $\varphi^{-1}(y) \cap F = \phi$ since $F = \{z; h(z) \leq \alpha/2\}$ and $h \geq \alpha$ on $\varphi^{-1}(y)$. This is a contradiction.

 $(5) \rightarrow (1)$ follows from the following theorem.

THEOREM 2.2. Suppose that Y is a space in which there is a discrete subset $M = \{y_n; y = 1, 2, \dots\}$ which has an accumulation point y_0 . If the projection $\varphi: Y \times X \to Y$ is a Z-mapping, then X must be pseudocompact.

TAKESI ISIWATA

Proof. We shall firstly show that there is a function $f \in C(Y)$ with $f(y_n) > 0$ for every $y_n \in M$ and $f(y_0) = 0$. Since Y is completely regular, there is a function $f_1 \in C(Y)$ with $f_1(y_1) = 1$, $f_1 = 0$ on some neighborhood (briefly, nbd) V_1 of y_0 and $0 \leq f_1 \leq 1$. Let y_{i_2} be the point such that $y_{i_2} \in M \cap Z(f_1)$ and $i_2 > m$ implies $f_1(y_m) > 0$. Then there is a function $f_2 \in C(Y)$ such that $f_2(y_{i_2}) = 1$, $f_2 = 0$ on some nbd V_2 of $y_0, V_2 \subset V_1$ and $0 \leq f_2 \leq 1$ and $Z(f_2) \subset Z(f_1)$. Let y_{i_3} be the point such that $y_{i_3} \in M \cap Z(f_2)$ and $i_3 > m$ implies $f_2(y_m) > 0$ and so on. Define $f(x) = \sum_{n=1}^{\infty} (1/2^n) f(x)$. Then f(x) is continuous and $f(y_0) = 0$ and f > 0on M.

If X is not pseudocompact, there is a locally finite family $\{U_n\}$ of open sets with $U_n \cap U_m = \phi$ and there is a function $h \in C(X)$ such that $h \ge 0$ on X and $h(x_n) = 1/f(y_n)$ for some point $x_n \in U_n$ by 1.10. Define H(y, x) = f(y)h(x). H(y, x) is continuous on $Y \times X$ and

$$H(y_{0}, x) = 0$$

for every $x \in X$ and $H(y_n, x_n) = 1$ for $n = 1, 2, \cdots$. Therefore we have $\{(y_n, x_n); n = 1, 2, \cdots\} \subset H^{-1}(1)$ and hence $M \subset \varphi(H^{-1}(1))$. On the other hand, $y_0 \notin \varphi(H^{-1}(1))$. This shows that φ is not a Z-mapping.

Even if X is pseudocompact, a closed subset F of X with the property (*) is not necessarily pseudocompact. For instance, the space D constructed in [4, 5I, p. 79], which is a zero set of the pseudocompact space Ψ , is not pseudocompact.

Relating this example, we shall consider a countably compact space. If X is not countably compact, then there are a discrete closed subset $A = \{x_n; n = 1, 2, \dots\}$ and a function $f \in C(X)$ such that

$$f(x_n) = \varepsilon_n, \{\varepsilon_n\} \downarrow 0 \text{ and } f \ge 0 \text{ on } X.$$

It is obvious that A has not the property (*). Thus we see that X is countably compact if and only if every closed subset of X has the property (*).

3. Mappings and the property (*). In this section we shall consider the relations between mappings given in §1 and the property (*), and moreover give several examples. We shall say that φ has the property (*) if $\varphi^{-1}(y)$ has the property (*) for every $y \in Y$.

3.1. (1) Let $\varphi: X \to Y$ be a mapping and every $\varphi^{-1}(y), y \in Y$, be relatively pseudocompact. If φ is a Z-mapping, then φ has the property (*).

(2) If $\varphi: X \to Y$ is a WZ-mapping and φ has the property (*), then φ is a Z-mapping.

Proof. (1). Suppose that there is a point y in Y such that $F = \varphi^{-1}(y)$ has not the property (*), that is, there exists a function $h \in C(X)$ which is positive on $F, h \geq 0$ on X and $h(x_n) = \varepsilon_n, \{\varepsilon_n\} \downarrow 0$ for some sequence $\{x_n\}$ in F. We can find a family $\{W_n\}$ of open sets such that $\overline{W}_n \cap \overline{W}_m = \phi$ $(n \neq m), \varepsilon_n - \rho_n \leq h(x) \leq \varepsilon_n + \rho_n$ on W_n where min $\{\varepsilon_n - \varepsilon_{n+1}, \varepsilon_{n-1} - \varepsilon_n\} = 2\rho_n$, and $x_n \in W_n$. $E = h^{-1}(0)$ is not empty because $E = \phi$ implies $1/h \in C(X)$ and 1/h is not bounded on a relatively pseudocompact subset F. We shall show that φ is not a Z-mapping. To do this, it is sufficient to show that $y \in \overline{\varphi(E)}$ because E is a zero set and $y \notin \varphi(E)$. If $y \notin \overline{\varphi(E)}$, then there is a function $g \in C(Y)$ such that g=1 on $\overline{\varphi(E)}, g(y) = 0$ and $0 \leq g \leq 1$. This implies that $g\varphi \in C(X), g\varphi = 1$ on E and $g\varphi = 0$ on F. The function $k = h + g\varphi$ is positive, continuous on X, and hence $1/k \in C(X)$. On the other hand, 1/k is not bounded on F. This contradicts the fact that F is relatively pseudocompact.

(2). Let F = Z(f), $f \in C^*(X)$ and $y \notin \varphi(F)$. Since φ has the property (*), we have $\inf \{f(x); x \in \varphi^{-1}(y)\} = \alpha > 0$. Let g be an extension of f over βX ; then $g \ge \alpha$ on $\varphi^{-1}(y) = cl_{\beta x} \varphi^{-1}(y)$.

$$E = \{x; x \in \beta X, g(x) \leq \alpha/2\}$$

is compact and $y \notin \Phi(E)$. $\Phi(E)$ being compact, $V = \beta Y - \Phi(E)$ is an open subset (in βY) containing y. Thus $V \cap Y$ is an open subset (in Y) containing y and $\varphi(F) \cap (V \cap Y) \subset \Phi(E) \cap V \cap Y = \phi$. This implies that $y \notin \overline{\varphi(F)}$, that is, $\varphi(F)$ is closed which shows that φ is a Z-mapping.

From 3.1 we have

3.2. (1) If φ is a Z-mapping from a pseudocompact space X onto Y, then φ has the property (*).

(2) If φ is a WZ-mapping from a countably compact space X onto Y, then φ is a Z-mapping.

We can not replace "Z-mapping" in (1) of 3.2 by "WZ-mapping" and "Z-mapping" in (2) of 3.2 by "closed mapping" respectively, as will be seen from examples 3.4 and 3.5 below respectively.

3.3. If F is a C^{*}-embedded subset of X with the property (*), then F is pseudocompact. In particular, in a normal space, a closed subset with the property (*) is always countably compact (see 1.4).

Proof. If F is not pseudocompact, then there is a function $f \in C(F)$ with $1 \ge f > 0$ and $\inf \{f(x); x \in F\} = 0$. Let g be an extension of f over X; then g > 0 on F and $\inf \{g(x); x \in F\} = 0$ which is a contradiction.

TAKESI ISIWATA

EXAMPLE 3.4. Let
$$X = W(\omega_1 + 1) \times W(\omega_0 + 1) - \{(\omega_1, \omega_0)\},$$

 $Y = W(\omega_1 + 1)$

and let $\varphi: X \to Y$ be defined by $\varphi(y, x) = y$. Every $\varphi^{-1}(y), y \in Y$, is relatively pseudocompact. Since $\beta X = W(\omega_1 + 1) \times W(\omega_0 + 1)$, we have $\Phi^{-1}(y) = \operatorname{cl}_{\beta X} \varphi^{-1}(y)$, i.e., φ is an open WZ-mapping. But φ is not a Z-mapping by (1) of 3.2 because $\varphi^{-1}(\omega_1)$ has not the property (*) and X is pseudocompact.

EXAMPLE 3.5. Let

$$X = W(\omega_1 + 1) \times W(\omega_1 + 1) - \{(\omega_1, \omega_1)\}, Y = W(\omega_1 + 1)$$

and let $\varphi: X \to Y$ be defined by $\varphi(y, x) = y$. Every $\varphi^{-1}(y)$ is compact except $y = \omega_1$ and $\varphi^{-1}(\omega_1)$ is countably compact. Thus φ is an open Z-mapping by (2) of 3.2. But φ is not closed because

$$F = \{(y, x); x = \omega_{\scriptscriptstyle 1}, y \in W(\omega_{\scriptscriptstyle 1})\}$$

is closed but $\varphi(F) = W(\omega_i)$ is not closed in Y. (We notice that X is countably compact.)

