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ON THE CHARACTERIZATION OF COMPACT
HAUSDORFF X FOR WHICH C(X) IS

ALGEBRAICALLY CLOSED

R. S. COUNTRYMAN, JR .

Although the problem considered here has its origins in
Functional Analysis, the viewpoint and methods of this paper
are purely topological. The problem is to give a completely
topological characterization of those compact Hausdorff spaces
X for which the algebra C(X) of all complex-valued continuous
functions on X is algebraically closed, i.e. for which each
polynomial over C(X), whose leading coefficient is constant,
has a root in C(X).

A necessary condition in order that C(X) be algebraically
closed is obtained here and it is proven that, in the presence
of first countability, the condition is also sufficient. The
necessary condition requires that X be hereditarily unicoherent
and that each discrete sequence of continua in X have a
degenerate or empty topological limit inferior. A rather
general sufficient condition is also proved. It states essentially
that each component of X have an algebraically closed function
algebra and that each point of X be of finite order in the
sense of Why burn.

A short history of the problem is in order. In [1], Decard and
Pearcy consider matrices with entries from the algebra C(X) where X
is a Stonian space (compact, Hausdorff, and extremely disconnected).
As a tool in the investigation, they prove that every monic polynomial
with coefficients in C(X) has a root in C(X). With the aid of this
result, they are able to prove, among other things, that every invert-
able n x n matrix with entries from C(X) has roots of all orders.
In [2] they examine this tool on its own merit. They prove that if
X is either totally disconnected, compact, and Hausdorff, or linearly
ordered and order complete, then C(X) is algebraically closed.

Concerning the problem of giving a topological characterization of
the algebraic property of closure, Decard and Pearcy point out that if
X contains the homeomorphic image of the unit circle, then C(X) is
not algebraically closed. Also, if X is the closure of the graph of
the function y = sin (1/x) 0 < x ^ 1, then C(X) is not algebraically
closed. The following obvious lemma indicates that there is a reason-
able chance of finding a solution to the problem.

LEMMA 1.1. If X is compact and Hausdorff and if M is a
closed subset of X such that C(M) is not algebraically closed, then
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C(X) is not algebraically closed either.

Thus each time one finds a space X such that C(X) is not
algebraically closed, one knows a configuration which cannot be a
part of any space which has a closed function algebra. It turns out
that the two configurations mentioned above come very close to giving
a complete answer to the problem. Another lemma which sheds a
great deal of light on the problem comes from [1].

LEMMA 1.2. If xQeX and zQ is a root of P(xo,z) of multiplicity
m, and if ε > 0 is such that P(x0, z) has no root in 0 < | z — z01 ^ ε,
then there is an open set V containing x0 such that if xeV then P(x, z)
has exactly m roots (counting multiplicities) in | z — z0| < ε.

It is easily seen that this lemma establishes a strong connection
between the behavior of the roots of P(x, z) and the topology on X.

2* The necessary condition* We begin by extracting the es-
sential features of the two configurations mentioned in the introduction.
A space which contains the homeomorphic image of the unit circle is
not hereditarily unicoherent i.e. contains two connected closed subsets
whose intersection is not connected.

LEMMA 2.1. Let X be a compact Hausdorff space and let M and
N be connected closed subsets of X such that M U N — X and M f]N
is not connected. Then C(X) is not algebraically closed.

Proof. Let MΓiN = A\J B where A and B are disjoint, nonempty,
closed sets. Let f(x) be a continuous mapping of X into the closed unit
interval [0.1] of real numbers such that f(x) Ξ 0 O Π 4 and f(x) = 1 on
B. If xeM — N, let h(x) = exp(iπf(x)) and let h(x) = exp(— iπf(x))
otherwise. It is a simple matter to verify that h(x) e C(X). Consider
the monic polynomial P(x, z) — z2 — h(x). Suppose there were an
element r(x) in C(X) such that P(x, r{x)) = 0. Since M is connected
and r(x) is continuous, it must be that r(M) = {exp {iβ): 0 ^ β ^ π/2} or
r(M) = {exp(ί/2):τr ^ β ^ 3π/2}. We may clearly assume that the first
statement holds. Now the same considerations hold for r(N); either
r(N) = {exp (iβ): π/2 ̂  β g π} or r(N) = {exp (iβ): 3π/2 ^ β ^ 2π}. In
the first case we get that r(MΠA) = 1 while r(Nf)A) = — 1, and in
the second case we find r(MΓ\B) = i while r(Nf)B) = —i. Since
M n N = A U B however, we see that Mf]A = Nf)A = A and M Π B =
N Π B = B and we have a contradiction in either case! Thus C(X) is
not algebraically closed.
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Thus the first part of our necessary condition will require that X
be hereditarily unicoherent. In order to specify the essential features
of the closure of the graph of the function y = sin (1/x) 0 ^ x g 1,
we need the following.

DEFINITION 2.2. A topological space is almost locally-connected in
case it does not contain sequences {Cn}(n = 1, 2, •), {xn}(n — 1, 2, •),
and {yn}(n = 1, 2, •) such that; for each n, Cn is a connected closed

set which is open in \JCk(k = 1, 2, •), CmΠC% = 0 io>τ m Φ n, xn

and 2/w are points of Cw for each w, and {a J (n — 1, 2, •••) and {τ/J
(w = 1, 2, •) converge to distinct points #0

 a n d 2/0 respectively.

