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LOWER BOUNDS FOR THE EIGENVALUES OF A
VIBRATING STRING WHOSE DENSITY
SATISFIES A LIPSCHITZ CONDITION

DALLAS 0 . BANKS

If a string has a density given by a nonnegative inte-
grable function p defined on the interval [0, a] and is fixed at
its end points under unit tension, then the natural frequencies
of vibration of the string are determined by the eigenvalues
of the differential system

(1) u" + λp(x)u = 0 , u(0) = u(β) = 0 .

As is well known, the eigenvalues of (1) form a positive
strictly increasing sequence of numbers which depend on the
density ρ(x). We denote them accordingly by

0 < λfo] < λ2[p] < < λn[p] < .

In this paper we find lower bounds for these eigenvalues
when the density p satisfies a Lipschitz condition with Lipschitz

S o
pdx = M. The bounds will be in terms of

0

M and H.

Specifically, if E(H, M) is the family of functions

( 2 ) ίp : p e L(H) and [*p(x)dx = M\ ,

where

L ( H ) = {p:\ p(xd - P(Xi) \SH\x,- x 2 1 ; x l f x 2 e [ 0 , a]} ,

we find a unique function p0 e E(H, M) for each Xn[p] such that

Xn[p0] = m i n Xn[ρ]

where the minimum is taken over all functions peE(H, M).
Our results will be expressed in terms of the fundamental pair

of solutions U1 and U2 of the Airy equation

(3) ψL + sU=0
ds2

where ^(0) - 1, Ul(0) = 0 and 17,(0) = 0, 17/(0) - 1. These functions
are tabulated in [7]. The main conclusion is that

393
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where t^K) is the least positive root of

if K S 4 and of

( 5 ) U&tlVΈ) = ( ^ = - 1 )

if if ^ 4.
This result is similar in nature to those obtained by Krein in [4],

There he found that if ρ{x) ^ H then

4gn» / Jf W Γ ^

where χ(ί) is the least positive root of

Furthermore, his inequalities are sharp. See [1], [2] and [6] and the
references given there for other results of this nature. The maximum
value of Xn[p] over the family E(H, M) is not presented here. This
problem is being investigated and the results will be presented in a
later paper.

The method used in this paper has some general interest since
it can be used to derive the results of Krein as well as some of the
results given in the other papers mentioned above. This will be
discussed in the final section.

2* The lower bound for \[p]. In this section, we find a sharp
lower bound for the lowest eigenvalue X^p] within the class of functions
E(H, M) defined by (2). It will be convenient to first prove a result con-
cerning the lowest eigenvalue of the system

( 6 ) v!' + Xp(x)u = 0, u(0) = u'(a) = 0 ,

where xe[0,ά\.

THEOREM 1. Let μ\p\ be the lowest eigenvalue of a vibrating
with one end fixed and the other free, density p(x), and under unit
tension between the points x = 0 and x — a. If the density function
ρeE(H,m), then

(7) μx[p]^H g> τ\{Haηm)
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where τjjc) is the least positive root of

when k = Ha2/m ^ 2 and of

& > 2. Moreover, equality holds if and only if

ρ(x) = ίΓ(& - a/2) + m/α

iϊα 2 < 2m

( 0 , O ^ x g α - V2m/H ,

p(x) - j ̂  _ α ) + ι/2^H , a - V2mjH S % < a ,

when Ha2 > 2m.

Proof. We consider the two cases iϊα 2 S 2m and iϊα 2 > 2m
simultaneously. We compare any density p e E(H, M) with the func-
tion q defined by

(10) q(χ) = H(x - a/2) + m/α

in the first case and by

0 , 0 < x < a
(11) q(x) =

H(x - a) + ^ m ί ί , α - V 2m/H

in the second case. In both cases, we note that p and q are con-
tinuous and

\ p(x)dx = 1 q(x)dx = m
Jo Jo

so that p and q have at least one common value for xε[0, a]. It p
and g have a common value ^(α) = q(a), the Lipschitz condition implies
that for x > a

p(x) — p(a) S H(x — a) .

Consequently, for x > α, we have

/0(αO ̂  i?(^ - a) + q(a) = g(α ) .

Similarly for a? < a we have ô(aj) ^ q(x). For x > α it follows that
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(12) I" p(t)dt ^ \"q(t)dt .
Jx Jx

For x < a we consider the integrals of p and q from 0 to a minus
the integrals from 0 to x and arrive at the same conclusion for all
xε[0, a].

We let {*i[p] denote the lowest eigenvalue of the differential
system (6) and ^[q] denote the lowest eigenvalue of the same system
with p replaced by q. We now use the following1 comparison theorem
due to Nehari [5],

THEOREM (Nehari). Let p, q be nonnegative continuous functions
defined on [0, a] such that (12) is satisfied. The%

(13) μM :£ μι[p]

with strict inequality unless p and q are identical,

The computation of μλ[q] for each of t h e two cases i ^ 2 and
k > 2 in terms of the fundamental solutions, U1 and U2, of the Airy
equation (3) with (13) yields the conclusion of t h e theorem.