EXAMPLE 3.6. Let $X = W(\omega_1 + 1) \times W(\omega_1 + 1) - \{(y, x); y = \omega_1, \\ \omega_0 < x \leq \omega_1\}, \ Y = W(\omega_1 + 1)$

and let $\varphi: X \to Y$ be defined by $\varphi(y, x) = y$. Since

$$Z = W(\omega_{\scriptscriptstyle 1}) imes W(\omega_{\scriptscriptstyle 1}+1)$$

is pseudocompact and $\beta Z = Y \times Y$, X is pseudocompact [9] and it is easy to see that every $\varphi^{-1}(y), y \in Y$, is compact. Thus φ is an open compact mapping but not a WZ-mapping. ($\varphi: X \to Y$ is said to be *com*pact if $\varphi^{-1}(y)$ is compact for every $y \in Y$.)

4. Extensions of open mappings. For an extension of an open mapping $\varphi: X \to Y$ where both spaces X and Y are normal, the following theorem is known: if either φ is compact or φ is closed, then φ is open ([1], in which φ is assumed to be a many-valued mapping). In this section, we shall show that if φ is a (single-valued) WZ-mapping, then we can drop the assumption of normality of both spaces; that is, φ is open if and only if φ is open. Let $\varphi: X \to Y$ be a mapping. A function f is said to be φ -bounded if f is bounded on $\varphi^{-1}(y)$ for every $y \in Y$.

If $f \in C(X)$ is φ -bounded, we put

$$f^{i}(y) = \inf \{f(x); x \in \varphi^{-1}(y)\}, f^{s}(y) = \sup \{f(x); x \in \varphi^{-1}(y)\};$$

462

these are real-valued functions defined on Y. The following lemma is useful.

LEMMA 4.1. ([2]). Let $\varphi: X \to Y$ be a mapping and let $f \in C(X)$ be φ -bounded.

(i) If φ is open, then $f^{s}(resp. f^{i})$ is lower (resp. upper) semicontinuous.

(ii) If φ is closed, then f^s (resp. f^i) is upper (resp. lower) semicontinuous.

(iii) If φ is a WZ-mapping, then f^s (resp. f^i) is upper (resp. lower) semi-continuous.

Proof. (i) and (ii) are essentially proved in [2]. (iii) is obtained in the following way: let g be the extension of f over $\mathscr{Q}^{-1}(Y)$; by (ii) g^s (resp. g^i) is upper (resp. lower) semi-continuous on Y because \mathscr{P} is a closed mapping. Since φ is a WZ-mapping, we have

$$g^s=f^s ext{ and } g^i=f^i$$
 .

This completes the proof.

If φ is an open WZ-mapping, then f^s and f^i are continuous on Y for every φ -bounded function $f \in C(X)$ by 4.1.

As applications of 4.1 we have the following 4.2 and 4.3.

4.2. If φ is an open WZ-mapping from X onto a pseudocompact space Y such that $\varphi^{-1}(y)$ is relatively pseudocompact for every $y \in Y$, then X is pseudocompact.

This is a generalization of a theorem of Hanai and Okuyama [6] and our proof is simpler than theirs; that is, 4.2 follows from the facts that for any $f \in C(X)$, f is φ -bounded, and hence f^{*} (resp. f^{i}) is bounded by (iii) and continuous on Y by the note above which concludes that f is bounded on X.

4.3. If φ is a WZ-mapping from X onto a countably compact space Y such that $\varphi^{-1}(y)$ is relatively pseudocompact for every $y \in Y$, then X is pseudocompact.

Proof. Let f be any function of C(X); then |f| is φ -bounded and $|f|^s$ is upper semi-continuous by (iii). Since a space is countably compact if and only if every upper semi-continuous function is bounded above [10], we see that $|f|^s$ must be bounded above, that is, f is bounded. This means that X is pseudocompact.

TAKESI ISIWATA

THEOREM 4.4. (i) A mapping $\varphi: X \to Y$ is a WZ-mapping if and only if $\varphi(U \cap X) = \Phi(U) \cap Y$ for every open set U of βX .

(ii) If $\varphi: X \to Y$ is a WZ-mapping, then φ is open if and only if φ is open.

Proof. (i). *Necessity.* It is sufficient to prove that $y \in \Phi(U) \cap Y$ implies $y \in \varphi(U \cap X)$. This follows from the fact that

$$arphi^{-1}(y)\cap (U\cap X)
eq \phi$$

Sufficiency. If $x \in \Phi^{-1}(y) - \operatorname{cl}_{\beta x} \varphi^{-1}(y)$, then there is an open set $U(\operatorname{in} \beta X)$ containing x which is disjoint from $\operatorname{cl}_{\beta x} \varphi^{-1}(y)$. This means that $y \notin \varphi(U \cap X)$, which contradicts $y \in \Phi(U)$.

(ii). It is sufficient, by (i), to show that the openness of φ implies the openness of \emptyset . Let x^* be any point in βX and let U be an open set of βX containing x^* . There exists a function $f \in C(\beta X)$ such that $0 \leq f \leq 1, f(x^*) = 1, f = 0$ on $\beta X - U$ and $cl_{\beta X} V \subset U$ where

$$V = \{x; f(x) > 0\}$$
.

We have, by 4.1, $(f | X)^s \in C(Y)$. Let us denote by g the extension of $(f | X)^s$ over βY . Then $g(\varphi(x^*)) = 1$ and $W = \{y; g(y) > 1/2\}$ is open in βY . We shall prove that $W \subset \varphi(\operatorname{cl}_{\beta X} V)$. Suppose that there is a point z in W such that $\varphi^{-1}(z) \cap \varphi^{-1} \varphi(\operatorname{cl}_{\beta X} V) = \phi$. Then f = 0 on $\varphi^{-1}(S)$ where S is an open subset, contained in W, containing z with $S \cap \varphi(\operatorname{cl}_{\beta X} V) = \phi$. This implies that $g \mid Y = 0$ on S which is impossible. This theorem will be used in δG .

This theorem will be used in §6.

5. Inverse images of realcompact spaces. Let α be a collection of coverings of X. A centred family \mathscr{M} of subsets of X (i.e., with the finite intersection property) is said to be α -Cauchy if for every $\mathfrak{A} \in \alpha$, there exist $A \in \mathfrak{A}$ and $M \in \mathscr{M}$ with $M \subset A$. We shall say that α is complete if

$$\cap \widetilde{\mathcal{M}} \neq \phi$$

for every α -Cauchy \mathscr{M} , according to Frolik [3]. In the sequel, we consider only countable coverings consisting of cozero-sets where a set is said to be a *cozero-set* if it is the complement of a zero set. We denote by α_{c} the collection of all such coverings and moreover by $\alpha_{pc}(\text{resp. } \alpha_{1c} \text{ and } \alpha_{sc})$ the subcollection of α_{c} with the point-finite property (resp. with the locally finite property and with the star-finite property). If α is a collection of countable coverings of X, then define $\overline{\mathfrak{A}}^{\beta} = \bigcup \{cl_{\beta X}A; A \in \mathfrak{A}\}$ for every $\mathfrak{A} \in \alpha$. $\overline{\mathfrak{A}}^{\beta}$ is σ -compact and hence

464

 $Z = \cap \{ \widetilde{\mathfrak{A}}^{\beta}; \mathfrak{A} \in \alpha \}$ is realcompact and $X \subset \sim X \subset Z \subset \beta X$ where υX denotes the Hewitt's realcompactification of X.

LEMMA 5.1. Let \mathscr{M} be a centred maximal family of zero sets. Then \mathscr{M} is α -Cauchy if and only if \mathscr{M} has the countable intersection property where α is any one of $\alpha_{\circ}, \alpha_{p\circ}, \alpha_{1\circ}$ and $\alpha_{s\circ}$.

Proof. Necessity. Suppose that there is $\{Z_n\}$ in \mathcal{M} with

 $\cap Z_n = \phi$

where $Z_n = Z(f_n)$, $0 \leq f_n \leq 1$ and $f_n \in C(X)$. Then $f = \sum (f_n/2^n)$ is a positive continuous function on X.

$$A_n = \{x; 1/(n+2) < f(x) < 1/n\}$$

is a cozero-set because $A_n = X - Z(g_n)$ where $g_n = (-|f - a| + a) \lor 0$ and a = (1/(n + 2) + 1/n)/2. It is easy to see that $\mathfrak{A} = \{A_n\} \in \alpha_{sc}$. If there is $Z \in \mathscr{M}$ with $Z \subset A_n$ for some n, then

$$B=Z\cap Z_{1}\cap\cdots\cap Z_{n+2}
eq\phi$$

and we have 1/(n+2) < f < 1/n on B. On the other hand,

$$f < 1/(n + 2)$$

on B by the method of construction of f. Thus \mathscr{M} is not α_{so} -Cauchy.

Sufficiency. It is sufficient to show that if \mathfrak{M} is not α_c -Cauchy, then \mathscr{M} has not the countable intersection property. Since \mathscr{M} is not α_c -Cauchy, there exists

$$\mathfrak{A} = \{A_n; A_n = Z_n^c, Z_n = Z(f_n), f_n \in C(X)\} \in \alpha_c$$

such that $M \not\subset A_n$ for every n and every $M \in \mathscr{M}$. Hence $M \cap Z_n \neq \phi$ for every $M \in \mathscr{M}$. \mathscr{M} being maximal, $Z_n \in \mathscr{M}$. Since $\{Z_n^c\}$ is a covering of X, we have $\cap Z_n = \phi$, and hence \mathscr{M} has not the countable intersection property.