The term "almost locally-connected" is motivated by the fact (to
be proved later) that a compact and sequentially compact connected
Hausdorff space is locally connected if it is almost locally-connected.
This generalizes the well-known result (cf. for example, [3], Theorem
3-12, p. 114) that a compact connected metric space is locally con-
nected if it contains no continuum of convergence (for the meaning
of "continuum of convergence" see [5], p. 18).

LEMMA 2.3. If X is a compact Hausdorff space which is not
almost locally-connected, then C(X) is not algebraically closed.

Proof. Let {Cn}(n = 1, 2, •), {xn}(n = 1, 2, • •), {yn}(n = 1, 2 , . . . ) ,

x0, and y0 be as in (2.2). Since \JCk(k = 1, 2, •••) is obviously closed

in X, we may (in view of (1.1)) assume without loss of generality

that X= \JCk(k = 1, 2, •••). Let A and B be disjoint closed nbhds
of x0 and y0 respectively. Let f(x) be a continuous mapping of X
into the closed unit interval [ — 1,1] such that f(x)=zl on A and
f(x) = — 1 on B. Define the function h(x) on Xand follows. If x e Cn

and n is even, let

h(x) = f(x) + (i/n)[l - (f(x))ψ> ,

if xeCn and n is odd, let

h(x) = f(x) - (i/n)[l - (f(x))ψ> ,

and otherwise let h(x) = f(x). Since the Cn are disjoint, h(x) is well
defined, and since the Cn are open, we see that h(x) e C(X). Now
consider the monic polynomial P(x,z) = z* — h(x). Suppose there were
a function r(x) e C(X) such that P(x, r(x)) = 0. For almost all n, Cn

is a continuum from A to B with xne A and yn e B. Thus the image
r(Cn) must be a connected set from r(xn) to r(yn) which is contained
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in some closed quadrant of the complex plane. We may assume, since
h(x0) = 1, that r(x0) = 1. Since xn-+x0 and r(xn) = ± 1 for almost
all n, we must have that r(xn) = + 1 for almost all n. This then
requires that for almost all even n, r(yn) = + i, and for almost all
odd n, r(yn) = — i. But yn—>y0 so that r(yn)-+r(y0), and we have a
contradiction. Thus C(X) is not algebraically closed and the lemma
is established.

We have thus established the following necessary condition.

THEOREM 2.4. If X is a compact Hausdorff space, a necessary
condition that C(X) be algebraically closed is that X be hereditarily
unicoherent and almost locally-connected.

One naturally wants to know whether, or to what extent, the
necessary condition is also sufficient. It seems appropriate to give a
partial answer to the question at this point. A more complete answer
must wait until a later section of this paper. The partial answer
we give here is that if X is connected and sequentially compact in
addition to being compact and Hausdorff, then the necessary condition
is also sufficient. The following lemma will be needed to prove this
fact.

LEMMA 2.5. Let X be a compact connected Hausdorff space
which is sequentially compact, hereditarily unicoherent, and almost
locally-connected, and let p and q be distinct points of X. There is
continuum, E[p, q], in X which is irreducible from p to q. Each
point of E(p, q)(E(p, q) = E[p, q] — (p + q)) separates p and q in X
and the order topology induced on E[p, q] by the separation order is
the same as the subspace topology on E[p, q].

Proof. The proof rests on showing that X is locally connected.
Suppose X were not locally connected and find, therefore, a point x[
and an open set V containing x'o such that x'o is not an interior point
of the component of V which contains it. Find open sets VΊ and V2

such that x'o e V2 g V2 g V1 gΞ Vγ ϋ V. Since X is compact, connected,
and Hausdorff, every component of Vx which intersects V2 must contain
points of Bd(Vi). Also, if H is a component of V1 and N is any
closed set contained in V1 and disjoint from H, then there is an open
set A such that Af] N = 0 , f f g A , and A f] V1 is closed.

Let Ho be the component of Vt which contains x'o. Since x'o is
not an interior point of Ho, V2 is not contained in Ho. Let Hί be a
component of V1 such that Hx Φ HQ and Ht Π V2 Φ 0 , and let A± be
an open set such that Ho Π A1 = 0 , H1 £ Al9 and Aγ Π Vί is closed.

Now suppose we have sequences Hu H2, , Hn and Alf A, , An
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such that for each ί; Hi is a component of Vu H{ Γ\ V2 Φ 0 , A{ is
open, Ai O_H0 = 0 , A, a U H, (j = 1, , i), # ί + 1 Π A< = 0 , A ί + 1 a A,,
and Ai Π Vi is closed. Since Aw Π Vi is closed and Anf)Ho=0, we
see that V2 — An is an open set containing x'ύ) hence, there is a
component Hn+1 of V1 such that Hn+1 Φ Ho and iϊ% + 1 Π (V2 — An) Φ 0 .
Since An is both open and closed in V1 and Hn+1 contains points not
in An, it follows that Hn+1 n AΛ = 0 . We can find an open set B
such that B Γ)H0= 0 , B 3 Jϊn + 1, and £ n V1 is closed. Put 4 n + 1 =
An U 5 . It is easy to see that the pair of sequences Hu H2, , Hn+1

and Au A2, •••, AΛ+1 retain all the original properties. The axiom of
induction thus guarantees the existence of countably infinite sequences
Hu H2, and Alf A2, with the same properties.