LEMMA 5.2. The following statements are equivalent.

(1) X is realcompact.

(2) A centred maximal family of zero sets with the countable intersection property has the total nonempty intersection.

(3) α is complete where α is any one of $\alpha_c, \alpha_{pc}, \alpha_{1c}$ and α_{sc} .

Proof. $(1) \leftrightarrow (2)$ is already proved in [4].

 $(3) \rightarrow (1)$. If $p \in vX - X$, then $\mathscr{M} = \{Z; p \in cl_{\beta X}Z, Z \text{ is a zero set of } X\}$ is a maximal centred family with the countable intersection

property, and hence by 5.1, \mathscr{M} is α_c -Cauchy. Since α_c is complete, $\cap \mathscr{M} \neq \phi$ and it is obvious that $\cap \{ cl_{\beta x} Z : Z \in \mathscr{M} \} = \{ p \}$. This is a contradiction, that is, $\upsilon X = X$.

 $(1) \rightarrow (3)$. It is sufficient to prove that the realcompactness implies the completeness of α_{sc} . Let α_N be the family of all countable normal open coverings; then α_N is complete since X is realcompact. On the other hand, α_{sc} -Cauchy family is α_N -Cauchy family. Therefore we see α_{sc} is complete.

THEOREM 5.3. Let $\varphi: X \to Y$ be a Z-mapping and let every $\varphi^{-1}(y), y \in Y$, be a C*-embedded realcompact subset of X. If Y is realcompact, then so is also X.

Proof. Let \mathscr{M} be a maximal centred α_c -Cauchy family consisting of zero sets of X; then \mathscr{M} has the countable intersection property by 5.1. Thus by 5.2 it is sufficient to show that \mathscr{M} has the total nonempty intersection. Since $\varphi(\mathscr{M})$ is α_c -Cauchy (in Y) and Y is realcompact, we have $y \in \bigcap \varphi(\mathscr{M})$ for some point y by 5.2. φ being a Z-mapping, $\varphi(M) = \overline{\varphi(M)}$ for every $M \in \mathscr{M}$. Since $M, N \in \mathscr{M}$ implies $M \cap N \in \mathscr{M}, \mathscr{M} \cap \varphi^{-1}(y)$ has the finite intersection property on $\varphi^{-1}(y)$. Let $\mathfrak{A} = \{\varphi^{-1}(y) - Z(g_n); n = 1, 2, \cdots\}$ be a covering of $\varphi^{-1}(y)$ where $g_n \in C(\varphi^{-1}(y))$ and g_n is bounded. Without loss of generality we can assume that $0 \leq g_n \leq 1$ for each n. Let f_n be an extension of g_n over X and define $f = \sum (f_n/2^n)$. f is continuous and $Z(f) \cap \varphi^{-1}(y) = \phi$. Ybeing completely regular and φ being a Z-mapping, there is $h \in C(Y)$ with $0 \leq h \leq 1$, $h(\varphi Z(f)) = 1$ and h(y) = 0.

$$\{X - Z(h\varphi), X - Z(f_n); n = 1, 2, \dots\}$$

is a covering of X. We shall show that $M \not\subset X - Z(h\varphi)$ for every $M \in \mathscr{M}$. Suppose that there is a set $M \in \mathscr{M}$ such that

$$M \subset X - Z(h\varphi)$$
.

Since $\varphi^{-1}(y) \subset Z(h\varphi)$, we have $M \cap \varphi^{-1}(y) = \phi$, but this contradicts the fact that $M \cap \varphi^{-1}(y) \neq \phi$ for every $M \in \mathscr{M}$. Thus there are $M \in \mathscr{M}$ and n with $M \subset X - Z(f_n)$, that is, $\mathscr{M} \cap \varphi^{-1}(y)$ is $\alpha_{\mathfrak{c}}$ -Cauchy (on $\varphi^{-1}(y)$). Since $\varphi^{-1}(y)$ is realcompact, we have $\cap (\mathscr{M} \cap \varphi^{-1}(y)) \neq \phi$. This means $\cap \mathscr{M} \neq \phi$. Therefore X is realcompact.

THEOREM 5.4. If φ is a closed mapping from a normal space X to a realcompact space Y such that every $\varphi^{-1}(y)$, $y \in Y$, is realcompact, then X is also realcompact.

6. Open WZ-mappings and real compactness. A point p is said

to be a *P*-point of X if every continuous function defined on X is constant on some nbd of p. A space X is called a *P*-space if every point of X is a *P*-point of X.

In the following, let $\varphi: X \to Y$ be an open WZ-mapping, and we divide both spaces X and Y into classes in the following way: $X_d = \{x; \varphi(x) \text{ is isolated and } \varphi^{-1}\varphi(x) \text{ is not compact}\}, X_{cd} = \{x; \varphi(x) \text{ is isolated and } \varphi^{-1}\varphi(x) \text{ is compact}\}, X_e = \{x; x \notin X_d \cup X_{ed} \text{ and } \varphi^{-1}\varphi(x) \text{ is not compact}\},$

$$egin{aligned} X_{\mathfrak{c}\mathfrak{e}} &= X - X_d - X_{\mathfrak{c}d} - X_{\mathfrak{e}}, \ Y_d &= arphi(X_d), \ Y_{\mathfrak{e}d} &= arphi(X_{\mathfrak{c}d}), \ Y_{\mathfrak{e}} &= arphi(X_{\mathfrak{e}}) \ \mathrm{and} \ \ Y_{\mathfrak{c}\mathfrak{e}} &= arphi(X_{\mathfrak{c}\mathfrak{e}}) \ . \end{aligned}$$

LEMMA 6.1. If $\varphi: X \to Y$ is an open WZ-mapping, $y^* \in Y_e$ and if there is a function $f \in C(\beta X)$ such that $0 \leq f \leq 1, f > 0$ on X and $f(x^*) = 0$ for some $x^* \in \Phi^{-1}(y^*) - \varphi^{-1}(y^*)$, then $Z_{\beta x}(f^*\Phi)$ is a neighborhood (in βX) of $\Phi^{-1}(y^*)$, equivalently, $Z_{\beta r}(f^*)$ is a neighborhood (in βY) of y^* . (We notice that Φ is open by 4.4)

Proof. Suppose that $Z_{\beta r}(f^i)$ is not a nbd of y^* , i.e., $Z_r(f^i)$ is not a nbd of y^* . Let us put $h = f^i | Y$, $\alpha_{2n} = 1/2n - 1/(2n+1)$ and

$$egin{aligned} &a_n = 1/2n - (4/7) \cdot lpha_{2n}, \ &b_n = 1/2n + (4/7) \cdot lpha_{2n-1} \ &c_n = 1/(2n+1) - (4/7) \cdot lpha_{2n+1}, \ &d_n = 1/(2n+1) + (4/7) \cdot lpha_{2n} \ &F_n = arphi^{-1}h^{-1}[lpha_n, b_n], \ &E_n = arphi^{-1}h^{-1}[c_n, d_n] \;. \end{aligned}$$

It is easy to see that either $cl_{\beta x}(\cup F_n)$ or $cl_{\beta x}(\cup E_n)$ contains x^* , say $cl_{\beta x}(\cup F_n) \ni x^*$. Let us put $q_n = (f_n - b_n) \vee 0$ and

$$k_n = |harphi - eta_n| ee \{b_n - eta_n\} - \{b_n - eta_n\}$$

where $\beta_n = (a_n + b_n)/2$; then $q_n \in C(\beta X)$, $k_n \in C(X)$, $A_n = \{x; x \in \beta X, f(x) \leq b_n\} = Z_{\beta X}(q_n)$, $F_n = Z_X(k_n)$ and $\{G_n; n = 1, 2, \dots\}$ is locally finite family of zero sets of X where $G_n = Z_X(q_n + k_n) = F_n \cap A_n$. We can assume that every G_n is not empty.

Next we shall prove that $\cup G_n$ is a zero set. If we put

$$t_n = 1/2n - (5/7) \cdot lpha_{_{2n}}, s_n = 1/2n + (5/7) \cdot lpha_{_{2n-1}}$$

and $B_n = \{x; x \in \beta X, f(x) < s_n\}$, then $U_n = \varphi^{-1}h^{-1}(t_n, s_n)$ is an open set containing F_n and $W_n = U_n \cap B_n$ is also an open set such that $G_n \subset W_n$ and $\overline{W}_n \subset \varphi^{-1}h^{-1}[t_n, s_n]$. Since $\overline{W}_n \cap \overline{W}_m = \phi$ and $x \in \overline{\bigcup W}_n - \overline{\bigcup W}_n$ implies f(x) = 0, $\{W_n\}$ is a discrete collection of open sets of X because f > 0 on X. If $x \notin B_n$, then $f(x) \ge s_n$, $k_n(x) \ge 0$, and hence

$$k_n(x) + q_n(x) \ge q_n(x) > s_n - b_n a_n - t_n = p_n > 0$$

If $x \notin U_n$, then $|h_{\mathcal{P}}(x) - \beta_n| > \beta_n - t_n$, $q_n(x) \ge 0$, and hence

$$k_n(x) + q_n(x) \ge k_n(x) > \beta_n - t_n - b_n + \beta_n = a_n - t_n = p_n > 0$$
.

Let us put $g_n(x) = \{(k_n(x) + q_n(x)) \land p_n\} \times (1/p_n)$. Then

$$g_n=1 \hspace{0.1 in} ext{on} \hspace{0.1 in} X-\hspace{0.1 in} W_n \hspace{0.1 in} ext{and} \hspace{0.1 in} x \in G_n$$

if and only if $g_n(x) = 0$. Define

$$g(x) = egin{cases} 1 & ext{for } x \in X - \ \cup \ W_n \ g_n(x) & ext{for } x \in W_n - G_n \ 0 & ext{for } x \in \cup \ G_n \ . \end{cases}$$

Since $\{W_n\}$ is a discrete collection, g(x) is continuous and $Z(g) = \bigcup G_n$, that is, $\bigcup G_n$ is a zero set.

Since $Z(g) \cap Z(h\varphi) = \phi$, we have $\operatorname{cl}_{\beta X} Z(g) \cap \operatorname{cl}_{\beta X} Z(h\varphi) = \phi$, and hence $y^* \notin \mathscr{Q}(Z(g))$ because $\operatorname{cl}_{\beta X} Z(h\varphi) \supset \mathscr{Q}^{-1}(y^*)$ (notice; φ is a WZ-mapping).

Replacing a_n, b_n, t_n and s_n by $a'_n = 1/2n - (5/7) \cdot \alpha_{2n}, b'_n = 1/2n + (5/7) \cdot \alpha_{2n-1}, t'_n = 1/2n - (6/7) \cdot \alpha_{2n}$ and $s'_n = 1/2n + (6/7) \cdot \alpha_{2n-1}$ respectively, we can define and construct $F'_n, q'_n, \beta'_n, k'_n, A'_n, G'_n, p'_n, g'_n$ and g' using methods similar to definitions and constructions of $F_n, q_n, \beta_n, k_n, A_n, G_n, p_n, g_n$ and g respectively in the arguments above. Then

$$G_n \subset G'_n, \, Z(g) \subset Z(g'), \, Z(g') \cap Z(harphi) = \phi$$

and $y^* \notin \Phi(Z(g'))$. Thus there exists a nbd W(in Y) of y^* with

$$W \cap \mathcal{Q}(Z(g')) = \phi$$
.

On the other hand, $x^* \in cl_{\beta x}(\cup F_n)$ and $y^* \in Y$ implies $y^* \in \overline{\bigcup \varphi(F_n)}$, and hence there is a point y in $\varphi(F_m) \cap W$ for some m, that is

$$a_m \leq h(y) \leq b_m$$
.

This shows that there exists a point x of $\varphi^{-1}(y)$ with $x \in A'_m$ and $x \in F'_m$. Since $G'_m = A'_m \cap F'_m$, $y \in \varphi(G'_m)$. This contradicts $W \cap \varPhi(Z(g')) = \phi$.

The following theorem indicates the structure of the image of a realcompact space under an open WZ-mapping.

THEOREM 6.2. Let φ be an open WZ-mapping from a realcompact space X onto Y.

(i) Every point $y \in Y_e$ is a nonisolated P-point of Y, and hence $Y_e \cup Y_d$ is an open P-subspace of Y and $Y_{ce} \cup Y_{cd}$ is closed in Y.

(We shall prove in 6.5 that $Y_e = \phi$ implies the realcompactness of Y).

(ii) If Y is not realcompact, then every point y^* of vY = Y is a P-point of βY and $Y_{ce} \cup Y_{cd}$ is closed in vY.

Proof. (i). Let
$$y \in Y_e$$
 and $h \in C(\beta Y)$ with $h(y) = 0$ and let

 $x^* \in \mathcal{Q}^{-1}(y) - \varphi^{-1}(y)$.

X being realcompact, there is a function $f \in C(\beta X)$ such that

$$0 \leq f \leq 1, f(x^*) = 0$$

and f > 0 on X. $k = f + h \Phi$ is continuous and k > 0 on X and

$$k(x^{*}) = 0$$

By 6.1, $Z(k^i)$ is a nbd (in βY) of y. On the other hand $k^i \geq h$ implies $Z(k^i) \subset Z(h)$. This shows that h vanishes on some nbd of y, i.e., y is a P-point of Y. Thus $Y_e \cup Y_d$ becomes to be a P-space. Since $k^i(y) > 0$ for every $y \in Y_{ce} \cup Y_{cd}$, $Y_e \cup Y_d$ is open in Y and hence $Y_{ce} \cup Y_{cd}$ is closed in Y.

(ii). Let $y^* \in v Y - Y$, $x^* \in \Phi^{-1}(y^*)$ and let f be a function of $C(\beta X)$ with $0 \leq f \leq 1$, $f(x^*) = 0$, f > 0 on X. Let us put $X_0 = \Phi^{-1}(Y)$. If $Z_{\beta X}(f) \cap X_0 = \phi$, then $Z_{\beta Y}(f^i) \cap Y = \phi$ since every $\Phi^{-1}(y), y \in Y$, is compact and f > 0 on X_0 , and hence $f^i > 0$ on Y and $f^i(y^*) = 0$. Thus we have $1/f^i \in C(Y)$ and $1/f^i$ can not be continuously extended over y^* . But this is impossible since $y^* \in v Y - Y$. Thus we have $Z_{\beta X}(f) \cap X_0 \neq \phi$ which implies $Z_Y(f^i) \neq \phi$. For every $y \in Y_{ce} \cup Y_{cd}$, $f > \alpha(y)$ on $\varphi^{-1}(y)$ because $\varphi^{-1}(y)$ is compact where $\alpha(y)$ is some real number. $Z_{\beta X}(f^i) \cap Y$ is an open-closed subset of $Y(\subset Y_e \cup Y_d)$ by (i) and $cl_{\beta X}(Z(f^i) \cap Y)(\subset cl_{\beta Y}Z(f^i) = Z(f^i))$ is also open-closed in βY . This shows that $y^* \in v(Z(f^i) \cap Y)$ because

$$\upsilon Y = \upsilon(Z(f^i) \cap Y) \cup \upsilon(Y - Z(f^i))$$

and $\upsilon(Z(f^i) \cap Y) \cap \upsilon(Y - Z(f^i)) = \phi$ (we notice $Z(f^i) = Z_{\beta r}(f^i)$). Since $Z(f^i) \cap Y$ is a *P*-space, so is also $\upsilon(Z(f^i) \cap Y)$ and every point of $\upsilon(Z(f^i) \cap Y)$ is a *P*-point of $\upsilon(Z(f^i) \cap Y)$ and hence of βY [4, p. 211].

From the argument above, every point $y^* \in v Y - Y$ has a nbd which is disjoint from $Y_{ee} \cup Y_{ed}$, and by (i) every point of $Y_e \cup Y_d$ has also a nbd which is disjoint from $Y_{ee} \cup Y_{ed}$. Thus $Y_{ee} \cup Y_{ed}$ is closed in v Y.

If $\beta Y - Y$ contains a *P*-point *p* of βY , then it is known that every function $f \in C(Y)$ can be continuously extended over *p*, and hence, *Y* is not realcompact. The converse is not necessarily true.

Such an example is given by the space in Example 3.4, that is, $Y = W(\omega_1 + 1) \times W(\omega_0 + 1) - \{(\omega_1, \omega_0)\}$ is not realcompact but $\beta Y - Y$ consists of only one point (ω_1, ω_0) which is not a *P*-point of βY .

But if Y is the image of a realcompact space X under an open WZ-mapping, then Theorem 6.2 concludes the following: the fact that Y is not realcompact implies that $\beta Y - Y$ contains a P-point of βY . Thus the equivalence of (1) and (2) in the following Theorem 6.3 is obtained.

Let $y^* \in \beta Y - Y$. We denote by $0(y^*)$ the set of all functions of C(X) such that $cl_{\beta X}Z_X(f)$ is a nbd of $\mathcal{Q}^{-1}(y^*)$, and

$$Z(0(y^*)) = \{Z_X(f); f \in 0(y^*)\}.$$

 $0(y^*)$ is a Z-ideal of C(X).

THEOREM 6.3. Let φ be an open WZ-mapping from a realcompact space X onto Y; then the following statements are equivalent.

(1) Y is realcompact.

(2) There is no P-point of βY in $\beta Y - Y$.

(3) $Z(0(y^*))$ is not closed under countable intersection for every $y^* \in \beta Y - Y$.

(4) There is a function $g \in C(\beta X)$ such that $\Phi^{-1}(y^*) \subset Z_{\beta x}(g)$ but $Z_{\beta x}(g)$ is not a nbd of $\Phi^{-1}(y^*)$ for every $y^* \in \beta Y - Y$.