Since X is sequentially compact, we can find a point x0 e V2 and
a subsequence Hn{lh Hn{2)i such that x0 is a sequential limit point
of a sequence aua2, ••• where α ίG£Γ%(ί). Each Hn{ί) must intersect
Bd (VΊ) and hence, again by sequential compactness, we can find a
subsequence s(l), s(2), of the integers and a point ?/0 e Bd (FO such
that 2/0 is a sequential limit point of a sequence 7/!, τ/2, where
Vi e Hn{s{i)). Since V2 S F^ α;0 Φ y0. Put C4 = Hn{s[i)) and ^ = αβ(i) and
we have a violation of the definition of almost locally-connected (C3

will be open in the closure of \JCi(i = 1, 2, •••) since Hn{s{j)) gΞ
(An(e(i), — ^(.( j ,,^) Π Fi which is an open set in V1 that does not
intersect Cό for j Φ i). Therefore, X is locally connected.

Since X is itself a continuum from p to g, there is surely a sub-
continuum which is irreducible from p to g, call it J57[̂ >, #]. E[p, q]
is unique, for two distinct, irreducible continua from p to q could not
have a connected intersection (X must be hereditarily unicoherent).
Let y be a point of i?(p, g). We must show that X — y = A\J B
where A and B are disjoint open sets containing p and # respectively.
This will be true if y is an element of every closed connected set
which contains both p and q (see [3], Theorem 3-6). But, again
because of hereditary unicoherence, this last statement is immediate.
Now, since E[p, q] is a compact, connected, Hausdorff space with just
two noncut points, we see that the order topology induced by the
separation order on E[p, q] is the same as the subspace topology (see
[31, Theorem 2-25).

We can now prove the following:

THEOREM 2.6. Let X be a compact Hausdorff space which is
also sequentially compact and connected. In order that C(X) be
algebraically closed, it is necessary and sufficient that X be heredi-
tarily unicoherent and almost locally-connected.

Proof. The necessity has already been shown. To prove suf-
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ficiency, let P(x, z) be a monic polynomial over C(X). Let % —

{(D,f): D i s c o n n e c t e d s u b s e t of X, fe C(D), a n d P{x,f(x)) Ξ O O Π D ) .

If (D, f) and (£>', /') are elements of JT, define (D, f) g (Z)', /') if

and only if D C JD' and /'(a?) Ξ /(α) on Zλ It is evident that π is

not empty.

Suppose {(Da, fa)}aei is a linearly ordered subset of %. Let D =
\JDa(aeI) and let f=\jfa(ael). Since { φ α , Λ ) W is linearly
ordered, it is clear that / is a well-defined function on D. Surely D
is connected and P(x,f(x)) = 0 on D. If we can show that feC(D),
we will have found an upper bound in % for {(Da, fa)}aei a n d thus,
by Zorn's Lemma, we will know that 5Γ has maximal elements.

Suppose there is a point x0 of D at which / is not continuous.
Then there is a Sj. > 0 such that for no nbhd V of x0 is it true that
f(V) Q {z:\z — f(xQ) I < Si}. Let z1 = f(x0), z2, , zk be the distinct

roots of P(x0, z) and let ε2 = (1/2) min {| %{ — zό |: i Φ j}. Let ε be the
smaller of ε1 and ε2. There is a nbhd V(x0) of $0 such that if x e V(x0)
and P(x, z) = 0, then | z — zt | < ε for some i (apply (1.2) to each z{

and take the intersection of the resulting nbhds). Since X is locally
connected (see the proof of (2.5)) we can take V(x0) to be connected.
Now f(V(x0)) §= {z: |z — Zil < ε], hence there is a point y0 such that
y0 e V(x0) and | f(y0) — z1 \ ^ ε. Find α e / so that both $0 and y0 are
in Dα, and notice that it will then follow that E[x0, y0] S Da (remember,
each point of E(x0, y0) separates E[x0, y0] in X). Now we see the
contradiction, for f(E[x0, y0]) — fa(E[xOy ^/0]),

 a ^d being a continuous
function on Da, fa carries connected sets onto connected sets; however,
f(E[x09 yQ]) g U {z: \ z - zi \ < ε}(ί = 1, 2, , k) and these are disjoint
open sets. Thus / must be continuous on D and ^Γ has maximal
elements.

Let (D*,/*) be a maximal element of %". If D* = X, we are
done, so assume yQeX — D* and let xoeD*. Note that, in general,
if r e E[p, q] then E\p, r] (j ^ [ r , g] - £7[p, q]. Thus JE7[α?Of l / o ] n ΰ * -
U E[x0, y](y e E[x0, y0] f] D*) and therefore, E[x0, y0] ΓΊ D* is connected.
It is thus clear that there is a point m of E[x0, yQ] such that
E[x0, m] — m s D* and ^[m, τ/0] — ^ C -X" — JD*. We need to show
that meD*. If rngD*, then there can be no way of extending / *
continuously to D* + m((D*, /*) is maximal). This means that there
is a εj > 0 such that, if F is any nbhd of m, there are points x and
2/ in F n ΰ * such that | f{x) — f(y) \ ^ ε:. Let ^, z2, -- ,zk be the
distinct roots of P(m, z) and let ε2 = (1/2) min {| zt — zό |: ί Φ j} and
finally let ε be the smaller of s1 and ε2. There is a connected nbhd
V(m) of m such that for x e V(m), each root of P(x, z) is within ε
of some zt. Since V(m) is connected, E[x} y] s F(m) whenever cc and
y are in F(m). Also, E[x, y]ξΞ:D* whenever x and y are in JD*.
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Therefore, 7 ( m ) n ΰ * is connected (it contains a continuum between
each pair of its points).

But / * is continuous and hence f*(V(m) Γi D*) is connected. On
the other hand, f*(V(m)Γ)D*) cannot be connected since it is contained
in \J {z: I z — zi | < ε}(i = 1, 2, , k), a union of disjoint open sets,
and meets at least two of these sets. Thus / * would be extendable
to D* + m, and since this cannot be, we know that nieD*.

Since ^[m, y0] is a linearly ordered, order-complete space, we can
find continuous functions fuf2, '%m,fn on ^[m, y0] (see [2], the proof
of Theorem 3) such that P(x, z) = (z - fλ(x)){z - f2(x)) . . . (z - fn(x))
on E[m, y0]. Put D' = D*{J E[m, y0] and put / ' = /* (j /, where s is
such that /*(m) = f,(m). Since D* — m and ^(m, ?/0] are open in D\
it is easy to see that f eC(D'). Thus (D*,f*) < (D',f), but since
(D*,/*) is maximal, we have a contradiction. Hence D* = X and
/* is a continuous root for P(x, z) and C(X) is algebraically closed.

3* A general sufficient condition* The sufficient condition
which is developed in this section was obtained by generalizing the
methods used by Deckard and Pearcy to prove that C(X) is algebrai-
cally closed if X is compact, Hausdorff, and totally disconnected (see
[2]). Since the components of such a space are single points, it is
obvious that one can find continuous root functions on each component.
As a start in formulating our sufficient condition, we require that the
space satisfy the following definition.

DEFINITION 3.1. A compact Hausdorff space X is a C-space if,
given a component M of X, a point xQ of M, a monic polynomial
P(x, z) over C(X), and a root z0 of P(x0, z); one can always find a
function r(x) in C(M) such that r(x0) = z0 and P(x, r(x)) = 0 on M.

The method of Deckard and Pearcy is to prove, by an inductive
method, that local continuous solutions can be found, then to patch
together the local solutions (using the fact that there is a basis for
the topology consisting of open and closed sets). The analogous pro-
cedure here would be to show that continuous solutions can be found
in a nbhd of each component of X, and then patch. The proof of
this itself requires the patching of still smaller local solutions (as is
the case with Deckard and Pearcy), and in order to carry out this
plan, it seems necessary to assume that there is a base for the
topology on X consisting of open sets with finite boundaries, i.e.
every point is of finite order (see [5], p. 48). The form in which we
use this assumption is contained in the following definition.

DEFINITION 3.2. If X is a space and V is a subset of X, V is an



440 R. S. COUNTRYMAN, JR.

A-set in case V is open and Bd(F) is finite or empty and is contained
in a single component of V. If Bd (V) is not empty, then the
component of V which contains Bd (V) is the A-component of V. If
x e V, then V is an A-nbhd of x in case Bd (V) is empty, or else x
is a point of the A-component of V. Finally, if there is a base for
the topology at each point x of X consisting of A-nbhds of x, then
X is an A-space.

Let us see that a compact Hausdorίf space, in which each point
is of finite order, is an A-space. Suppose that V is an open set and
p is a point of V. Let V1 be an open set with finite boundary such
that p e Vι £ V. Let Q be the component of V1 which contains p,
and let R be the set consisting of all the boundary points of V±

which are not in Q. Since Vx is compact and Hausdorίf, there are
disjoint closed sets E and G, containing Q and R respectively, such
that E U G = VL Let F2 = 2? Π Vu It is a routine computation to
show that V2 is an A-nbhd of p and thus see that the space is an
A-space.

Note that the property that each point be of finite order is
clearly hereditary so that each closed subset of a compact Hausdorff
A-space is itself an A-space.

The following lemma will be invaluable when the time comes to
patch together several local solutions.

LEMMA 3.3. Let X be a compact Hausdorff space and let Vl9

V2, •••, Vn be a finite sequence of A-sets. There is another sequence
VI, Vi, , V'n of A-sets such that \JVl (i = 1,2, ---,n) = \JVt (i =
1, 2, , n) and if V[ Φ Vi9 then V £ V* and V- is closed. Further,
if i < j &nd Vj Γl Bd (VI) Φ 0, then V] is an A-nbhd of each point
of FyΓlBd(V7). We will call a sequence of A-sets satisfying this
last condition an A-sequence.

Proof. We use induction. If n = 1, put VI = V1 and there is
nothing to prove. Assume the lemma true if n < m and consider a
sequence Vu F2, •• ,V» of A-sets. We can find an A-sequence VI,
VI, - , F : such that U * 7 ( i = 2,3, - ,m) = [JV^i = 2,S, . . ,m),
and if V\ Φ V{1 then V[ £ Vt and V[ is closed. If the sequence
Vu VI, VI, , V'm is an A-sequence, put V[ = V± and we are done.
If it is not an A-sequence, then there is an integer s and a point x8

of Vs such that xs is a point of V[ Π Bd (VΊ) and yet V[ is not an
A-nbhd of xs. It then follows that the component H8 of V[ which
contains xs is contained in V's. Since x is compact and Hausdorίf, it
must be that Hs is actually a component of X. Hence there is an
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open and closed set V such that ί ί . g F g Vr

s. Further, since Hs is
a component of X, Hs contains the A-component of V1 and hence
contains Bd(Fi). Thus, putting V[ = V1 — F, we obtain an open and
closed set. Now VI, Vi, , V'm is an A-sequence, and the lemma
follows by induction.

We are now ready to prove the general sufficient condition.

THEOREM 3.4. Let X be a compact Hausdorff space. If X is
an AC-space then C(X) is algebraically closed.