Proof. (2) \rightarrow (3). Suppose that there is a point y^* such that $Z(0(y^*))$ is closed under countable intersection. Let g be any function of $C(\beta Y)$ with $0 \leq g \leq 1$ and $g(y^*) = 0$; then it is sufficient to show that $Z_{\beta Y}(g)$ is a nbd of y^* , i.e., y^* is a P-point of βY . Put $g = (g_n \vee 1/n) - 1/n$ and $f_n = g_n \mid Y$. It is obvious that $cl_{\beta Y}Z_Y(f_n)$ is a nbd of $y^*, f_n \varphi \in C(X)$ and $\varphi^{-1}Z_{\mathbf{x}}(f_n) = Z_{\mathbf{x}}(f_n\varphi)$. If $cl_{\beta \mathbf{x}}Z_{\mathbf{x}}(f_n)$ is not a nbd of $\varphi^{-1}(y^*)$, then $Z_{\mathbf{x}}(f_n \varphi)$ does not contain $X \cap U$ for any nbd U of $\Phi^{-1}(y^*)$. Since φ is open and $\varphi(Z_x(f_n\varphi)) = \varphi \varphi^{-1} Z_Y(f_n) = Z_y(f_n), \varphi(X \cap U)$ is open and $\varphi(X \cap U)$ is not contained in $Z_{r}(f_{n})$. This contradicts the fact that $cl_{\beta r}Z_{r}(f_{n})$ is a nbd of y^* . Therefore $cl_{\beta X}Z_X(f_n\varphi)$ is a nbd of $\varphi^{-1}(y^*)$. Since $Z_x(f_{*\varphi}) \in Z(0(y^*))$ and $Z(0(y^*))$ is closed under countable intersection, there is a function $k \in O(y^*)$ with $\bigcap Z_x(f_n \varphi) = Z_x(k)$. Since $k \in O(y^*)$, $\mathrm{cl}_{\beta_X}Z(k)$ is a nbd of $\mathscr{Q}^{-1}(y^*)$ and $\mathscr{Q}(\mathrm{cl}_{\beta_X}Z_X(k))$ is a nbd of y^* because Φ is open by 4.4. On the other hand, $x \in Z_x(k)$ implies $(f_n \varphi)(x) = 0$ for every n, and hence we have $\varphi(x) \in Z_{\mathcal{X}}(g \mid Y)$, i.e., $\varphi(Z_{\mathcal{X}}(k)) \subset Z_{\mathcal{X}}(g \mid Y)$. We have

$$arPhi(\mathrm{cl}_{eta_{\mathbf{X}}}\!Z_{\mathbf{X}}(k)) \subset \mathrm{cl}_{eta_{\mathbf{Y}}} arPhi(Z_{\mathbf{X}}(k)) = \mathrm{cl}_{eta_{\mathbf{Y}}}(arphi Z_{\mathbf{X}}(k)) \subset \mathrm{cl}_{eta_{\mathbf{Y}}}Z_{\mathbf{Y}}(g \mid Y) \subset Z_{eta_{\mathbf{Y}}}(g) \; .$$

This shows that $Z_{\beta Y}(g)$ is a nbd of y^* .

 $(3) \rightarrow (4)$. Since $Z(0(y^*))$ is not closed under countable intersec-

tion, there is a function $f_n \in O(y^*)(n = 1, 2, \dots)$ and $cl_{\beta x}(\cap Z_x(f_n))$ is not a nbd of $\mathcal{Q}^{-1}(y^*)$. Let $f = \sum (1/2^n)(|f_n|/(1+|f_n|))$. If

$$z^* \in \mathcal{Q}^{-1}(y^*) - \mathrm{cl}_{\beta x} Z_x(f)$$
,

there is a compact nbd F of z^* such that $F \cap \operatorname{cl}_{\beta_X} Z_X(f) = \phi$. Since X is dense in βX , we have that $F \cap X \neq \phi$ and $f > \alpha$ on $F \cap X$ for some $\alpha > 0$. This means that $f_n > \alpha_n$ on $F \cap X$ for some $\alpha_n > 0$, i.e., $\operatorname{cl}_{\beta_X} Z_X(f_n)$ does not contain z^* . This is a contradiction. Thus

$$arPsi^{-1}\!\left(y^*
ight) \subset \mathrm{cl}_{eta_X} Z_X(f)$$
 .

Let g be an extension of f over βX , then it is obvious that

$$arPsi^{-1}(y^*) \subset Z(g)$$
 .

On the other hand, Z(g) is not a nbd of y^* because $cl_{\beta x}Z_x(f)$ is not a nbd of y^* . Therefore the function g is a desired function in (4).

 $(4) \rightarrow (2)$. Let y^* be any point in $\beta Y - Y$ and let g be a function described in the assumption (4). Without loss of generality we can assume that $g \ge 0$. Since Φ is open and closed by 4.4 and

$$arPhi^{-1}(y^*) \subset Z_{eta_{X}}(g)$$
 ,

 g^s is continuous on βY by 4.1 and $g^s(y^*) = 0$. Since $Z_{\beta x}(g)$ is not a nbd of $\phi^{-1}(y^*)$, $\Phi(\beta X - Z_{\beta x}(g))$ is open and does not contain y^* but $cl_{\beta r} \Phi(\beta X - Z_{\beta x}(g))$ contains y^* . By the method of the construction of g^s , we see that $g^s > 0$ on $\Phi(\beta X - Z_{\beta x}(g))$ and hence

$$Z_{eta Y}(g^s) \subset eta \, Y - arPhi(eta X - Z_{eta X}(g))$$
 .

Thus $Z_{\beta Y}(g^s)$ is not a nbd of y^* , that is, y^* is not a *P*-point of βY .

COROLLARY 6.4. If φ is an open WZ-mapping from a realcompact space X onto a pseudocompact space Y, then Y must be compact.

Proof. If Y is not compact, then $\beta Y = \upsilon Y \neq Y$ and $Y_{ee} \cup Y_{ed}$ is compact by 6.2. $Z = \beta Y - Y_{ee} - Y_{ed}$ is an open locally compact subspace of βY . Since every point z of Z - Y is a P-point of βY by 6.2, z has the compact nbd which is a P-space. On the other hand, a countably compact P-space is a finite set, and hence, z must be isolated. This is a contradiction, since $z \in \beta Y - Y$.

Frolik [2] has proved the following

THEOREM (F_1). The realcompactness is invariant under an open perfect mapping where $\varphi: X \to Y$ is said to be perfect if φ is closed and compact.

TAKESI ISIWATA

The following theorem is a generalization of Theorem (F_1) .

THEOREM 6.5. If φ is an open closed mapping from a realcompact space X onto a space Y such that $\mathscr{L}\varphi^{-1}(y)$ is compact for every $y \in Y$ (equivalently $Y_e = \phi$), then Y is also realcompact.

Proof. Since every $\mathscr{L}\varphi^{-1}(y)$ is compact, we have

$$Y = \ Y_{\mathit{ce}} \cup \ Y_{\mathit{cd}} \cup \ Y_{\mathit{d}} \, \, ext{and} \, \, \, Y_{\mathit{ce}} \cup \ Y_{\mathit{cd}}$$

is closed in νY by 6.2. If $y^* \in \nu Y - Y$, then y^* is a *P*-point of βY by 6.2, and hence there exists an open-closed nbd $W(\text{in } \beta Y)$ of y^* with $V = W \cap Y \subset Y_d$. Let x_α be any point in $\varphi^{-1}(y_\alpha)$, $y_\alpha \in V$, and $A = \{x_\alpha\}$. A is a discrete closed subset of X. Since A is a closed subset of a realcompact space, A is realcompact. V is homeomorphic with A, and hence V is realcompact. V being open-closed, we have

$$y^* \in v \, V \subset W$$
 ,

This contradicts V = vV. Thus Y must be realcompact.

REMARK. It seems to me that Theorem 6.5 is not obtained directly from Theorem (F_1) in the usual method below.

Let φ be a mapping in 6.5. For $y \in Y_{ee}$ (notice $Y_e = \phi$),

$$arphi^{-1}(y) = \mathscr{L} arphi^{-1}(y)$$

and it is compact. For $y \in Y_{cd} \cup Y_d$, $\varphi^{-1}(y)$ is open-closed. We consider a subset $X_0 = X_{ce} \cup X_{cd} \cup \{z; z \text{ is the point of } \varphi^{-1}(y), y \in Y_d\}$. Then X_0 is a closed subset of X, and hence, it is realcompact. Let φ_0 be a mapping from X_0 onto Y defined by $\varphi_0(x) = \varphi(x)$. It is obvious that φ_0 is a perfect mapping, but, from such a construction φ_0 is not in general necessarily open (if in this case, φ_0 is open, then 6.5 is an immediate consequence of Theorem (F_1)). For instance, let $N = \{t_n\}$ be the set of all natural numbers, $A_n = N$, $B_n = \beta A_n$ and let $C_n = B_n - A_n$ $(n = 1, 2, \cdots)$. We denote by M the topological sum of A_n . Then $B_n \subset \beta M$ and B_n is open in BM. Let us put

$$Z_{\scriptscriptstyle 1} = Z_{\scriptscriptstyle 2} = eta M$$

and we define a mapping ψ_i from Z_i onto $Y = \beta N$ by the Stone extension of the mapping λ_i from M onto N with $\lambda_i(A_n) = t_n$ (i = 1, 2). Since λ_i is open-closed, ψ_i is also open-closed by 4.4. Let X be the topological sum of $Z_1 - \bigcup C_n$ and Z_2 and define a mapping φ from X onto Y by $\varphi \mid (Z_1 - \bigcup C_n) = \psi_1 \mid (Z_1 - \bigcup C_n)$ and $\varphi \mid Z_2 = \psi_2$. We shall prove the openness of φ . Since $\varphi' = \varphi \mid (Z_1 - \bigcup C_n)$ is a WZ-mapping from $Z_1 - \bigcup C_n$ onto Y and ψ_1 is an extension mapping of φ' from $\beta(Z_1 - \bigcup C_n) = Z_1$ onto Y, we have by 4.4 that φ' is open. Thus it is easy to see that φ is open. Next we shall prove the closedness of φ . To do this, it is sufficient to show that $\varphi|(Z_1 - \bigcup C_n)$ is closed. Let F be a closed subset of $Z_1 - \bigcup C_n$. Since B_n is open in Z_1 ,

$$\mathrm{cl}_{z_1}F\cap B_n\neq\phi$$

implies $F \cap A_n \neq \phi$. Thus we have $\psi_1(\operatorname{cl}_{Z_1} F) = \varphi(F)$, i.e., φ is closed.