Proof. The proof rests on establishing the following.

Local result 3.5. If x0 e X, M is the component of X containing
x0, P(x, z) is a monic polynomial over C(X), r(x) e C(M) such that
P(x, r(x)) = 0 on M; then there is a nbhd N(x0) of x0 and a function
r*(x) e C(N(x0)) such that P(x, r*(x)) = 0 on N(x0) and r*(x) = r(x) if
x e M Π N(x0).

We prove this by induction on the multiplicity of the root r(x0)
of the polynomial P(x09 z). If r(x0) is a simple root, we can find, by
(1.2), a nbhd N'(x0) of x0 such that for x e N'(xQ), P(x, z) has just one
root satisfying | z — r(x0) | < ε, where ε is half the minimum distance
between distinct roots of P(x0, z). Let N"(x0) be a nbhd of x0 such
that for xeMf)N"(x0), \r(x) — r(xo)\ < ε (remember, r(x) is continuous
on M). Let N(x0) = N'(x0) Π N"(x0).

If x e N(x0), define r*(x) to the root (there is only one) of P(x, z)
which satisfies | z — r(x0) | < ε. We must show that r*(x) e C(N(x0)).
Let y0 be any point of JV(ίc0), and let W be an open set of complex
numbers such that r*(y0) e W. Let ε' be so small that if | z — r*(y0) \ ^
ε', then | z — r(x0) \ < ε and ze W. Since P(y0, z) has only one root
satisfying | z — r(x0) \ < ε, it is clear that there is no root satisfying

0 < \z — r*(yo)\ 5£ ε'; therefore, by (1.2), there is a nbhd N(y0) of yQ such
that for x e N(y0), P(x, z) has exactly one root satisfying | z — r*(y0) \ < ε\
Now if x e N(x0) Π N(y0), we see that | r*(x) — r*(y0) | < ε' (otherwise
P(x, z) would have two roots satisfying \z — r(xo)\ < ε, r*(x) and the
one satisfying | z — r*(y0) \ < ε'). Thus N(x0) Π N(y0) is contained in
the inverse image of W, and it follows that the latter is open in
N(x0) so that r*(α) e C(N(x0)).

Clearly P(x, r*(x)) = 0 on #(&„). To see that x e N(x0) Π Λf
implies that r*(x) = τ(x), recall that x e N(x0) Π M implies that
1 r(x) — r(x0) I < ε. Thus r(x) Φ r*(x) would give two roots of P(x, z)
satisfying | z — r(x0) \ < ε.

Now assume that the local result holds whenever the multiplicity
is less than k ^ 2. Let x0 be a point of M such that the multiplicity
of r(xQ) is k. Again, let ε be half the minimum distance between
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distinct roots of P(x0, z). Let N'(x0) be a nbhd of x0 such that for
x e N'(xQ), P(xo,z) has exactly k roots satisfying \z — r(xo)\ < ε, and the
remaining roots are each within ε of some root of P(xo,z) (apply (1.2)
to each distinct root of P(x0, z) and take the intersection of the resulting
nbhds). Let N"(x0) be a nbhd of x0 such that for x e N"(xQ) Π M,
I r(x) — r(xQ) I < ε. Let N(x0) be an A-nbhά of x0 whose closure, say
Y, is contained in Nf(x0) n N"(x0).

We divide Y into two parts. Let B be the subset of Y consisting
of all points x such that P(x, z) has at least two distinct roots satis-
fying I z — r(x0) I < ε. A simple application of (1.2) shows that B is
open in Y. If n is a positive integer, let Bn be the subset of Y
consisting of all points x such that P(x, z) has distinct roots which
satisfy | z — r(x0) | < ε and are at least 1/n apart. Another application
of (1.2) shows that each Bn is closed in Y and hence is compact.
Obviously B = \JBn (n = 1, 2, - . . ) . We will obtain r*(x) by first
defining it on By and then extending it to all of Y.

Let {Ha} (a e I) be the collection of components of 7. If a e I is
such that Ha £ M, let Fa(x) be the function defined on Ha such that
for x e Ha, Fa(x) = r(x). If a e I is such that Ha Π M = 0 (this is
the only other possibility), let x(a) be a point of Ha and let z(a) be a
root of P(x(a), z) such that | z(ά) — r(x0) | < ε. Since X is a C-space,
there is a continuous function ra(x), defined on the component of X
which contains Ha, such that ra(x(a)) — z(a) and P(x, ra(x)) = 0 for
all relevant x. Let Fa(x) be the restriction of ra(x) to Ha. It is
clear that for a e I, Fa(x) e C(Ha) and P(x, Fa(x)) = 0 on Ha. Now,
because Γ g N"(x0), we can see that if ael is such that Ha £ If,
then 12̂ (0?) — r(α;0) | < ε whenever xeHa. Further, the same statement
holds even if Haf]M = 0 , for, since Γ £ N'(^o), if α;Gίία then there
is no root of P{x, z) which satisfies | z — r(x0) \ — ε. Thus, since
I z(a) — r(x0) I < ε and Ha is connected, it must follow that Fa(x)
satisfies | z — r(x0) \ < ε whenever x e Ha. We see, therefore, that if
ael and xeHaΓ\B, then the multiplicity of the root Fa(x) of P(x, z)
is less that k, and hence the local result holds at each point of B
subject only to the restriction that the 'r(x)r be a Fa(x).