Let a_n be the point of $A_n \subset Z_1$ $(n = 1, 2, \dots)$ and let $A = \{a_n\}$ and $X_0 = (Z_1 - \bigcup B_n) \cup \operatorname{cl}_{z_1} A \cup (Z_2 - \bigcup B_n)$ and $\varphi_0 = \varphi \mid X_0$. Since X_0 is closed in X, φ_0 is a mapping considered in the begining of this remark. $U = X_0 - \operatorname{cl}_{z_1} A$ is open in X_0 but $\varphi_0(U)$ is contained in Y - N, and hence, $\varphi_0(U)$ is not open. This shows that φ_0 is not an open mapping.

By 6.5, it is proved that if $\varphi: X \to Y$ is an open WZ-mapping and if some condition imposed on X implies $Y_e = \phi$, then Y is realcompact when X is realcompact. There exist many examples of such conditions. For instance, we have the following theorem.

THEOREM 6.6. Let φ be an open WZ-mapping from a realcompact space X onto Y. If X is any one of the following spaces, then Y is realcompact.

- (1) X is weakly separable.
- (2) X is locally compact.
- (3) X is connected.
- (4) X is locally connected.
- (5) X is perfectly normal.

7. Closed mappings and realcompactness. Frolik has proved the following:

THEOREM (F_2) [3]². If φ is a perfect mapping from a realcompact, normal space X onto Y, then Y is realcompact.

In this section, we shall deal with closed mappings and show, in Theorem 7.5, that the realcompactness is invariant under a closed mapping, in Theorem (F_2) , if we replace "compactness of φ " by "local compactness of X". It seems to me that Theorem 7.5 is only one case for which the realcompactness is proved to be invariant under a closed mapping without any additional condition.

LEMMA 7.1. If φ is a closed mapping from a normal space ² It seems to me that the countable paracompactness is necessary.

TAKESI ISIWATA

X onto Y, then $\operatorname{cl}_{\beta_X} \mathscr{L}_X \varphi^{-1}(y) = \mathscr{L}_{\beta_X} \Phi^{-1}(y)$ for every $y \in Y$. Furthermore, if $\mathscr{L}_X \varphi^{-1}(y)$ is compact, then $\Phi^{-1}(y) - \varphi^{-1}(y)$ is open-closed in $\beta X - X$.

Proof. Since φ is closed, we have $\operatorname{cl}_{\beta x} \varphi^{-1}(y) = \Phi^{-1}(y)$ by 1.1 and 1.2. It is obvious that $\mathscr{L}_{x} \varphi^{-1}(y) \subset \mathscr{L}_{\beta x} \Phi^{-1}(y)$. Suppose that there is a point x in $\mathscr{L}_{\beta x} \Phi^{-1}(y) - \operatorname{cl}_{\beta x} \mathscr{L}_{x} \varphi^{-1}(y)$. We can find a nbd $U(\operatorname{in} \beta X)$ of x with $\operatorname{cl}_{\beta x} U \cap \operatorname{cl}_{\beta x} \mathscr{L}_{x} \varphi^{-1}(y) = \phi$. Since

$$\mathrm{cl}_{eta_{\mathcal{X}}}arphi^{-1}\!(y)=arPhi^{-1}\!(y),\,F=\mathrm{cl}_{eta_{\mathcal{X}}}U\cap arphi^{-1}\!(y)
eq\phi$$
 .

Next we shall show that $E = \operatorname{cl}_{\beta x} U \cap (X - \varphi^{-1}(y)) \neq \phi$. Since

$$x \in \mathscr{L}_{\beta x} \mathscr{Q}^{-1}(y) - \mathrm{cl}_{\beta x} \mathscr{L}_{x} \varphi^{-1}(y) ,$$

U contains a point z of $\beta X - \Phi^{-1}(y)$, and hence, there is a nbd V (in βX) of z such that $V \subset U$ and $V \cap \Phi^{-1}(y) = \Phi$. X being dense in βX , V contains a point of $X - \varphi^{-1}(y)$. Thus $E \neq \phi$. Since

$$E\cap F=\mathrm{cl}_{{}_{eta_{X}}}U\cap arphi^{{}_{-1}}\!(y)\cap (X-arphi^{{}_{-1}}\!(y))=\phi$$

and X is normal, we have $\operatorname{cl}_{\beta x} E \cap \operatorname{cl}_{\beta x} F = \phi$. On the other hand, since $x \in \Phi^{-1}(y) = \operatorname{cl}_{\beta x} \varphi^{-1}(y)$ and U is a nbd of x, we have $\operatorname{cl}_{\beta x} F \ni x$ and $\operatorname{cl}_{\beta x} E \ni x$, i.e., $\operatorname{cl}_{\beta x} F \cap \operatorname{cl}_{\beta x} E \neq \phi$ which is a contradiction. The latter part is obvious.

In the following, $Y_o = \{y; y \in Y, \varphi^{-1}(y) \text{ is compact}\}, Y_o = \{y; y \in Y, \mathscr{L}\varphi^{-1}(y) \text{ is compact but } \varphi^{-1}(y) \text{ is not compact}\} \text{ and } Y_1 = \{y; y \in Y, \mathscr{L}\varphi^{-1}(y) \text{ is not compact}\}.$

THEOREM 7.2.³ Let φ be a closed mapping from a locally compact, realcompact, normal space X onto Y; then we have

(a) $Y_0 \cup Y_1$ is closed.

(b) $Y - Y_1$ is locally compact.

(c) The closure of any neighborhood of y is not compact for every $y \in Y_1$.

(d) $Y_0 \cup Y_1$ is a discrete closed subset of Y.

Proof. (a). Let $y \in Y_o$ be an accumulation point of $Y_0 \cup Y_1$. Since $\varphi^{-1}(y)$ is compact, there is a nbd V of $\varphi^{-1}(y)$ whose closure is compact. $M = Y - \varphi(X - V)$ is an open set containing y. Therefore there is a point $y' \in Y_0 \cup Y_1$ with $y' \in M$. This shows that

$$arphi^{-1}(y') \subset arphi^{-1}(M) \subset V \subset ar V$$

and $\varphi^{-1}(y')$ is compact. This is a contradiction.

³ This theorem is analogous to Theorem 4 in [11] in which X is locally compact, paracompact, normal space. The proofs of (a) and (b) are the very same as those given in [11].

(b). Let y be any point of $Y - Y_1$. Since $\mathscr{L}\varphi^{-1}(y)$ is compact, there is a nbd V of $\mathscr{L}\varphi^{-1}(y)$ whose closure is compact.

$$M = Y - \varphi(X - U)$$

is an open set containing y where $U = \varphi^{-1}(y) \cup V$. Then

$$ar{M} \subset \overline{arphi(U)} = arphi(ar{U}) = arphi(ar{V}) \cup \{y\}$$

is compact, and hence, \overline{M} is compact. This shows that $Y - Y_1$ is locally compact.

(c). Suppose that there is a point $y \in Y_1$ which has a nbd W with the compact closure. Since $\mathscr{L}_{x}\varphi^{-1}(y)$ is not compact, there is a point $x \in \mathscr{L}_{x} \varphi^{-1}(y) - \mathscr{L}_{\beta x} \varphi^{-1}(y)$ by 7.1, and hence there is a function $f \in C(\beta X)$ with $0 \leq f \leq 1, f(x) = 0, f > 0$ on X by 1.8 since X is realcompact. We shall show that there is a sequence $\{z_n\}$ in

$$\varphi^{-1}(W) - \varphi^{-1}(y)$$

such that $\varphi(z_n) \neq \varphi(z_m) (n \neq m)$ and $\{f(z_n)\} \downarrow 0$. For

$$A_n = \{ z \ ; \, f(z) \leq 1/n, \, z \in arphi^{-1}(W) \, - \, arphi^{-1}(y) \} \qquad (n \, = \, 1, \, 2, \, \cdots) \, \, ,$$

we have $x \in \operatorname{cl}_{\beta_X} A_n$. If $\varphi(A_n)$ is finite, then $\varphi(A_n)$ does not contain y since φ is closed. On the other hand, since $y \in \operatorname{cl}_{\beta_X} A_n$ and $y \in Y$, we have $y \in \varphi(\operatorname{cl}_{\beta_X} A_n) \subset \operatorname{cl}_{\beta_Y} \varphi(A_n) = \operatorname{cl}_{\beta_Y} \varphi(A_n)$, and hence, $y \in Y \cap \operatorname{cl}_Y \varphi(A_n) = \varphi(A_n)$. Thus every A_n contains infinitely many points whose images, under φ , are distinct from each another. Therefore we have a desired sequence $\{z_n; X_n \in A_n\}$ (if necessary, take a suitable subsequence). Since f > 0 on $X, Z = \{z_n\}$ is a discrete closed subset. On the other hand, $\varphi(Z) \subset \overline{W}$ and \overline{W} is compact, and hence, $\varphi(Z)$ has an accumulation point in $\varphi(Z)$. Let say $y_0 = \varphi(z_1)$ be such an accumulation point because φ is closed. X being normal, there is an open set U with $\varphi^{-1}(y_0) \subset U$ and $U \cap \{z_n; n = 2, 3, \dots\} = \phi$.

$$M = Y - \varphi(X - U)$$

is an open set containing y_0 which is disjoint from a closed set

$$\varphi(Z)-\{y_{\scriptscriptstyle 0}\}=\varphi(Z-\{z_{\scriptscriptstyle 1}\})$$

because $Z - \{z_i\}$ is closed. This is a contradiction.

(d). We shall prove that every point of Y_1 is isolated in $Y_0 \cup Y_1$. If $\varphi^{-1}(y)$ has an open nbd U such that $\varphi(U) \cap (Y_0 \cup Y_1) = \{y\}$, then $M = Y - \varphi(X - U)$ is an open set with $(Y_0 \cap Y_1) \cap M = \{y\}$. This shows that every point of Y_1 is isolated in $Y_0 \cup Y_1$. Therefore, we can assume that there are a point $y \in Y_1$ and a point x in $\varphi^{-1}(y)$ such that any open nbd U of x has a compact closure and $\varphi(U) \cap (Y_0 \cup Y_1)$

contains infinitely many points $y_n(n = 1, 2, \dots)$ of $Y_0 \cup Y_1$. Let a_n be any point contained in $\varphi^{-1}(y_n) \cap U$. Then $\{a_n\}$ has an accumulation point a_0 in \overline{U} because \overline{U} is compact. Since $\varphi(a_n) = y_n \in Y_0 \cup Y_1$ and $Y_0 \cup Y_1$ is closed by (a), we have $y_0 = \varphi(a_0) \in Y_0 \cup Y_1$. Thus we can assume that there is a point $y_0 \in Y_0 \cup Y_1$ which is an accumulation point of $\{y_n; y_n \in Y_0 \cup Y_1\}$. Let $x'_n \in \mathcal{Q}^{-1}(y_n) - \varphi^{-1}(y_n)$; then $\beta X - X$ being compact, $A \cap X = \phi$ where $A = \operatorname{cl}_{\beta X}\{x'_n\}$. If $A \cap \varPhi^{-1}(y_0) = \phi$, then $y_0 \notin \Phi(A)$ which is impossible because $y_n \in \Phi(A)$ $(n = 1, 2, \dots)$ and $C(\beta X)$ such that $0 \leq f \leq 1, f(x_0) = 0$ and f > 0 on X by 1.8 because X is realcompact. Since $cl_{\beta x} \varphi^{-1}(y) = \Phi^{-1}(y)$, without loss of generality, we can find a point x_n in $U_n \cap \varphi^{-1}(y_n)$ for every n such that $\{f(x_n)\} \downarrow 0$ where U_n is an open nbd (in βX) of x'_n . If $B \cap \varphi^{-1}(y_0) = \phi$ where $B = \operatorname{cl}_x \{x_n; n = 1, 2, \cdots\}, \text{ then } \varphi(B) = \varphi(\overline{B}) = \overline{\varphi(B)} = \overline{\{y_n\}} \text{ does not}$ contain y_0 . This is impossible. Thus $B \cap \varphi^{-1}(y_0)$ contains a point x_0 . It is obvious that $f(x_0) = 0$, but, this is a contradiction because f > 0on X. Thus every point of Y_1 is isolated in $Y_0 \cup Y_1$.

Next we shall prove that every point y of Y_0 is isolated in $Y_0 \cup Y_1$, which shows that $Y_0 \cup Y_1$ is a discrete closed subset of Y.

$$\varPhi_{\scriptscriptstyle 1} = \varPhi \mid (\beta X - X)$$

is a closed mapping from a compact space $\beta X - X$ onto $\beta Y - Y_c$. For every $y \in Y_0$, $\Phi^{-1}(y) - \varphi^{-1}(y)$ is always open-closed by 7.1 in $\beta X - X$. Thus every point of Y_0 is isolated in $\beta Y - Y_c$, and hence, they are isolated in $Y_0 \cup Y_1(\subset \beta Y - Y_c)$.

From (b) and (c) in 7.2, we have:

THEOREM 7.3. Let φ be a closed mapping from a locally compact, realcompact, normal space X onto Y; then Y is locally compact if and only if $\mathscr{L}\varphi^{-1}(y)$ is compact for every $y \in Y$.

This theorem is not necessarily true in general when X is locally compact normal, as shown by the following example by Prof. Morita. Let $X = [0, 1] \times W(\omega_1)$, Y = [0, 1] and let φ be the projection: $X \to Y$. It is known that X and Y are both locally compact normal. Since Y is weakly separable and X is countably compact, φ is closed, but $\varphi^{-1}(\alpha)$ is not compact for every $\alpha \in Y$. Theorem 7.3 is also true, as shown in [11] replacing "realcompactness" by "paracompactness".

Under the assumption of 7.2, we shall consider the new space Z in the following way: we set up an equivalence relation "~" on X by the simple rule that " $x \sim x$ " if and only if both points x and x' belongs to the same $\varphi^{-1}(y)$ for some point $y \in Y_0 \cup Y_1$. Using this relation we define a space Z, that is, Z is a space obtained from X by the topological identification (we notice that V of Z is open if and only if $\psi^{-1}(V)$ is open where ψ is the identification mapping). It is easy to see that $Z_c = \psi(X_c)$ is locally compact and homeomorphic with X_c , and $Z_0 \cup Z_1$ is a discrete closed subset where

$$X_{c}=arphi^{-1}(Y_{c}),\,X_{i}=arphi^{-1}(Y_{i})(i=0,\,1),\,Z_{\scriptscriptstyle 0}=\psi(X_{\scriptscriptstyle 0})$$

and $Z_1 = \psi(X_1)$. ψ is obviously closed, and hence, Z is normal.

Now suppose that X is realcompact. $Z_0 \cup Z_1$ is realcompact as in the proof of realcompactness of V in 6.5 since $Z_0 \cup Z_1$ is closed and discrete. If every function of C(Z) is continuously extended over a point z in $\beta Z - Z$, then there is a nbd $U(\text{in } \beta Z)$ with $\operatorname{cl}_{\beta Z} U \cap (Z_0 \cup Z_1) = \phi$ because $Z_0 \cup Z_1$ is closed and realcompact. Thus $\operatorname{cl}_{\beta Z} U \cap Z_c \neq \phi$, but this is impossible since Z_c is homeomorphic with X_c . Therefore Z becomes a realcompact space.

Next we can construct a mapping λ from Z onto Y by the usual topological identification and it is easily seen that λ is perfect. Thus we have.

COROLLARY 7.4. Let φ be a closed mapping from a realcompact, locally compact, normal space X onto Y; then φ admits a factorization $\varphi = \lambda \psi$ such that

(i) ψ is a closed mapping from X onto a realcompact normal space Z and $\{\psi^{-1}(z); z \in Z'\}$ is a closed discrete collection where Z' is the set of point z such that $\psi^{-1}(z)$ contains at least two points.

(ii) $\lambda: Z \to Y$ is a perfect mapping.

Since countable paracompactness is invariant under a closed mapping, we have the following theorem by 7.2 and Theorem (F_2) .

THEOREM 7.5. If φ is a closed mapping from a locally compact, countably paracompact, normal space X onto Y, then Y is realcompact when X is realcompact.

8. Examples. Let M be a P-space and let K be a separable metric space. We denote by φ the projection: $M \times K \to M$ and by φ the Stone extension of φ from $\beta(M \times K)$ onto βM . Next ψ denotes the identity mapping on $M \times K$ and Ψ denotes the extension of ψ from $\beta(M \times K)$ onto $\beta M \times \beta K$ and let $\Psi_0 = \Psi | Z$ where

$$Z = \ \cup \left\{ arphi^{-1}(y); \, y \in M
ight\} \subset eta(M imes K).$$

LEMMA 8.1. (1) The projection $\varphi: M \times K \to M$ is closed. (2) Z is realcompact if M is realcompact.

(3) Ψ_0 is a one-to-one mapping from Z onto $M \times \beta K$.