We now restrict our attention to the closed subspace Y of X, and
all topological terms will be relative to Y. As we have seen, Y is an
A-space, and the local result, (3.5), holds at each point of B with the
restriction that the 'r(x)r be a Fa(x). Thus, if xe B, there is a nbhd
V(x) of x and a function gx(y)eC(V(x)) such that P(y, gx(y)) Ξ= 0 on
V(x) and gx(y) = Fa(y) if y eHa n V(x), where ael is such that
x e Ha. Since | Fa(x) — r(x0) \ < ε and gx(y) is continuous, we can
assume that | gx(y) — r(x0) | < ε on V(x). We can further assume that
V(x) is an A-nbhd of x, and that gx(y) is actually defined and has all
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the above properties even on the closure of V(x). Since B1 is compact,
there is a finite number of such sets which cover Bu

To summarize all of this, there is a sequence Vu F2, , F w of
A-sets and a sequence gu g2, , gn of functions such that

B.SlJVi (ί = 1,2, . . . , n ) S U ^ ( ί _ = l , 2 , ~,n)SB,

g, e C( Vi) and | g,(x) - r(x0) \ < ε on V\ % = 1, 2, . ., n ,

P^g^x)) Ξ O on F4 i = 1,2, . . . , ^ ,

if i ί is the A-component of F^ and ϋ" g iJα then for x e H ,

gi(x) = Fa(x) i = 1,2, . . . , % .

In view of (3.3), it is apparent that we can take the V{ to be an
A-sequence.

Now since the F* are A-sets, the boundary of their union is finite
(being contained in the union of the boundaries). Let F Λ + 1 , F w + 2 , , F m

be a sequence of A-sets with disjoint closures so that Ϋ3 s B for n + 1^
j <Ξ m and each boundary point of (J F* (ί = 1, 2, , n) is contained in
exactly one Vά with ^ + 1 ^ i ^ m and that Vά is an A-nbhd of that
point. It should be evident that these nbhds can be chosen in such
a way that there are continuous functions gn+u gn+2, , gm on the
corresponding V5 such that for n + 1 ^ j ^ m; | ^(a?) — r(x0) | < ε on
F y , P(x, g3{x)) Ξ O on Vj9 and if H is the ^.-component of V3 and
i ϊ g Ha, then ^^(x) Ξ .Pa(x) on H. Because of the way in which
Vn+1, , Vm were chosen, Vu V2, , Vm is an Λ-sequence.

Now B2 — \JVi (i — 1, 2, , m) is compact and is disjoint from
U Fi (i = 1,2, , ri), therefore, we can find a sequence F m + 1 , F m + 2 , , Vt

of A-sets such that B2 — \JV{ (i — 1, 2, , m) is contained in (JF^
(i = m + 1, m + 2, , t), and for m + 1 ^ j g ί, Fj g 5 and does
not intersect \JVi (ί = 1,2, ,ri). Again, it should be clear that
F m + 1 , F m + 2 , , Vt can be chosen so that there is a sequence gm+1,
9m+2, - , g% of continuous functions on the corresponding Vά such that
for m + 1 ^ i ^ j ; P(x, ̂ (α;)) = 0, | ̂ .-(a;) - r(a?0) I < s, and if H is the
A-component of V3 and i ϊ £ i i a , then gd(x) = Fa(x) on H. In view of
(3.3), we may also assume that F m + 1 , F m + 2 , •••, F t is an A-sequence.

It is a rather tedious but straightforward task to verify the
following facts.

Fi, F2, , Vt is a A-sequence,

giβCiVi) 1 ^ i ^ ί ,

for a; 6 F*, P(#, Λ(a?)) = 0 and | g^x) — r(x0) \ < ε 1 ^ i ^ ί ,

5 2 g U ^ (i = 1,2, -- , ί ) S U ^ (i = 1,2, . . . , ί ) 5 5 , and

if i ϊ is the A-component of F* and H S i ί α , then ^(a?) = -Pα(^

on ί ί 1 < i < ί .
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It should now be clear how to continue the process indefinitely
and so to obtain countably infinite sequences Vl9 Vi9 and gu g2,
such that

Vl9 V2, , Vi is an A-sequence i = 1, 2, ,

for x e Vif P(x, g^x)) = 0 and | g^x) - r(xQ) \ < e ί = 1, 2, - ,

B= \JVt (i = l ,2, . . . ) = U ^ (i = l ,2, . . . ) , and

if H is the A-component of Vi and if <Ξ 2ϊα, then g{(x) = Fa(x)

on H i = 1, 2, . . . .

If ίϋeB, define r*(&) = 0n(aO, where % is the smallest integer such
that xe Vn. If xe Y- B, let r*(x) be the root of P(x,z) which
satisfies | z — r(xQ) | < ε. It is obvious that P(x, r*(x)) = 0 on Y.

Let us see that r*(x) = τ(x) o n l n Γ , If x e (MΠ Γ) - J5, then
r*(x) is the root of P(#, «) which satisfies \z — r(xo)\ < ε. This is true
of r(x), hence r(x) = r*(x). lί xe M0 Y f] B, let Vn be the first Vά

which contains x. Since M f] Y is compact, connected, and Hausdorff
(remember, Y is the closure in X of an A-nbhd of x0) and Λf n Vn is a
proper (Vn S JS) open subset of ΛT Π Y", the closure of each component
of jfcf Π Vn must meet the boundary of Vn. Thus a? is in the A-component
of Vn, hence r*(x) = flrn(ίc) = Fa(x) = r(α), since Ha g= M implies that
Fa(x) is the restriction of r(x) to ί ί α .