 $(4) \quad \Psi^{-1}(M \times \beta K) = Z.$

Proof. (1). Let F be a closed subset of $M \times K$ and let $y \notin \varphi(F)$. Now suppose that y is not isolated. Since F is closed, for a point $(y, z) \in \varphi^{-1}(y)$, there is a nbd $W(y, z) = V(y) \times U(z)$ of (y, z) such that $W(y, z) \cap F = \phi$, where V(y) and U(z) are neighborhoods of y and z in M and K respectively. Since K is separable and $\{W(y, z); z \in K\}$ covers $\varphi^{-1}(y)$, there is a subcover $\{W(y, z_i); i = 1, 2, \cdots\}$. Let us put $V = \cap V_i$; then V is a nbd of y because y is a P-point, and hence, $V \times K$ is open and $(V \times K) \cap F = \phi$. This implies $y \notin \varphi(F)$ since $\varphi^{-1}(y) \subset V \times K$. Thus $\varphi(F)$ is a closed subset which shows the closedness of φ .

(2). Since Φ is closed and $\Phi^{-1}(y)$ is compact, Z is realcompact by 5.3.

(3) Since φ is closed, $\Phi^{-1}(y) = \operatorname{cl}_{\beta(\underline{M}\times\underline{K})}\varphi^{-1}(y)$, and

$$\psi arphi^{-1}(y) \subset arPsi_{\scriptscriptstyle 0}(arPsi^{-1}(y))$$
 .

On the other hand, $\psi \varphi^{-1}(y) = \{y\} \times K$ is dense in $\{y\} \times \beta K$. This implies that $\Psi_0(\Phi^{-1}(y)) = \{y\} \times \beta K$, equivalently $\Psi_0^{-1}(\{y\} \times \beta K) = \Phi^{-1}(y)$ because $\Phi^{-1}(y)$ is compact. Thus $\Psi_0(Z) = M \times \beta K$, that is, Ψ_0 is onto.

Next we shall show that Ψ_0 is one-to-one. Suppose that there are a point $y^* \in (\{y\} \times \beta K) - (\{y\} \times K)$ and $x_1, x_2 \in \Psi_0^{-1}(y^*), x_1 \neq x_2$. There are open sets $V_1(\text{in } Z)$ and $V_2(\text{in } Z)$ of x_1 and x_2 respectively with $\overline{V}_1 \cap \overline{V}_2 = \phi$. Let us put $F_i = \overline{V}_i \cap \varphi^{-1}(y)$; then $F_i \neq \phi$ since $\varphi^{-1}(y) = \operatorname{cl}_{\beta(M \times K)} \varphi^{-1}(y)$. Since $\operatorname{cl}_{M \times \beta K} \psi(F_i) \subset \{y\} \times \beta K$, F_i is a closed subset of a normal space $\{y\} \times K$ and $\beta(\{y\} \times K) = \{y\} \times \beta K$, we have $\operatorname{cl}_{M \times \beta K} \psi(F_1) \cap \operatorname{cl}_{M \times \beta K} \psi(F_2) = \phi$. On the other hand,

$$x_i \in \mathrm{cl}_{eta(M imes K) \cap Z} F_i \subset \mathcal{Q}^{-1}(y)$$

implies that $y^* \in \Psi_0(cl_{\beta(M \times K) \cap Z}F_i \subset cl_{M \times \beta K}\Psi_0(F_i) = cl_{M \times \beta K}\psi(F_i)$ (i = 1, 2). This is a contradiction.

(4). Suppose that there is a point $w \in \beta(M \times K) - Z$ such that $\Psi(w) = (y, \alpha) \in M \times \beta K$. There are open subsets V_1 and V_2 in $\beta(M \times K)$ such that $w \in V_2$, $\mathcal{Q}^{-1}(y) \subset V_1$ and $\overline{V}_1 \cap \overline{V}_2 = \phi$. $\overline{V}_2 \cap Z$ is not empty and $\mathcal{Q}(\overline{V}_2 \cap Z)$ is a subset of M containing y. Since

$$arPsi_{\mathfrak{0}}^{-1}(\{y\} imeseta K)=arPsi_{\mathfrak{0}}^{-1}(y)$$

by (3), we have $\Psi_0(\bar{V}_2 \cap Z) \cap (\{y\} \times \beta K) = \phi$. Let μ be the projection: $M \times \beta K \to M$; then, we have $\Phi(A) = \mu \Phi_0(A)$ for every subset A of Z because $\Psi_0^{-1}(\{y\} \times \beta K) = \Phi^{-1}(y)$. Thus

$$arPhi(ar{V}_{\scriptscriptstyle 2}\cap Z)=\mu arPhi_{\scriptscriptstyle 0}(ar{V}_{\scriptscriptstyle 2}\cap Z)
otin y$$

which is a contradiction, and hence, we have $Z = \Psi^{-1}(M \times \beta K)$.

478

Let M be a realcompact nondiscrete P-space; then $M \times K$ is realcompact and there is a function f of $C(\beta(M \times K))$ such that f > 0on $M \times K$ and $Z(f) \cap \Phi^{-1}(y) \neq \phi$ for a given nonisolated point y of M. We notice $\Phi^{-1}(y) \operatorname{cl}_{\beta(M \times K)} \varphi^{-1}(y) = \operatorname{cl}_{\mathbb{Z}} \varphi^{-1}(y) \ (\cong \{y\} \times \beta K)$. In the following, we put $A_y = \Phi^{-1}(y)$ and $B_y = A_y - \varphi^{-1}(y)$.

Next we shall show that we cannot replace a Z-mapping by an open WZ-mapping in Theorem 5.3.

EXAMPLE 8.2. $X = Z - (Z(f) \cap B_y)$ is not realcompact and a mapping $\lambda = \emptyset \mid X$ is an open WZ-mapping from X onto M and λ is not a Z-mapping.

Proof. It is obvious that φ is open and closed, X is open in Z, $\varphi^{-1}(y') = \lambda^{-1}(y')$ for every $y' \ (\neq y)$ and

$$arphi^{-1}\!\left(y
ight)\subset\lambda^{-1}\!\left(y
ight)=A_y-Z\!\left(f
ight)\cap B_y
ight)$$
 ,

and hence λ is an open WZ-mapping. Thus to prove 8.2, it is sufficient to show that X is not realcompact by 5.3. Suppose that X is realcompact, then there are a function $h \in C(X)$ and a point $x^* \in B_y$ such that h can not be continuously extended over x^* . Since every subset $\lambda^{-1}(y') = \Phi^{-1}(y')$ is compact for $y' \neq y$, h is bounded on $\lambda^{-1}(y')$. If h is bounded on a $W \cap X$ where W is a nod (in $\beta(M \times K)$) of x^* , then h is continuously extended over x^* . Thus for every node W of x^* , h is not bounded on $W \cap X$. Without loss of generality, we can assume that h is nonnegative on X. Therefore, for every n, there is a node $W_n(\text{in } \beta(M \times K))$ of x^* with $h \geq n$ on $W_n \cap X$. $\varphi^{-1}(y) \cap W_n$ contains a point (y, k_n) , and hence there are neighborhoods O_n and Q_n of y and k_n respectively such that $h \geq n$ on $O_n \times Q_n$. Since y is a P-point, $V = \cap O_n$ is a node of y and h is not bounded on

$$A = \{(y_0, k_n); n = 1, 2, \cdots\}$$

where y_0 is some point of V and $y \neq y_0$. On the other hand, h is bounded on A and $A \subset \Phi^{-1}(y_0)$. This is a contradiction. Thus X is not realcompact.

BIBLIOGRAPHY

1. A. Archangelski and A. Taimanov, On the theorem of V. Ponomarev, Deklady Acad. Nauk 135, (1960), 247-248.

2. Z. Frolik, Applications of complete family of continuous functions to the theory of Q-spaces, Czech. Math. Journ. 11 (89) (1961), 115-133.

^{3.} Z. Frolik, On almost realcompact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom Phys. IX (1961), 247-250.

^{4.} L. Gillman and M. Jerison, Rings of Continuous Functions, Van Norstrand, Princeton, N. J., 1960.

TARESI ISIWATA

5. S. Hanai, Inverse images of closed mappings I, II, III, Proc. Japan Acad. 37 (1961), 298-301, 302-304, 457-458.

6. S. Hanai and A. Okuyama, On pseudocompactness and continuous mappings, Proc. Japan Acad. 38 (1962), 444-447.

7. E. Hewitt, Rings of real-valued continuous functions I, Trans. Amer. Math. Soc. 64 (1948), 45-99.

8. T. Isiwata, Some characterizations of countably compact spaces, Sci. Reports of Tokyo Kyoiku Daigaku, Ser. A., 5 (1956), 185-189.

9. T. Isiwata, On subspaces of Čech compactification space, Sci. Reports of Tokyo Kyoiku Daigaku, Ser A., 5 (1957), 304-309.

10. S. Kasahara, Boundedness of semi-continuous finite real functions, Proc. Japan Acad. 33 (1957), 183-186.

11. K. Morita, On closed mappings, Proc. Japan Acad. 32 (1956), 539-543.

12. S. Mrówka, Compactness and product spaces, Colloquim Math. 7 (1959), 12-22.

Received July 17, 1964.

TOKYO GAKUGEI UNIVERSITY