It remains to be shown that r*(x) is continuous on F, If y e Y— B,
using the fact that | r*(x) — r(x0) | < ε on Γ, one can apply (1.2) to
show r*(x) is continuous at y. If y e B, let Vn be the first Vό which
contains y. To show that r*(x) is continuous at y, it suffices to show
that for j < n, if y e V5 then gό{y) = gn(y). Indeed, since Vu Vif , Vn

is an A-sequence, if j < n and y e Vjy then y is in the A-component
of Vj (since 2/ e Bd (F,-)) and # is in the A-component of Vn (since F f t

must be an A-nbhd of y); therefore, g5{y) = Fa(y) = gn(y), where ae I
is such that Ha is the component of Y which contains y. Recalling
that Y is the closure of a nbhd of xQ, we see that (3.5) holds if the
multiplicity of r(x0) is k, and thus, by induction, (3.5) holds in general.

It should now be quite evident how one obtains (3.4) from (3.5).

4* We now return our attention to the question concerning the
sufficiency of the necessary condition of §2. The answer we obtain
is that if the compact Hausdorff space in question is first-countable,
then the necessary condition is sufficient. This fact was discovered
in a very natural way, namely, by asking under what conditions does
the necessary condition of §2 imply the sufficient condition of §3. If
X is sequentially compact, (2.6) applies to the components of X. A
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close look at the proof of (2.6) shows that the following theorem was
actually proved.

THEOREM 2.6'. Let X be a compact Hausdorff space which is
also sequentially compact and connected. In order that X be a C-space,
it is necessary and sufficient that X be hereditarily unicoherent and
almost locally-connected.

Thus, with the added condition of sequential compactness, the
necessary condition implies the second half of the sufficient condition.

In order to show that the necessary condition implies that the
space is an A-space, it seems necessary to assume that the space is
first-countable (an assumption which also implies, for compact spaces,
sequential compactness).

THEOREM 4.1. Let X be a compact Hausdorff space which is
hereditarily unicoherent, almost locally-connected, and first-countable.
Then X is an A-space.

Proof. As we have seen, it will suffice to show that every point
of X is of finite order. Accordingly, let x0 be a point of X and let
V be an open set containing x0. We must show that there is an open
set with finite boundary which contains x0 and is contained in V. To
that end we shall need the following fact whose proof will be delayed
until the end of this section.

LEMMA 4.2. Let X be a compact Hausdorff space which is heredi-
tarily unicoherent, almost locally-connected, and first-countable. If
a and b are distinct points of a component of X and V is an open set
containing a, then there are a point c of V and disjoint open sets A
and B containing a and b respectively such that X — c = A U B.

For each point x of X — V; either x is not in the same component
of X as xQ, in which case there are disjoint open sets A(x) and B(x)
containing x0 and x respectively such that A(x) U B(x) = X, or, by
(4.2), there are a point c(x) of V and disjoint open sets A(x) and B(x)
containing x0 and x respectively such that A(x) U B(x) = X — c(x).
Since X — V is compact, there are finitely many points xu x2, , xn

of 1 - 7 such that the corresponding B(Xi) cover X — V. Putting
y = p | A(Xi) (i = 1, 2, , n), we obtain an open set with finite boundary
which contains x0 and is contained in V. Thus x0 is of finite order
and X is an A-space.

We now have as a corollary to (2.6') and (4.1) the answer we are
seeking.
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COROLLARY 4.3. Let X be a first-countable compact Hausdorff
space. A necessary and sufficient condition that C(X) be algebrai-
cally closed is that X be hereditarily unicoherent and almost locally-
connected.

Proof of 4.2. Choose a point c of E[a, b] f]V distinct from a
(remember, (2.5) applies to the components of X). There are separated
sets A' and B' containing a and b respectively such that (A' \JB') + c = H
is the component of X which contains a. Let Vu F2, be a countable
base of open sets for the topology at c such that F< 3 Vi+1. Let {Ha}ael

be the collection of components of X which are distinct from H. If
ae I is such that for some i, Ha ϋ F< but Ha g F< + ί, let Fa be an
open and closed set such that F* 2 Fa 2 -H*. If α e l is such that
fΓα g F< fails for all i, let jPα be an open and closed set such that
Ha^Fa and Faf)H = 0.

Now A' — Fi and Bf — V± are separated in X — Vu and hence,
since X — V1 is compact, X — V1 = Ax U i?i where Ai 3 A' — Fx and
Bx 3 J5' — F x and Ai and ^ are disjoint closed sets. Since X is sequen-
tially compact, there are at most a finite number of a in I such that £Γα

intersects both Aλ and ^ (recall the proof of (2.5)). Let aly a2i , an{1)

be all such a. Let

Aί - (A, U A') - U ^ (i = 1, 2,

and

Bί = (5, U ΰ ' ) U U ^ (i = 1, 2,

We note that JTαί (i = 1, 2, , ̂ (1)) must intersect Vu A[ and SJ are
separated in X, Aί 3 A', £J 3 J5', and A[ U Bί 3 X - F l β

There is a positive integer kx such that (A[ U ^ί) Π F Λ l is contained
in A' U B'. There are disjoint closed sets A2 and i?2 such that A2 3
Aί - Vkl and 5 2 3 5ί - F f t l and 4 2 u £ 2 3 l - F f c l. Again, there are
at most a finite number of a e I such that Ha intersects both A2 and
B2. Let αn(i)+i, α»(D+2, •• ,̂ Λ(2> be the set of such a. Let

A; - (A2 U A') - U ^ (ί = 1, 2, , n(2))

and

J?ί - (B% U ΰ ' ) U U ^ (i = 1, 2, ,

Note that ίία. (i = n(l) + 1, w(l) + 2, , n(2)) must intersect FΛl, Â
and B[ are separated in X, Â  3 A', jBJ 3 B', and A ; u £ ; a l - Ffcl.
We will also need t h a t Aί^Al-\JFai(i = l,2,---9n(2)) and B'2 3 B[.

To see this, observe that A2 Ξ2 A[ — Vkl and thus

A2U A' 2 (AJ - F t l)U A' - (Aί - (A[ f] F ^ n i ' 2 (A[ - A')U A' - AJ ,
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so that Aί = (A2U A') - \J Fa. a A[ - \J Fa.. Similarly, ΰ 2 U ΰ ' 2 B[,
so that B'2 SB[.

There is a positive integer k2 such that (A'2 U B'2) Π F&2 g i ' U ΰ ' .
There are disjoint closed sets A3 and B3 such that A3 a ^ — F*a,
β 3 2 55 - F^2, and 4 3 U 5 3 = I - Ffc2. There are at most a finite
number of a in I such that Ha meets both A3 and B3; denote these
a by an[t)+1, ~-,anW. Let

ilί = (A* U A') - U Fa< (* = *> 2> ' -

and

BJ = (B 8 U B ' ) U U Fa. (i = 1, 2, ,

One can see, as before, t h a t Ha (i = w(2) + 1 , , w(3)) m u s t intersect
F* 2, A[ and BJ are separated in X, A'3 a A', B'z a B', A ' 3 U ^ a I - F f c 2,
-Aί 3 Ai - U Fai (i = 1, 2, , w(3)), and BJ 3 BJ.

Continuing t h i s construction countably often, one obtains five
sequences, {AQ, {5 }, {α j , {w(i)}, and {&<}, wi th t h e following propert ies .

(
(
(
(
(

and

(

1
2
3
4
5

6

)
)
)
)
)

)

A'm
A'm-

A'm
A*

Ha

and .
fi a ^

3 4'

B'm are

Lm — (J

?'m a L
2 1 -
and £

intersects

separated sets
| Fa. (ί = 1, 2, «
| Fβ* (i = 1, 2, .
- F , "WVIPΓP î*

' fc VV XICX C A/Q

vk:

' , TbyϊYl

• , n(m
= 1

•))
• ) )

h 1

m = 1,
m = 1,
m = 1,
m = 1,
m = 1,

<Ξ m ^ wι

2,
2,

2,
2,
2,

Now let B = U B\ (i = 1, 2, -..) and A = X - (B + c). We must
show that A and B are open. Let x e B, then surely x Φ c so that
there is a nbhd V(x) of a; and an integer i such that F(a?) Π F f c ί_1 = 0 .
Since A[ and BJ are separated, (1), there is a nbhd V\x) of x such
that V'{x) Π i ! = 0 ( x e S ; since (4) => x e A', U BJ). Thus F(x) Π F;(a;)
is contained in BJ and hence in B so that B is open. Let x e A, then
a? Φ c and a ί ΰ and there exist a nbhd F(&) of x and an integer i such
that F(a?) Π Vk.^ = 0 . Since ^ ^ B, α; ̂  BJ, and since F(ίc) C -AJ U BJ
(from (4) since V(x) Π Ffc._1 = 0 ) , it follows that xeA'im There is a
nbhd F'(α) of x such that F'(a?) n ΰ ; = 0 CAJ and BJ are separated),
thus F(x) Π F(a?) S A!-. There are only finitely many aά such that
^ β J §= FA;ί_1 (see (6) and remember that Vi+ί S F<); subtracting these
Fα^ from F(a?) Π F'(α ), we obtain a nbhd of x (by (3), no Fa. contains
x since x ί B) contained in A!ά for j ^ i (here (2) is crucial) and hence
which misses every B\ and is therefore contained in A. Thus A is
also open. Clearly 4 3 4', B a B', and i U 5 = I - c , and (4.1) is
established.
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5* Remarks* (1) Of fundamental importance throughout this
paper was the local connectivity of the components of X (all A-spaces
have this property). The fact that βR (the Stone-Cech compactification
of the reals) is not locally connected, but that nevertheless C(βR) ~
C*(R) is algebraically closed, indicates the limitations of the methods
used here.

(2) It should be pointed out that the necessary condition was
proved by assuming only that square roots could be taken. This
leads to the conjecture: if X is compact and Hausdorff and if each
element in C(X) has a square root in C(X), then C(X) is algebraically
closed. In this connection, note that the existence of all 2wth roots
for a given function need not imply the existence of all integral roots.
If we identify in βR all limit points of the sequence (-2), (-2)2,
(— 2)3, , and call the resulting space aR, we can prove that the
function exp (ίπx), defined for all real x, has a continuous extension
to all of aR, that this extension has continuous 2nth roots for all n,
but that no continuous fifth root exists.

(3) It has been shown that all compact and sequentially compact
connected Hausdorff spaces which satisfy the necessary condition are
trees (in the sense of L. E. Ward, Jr. [4]). One of the theorems in
[4] states that trees are hereditarily unicoherent locally connected
continua, thus we can say that in the presence of sequential com-
pactness, a necessary and sufficient condition that C(X) be algebraically
closed is that X be a tree. This leads us to another conjecture: in
the presence of first-countability, a necessary and sufficient condition
that C(X) be algebraically closed is that X be a closed subset of
some first-countable tree.
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