We use this theorem to prove the following more difficult

THEOREM 2. Let Xi[p] be the lowest eigenvalue of a string fixed
under unit tension between x = 0 and x — a. If tk density func-
tion p e E(H, M), then

(14) \ap\tfH ^ tl(Ha2JM)

where t^K) is the least positive root of (4) whn K = Ha2/M ̂  4
and of (5) when K > 4. Moreover, equality hoik in (14) if and
only if p is the symmetric function defined by

._ . . . (H(x - a/4) + M/a , 0 g x ^ α/2,
(15) p(x) = \

[p(a — x) , a/2 ̂  oc ia,

when Ha2 ^ 4ikf and by

'Ίί

(16) p(x) =

when Ha2 > AM.

0 , O^x^ α/2-

H(x - α/2) + VΉM , α/2 - J—1,%g α/2 ,

,/θ(α — α;) , α/2 ̂  a? ̂ α ,

Proof. Let ^ be the eigenfunction of (1) associated with the
lowest eigenvalue λjjo]. If we take ^(a?) > 0 i n the interval (0, α),
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then u" — — Xipjpix^ix) ^ 0 so that ux is concave. Thus it has
only one maximum value which must be attained at some interior
point a of [0, a]. We consider the differential system

u" + Xp(x)u = 0, u(0) = u'(a) = 0 , x e [0, a] ,

obtain from (1) by restricting the domain of p to [0, a] and imposing
the given boundary conditions. Then Xχ[p] is also the lowest eigen-
value of this system and ux restricted to [0, a] is the corresponding
eigenfunction. Xί[ρ] is also the lowest eigenvalue of the system
obtained from (1) by restricting x to the interval [a, α] and imposing

p(x)dx ,
o

S α

p(x)dx = M — m and β = a — a, and apply Theorem 1 to each
a

restricted system defined above, we obtain the inequalities

(17) XM ^ τ*(Ha*/m)/άΉ, Up] Zt zl(Hff/m'WH

where τ^k) is the last positive root of (8) or (9), depending on the
magnitude of k. The theorem would be proved if we could show that
a, β, m, m' can be varied in such a way that the quantities on the
right side of the inequalities (17) always remain less than X^p] and
at least one of them is greater than or equal to

τl(H(a/2y/(M/2))/(a/2fH = [2τ1(Jϊα2/2M)]3/α3£r .

If we let t = 2r and K = 2k in (8) and (9) then we get the equations
(4) and (5) so that the above considerations would yield the inequality
(14).

We carry out the process just outlined by considering the function
defined by

(18) η(a, m) = τ\{k)lazH ,

k =a2H/m for all ae [0, a] and all me [0, M], We define a function
/ o n [0, a] by the equation

(19) y(a, f{a)) = V(a - a, M - f{a)) .

To show that this determines a well-defined function we note that, by
the comparison theorem for eigenvalues, η(a, m) is a strictly monotone
decreasing function of m for each a. Furthermore, rj{a, m) —•> + oo
a s m - ^ 0 . Consequently, η(a, m) — η(a — a, M — m) is strictly decreas-
ing between — oo and + oo as m varies between 0 and M, proving
that / is uniquely determined.

It now follows that

(20) Up] ^ η(oc, f(a)) = V(a - a, M - f(a))
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whenever a is a maximum point of the corresponding first eigenfunc-
p(x)dx > f(a) the comparison theorem and (19)

0

yield the inequality

η(a, m) S η{a, f(oc)) = η(a - a, M — f(a)) ^ rj{a — a, M - m)

and (20) then follows from (17). Similarly, if m < f(σ), the com-
parison theorem and (19) imply

η(a, m) > η(a, f(a)) = η(a - a, M - f(a)) > η{a - a, M - m)

and (20) again follows.
We want to show that η(ay f{a)) has a minimum value at a =

α/2, i.e., that the minimum of Ύ]{a, m) on graph of / is located at the
point (α/2, M/2). We first show that the graph of / is centrally
symmetric about the point (α/2, M/2), i.e., that f(a — a) = M — f(a).
This is a consequence of the defining relation (19) of / since (x, y) is
a point on the graph of / if and only if (α — x, M — y) is. Thus
for any (α, f(a)) on the graph, (α — a, M — f(ά)) is also on the graph
and hence (a — a, f(a — a)) = (a — a, M — f(a)) by the uniqueness
of the definition of /. This implies that f(a — a) = M — f(a), prov-
ing the central symmetry. In particular, /(α/2) = M/2. Also from
this symmetry we have that f'(a) = f'{a — a) whenever the derivative
exists. We will show presently that this is always the case.

We now assume that η has a minimum value over the graph of
/ at a point (a, f(oc)) where a Φ α/2. Then from (19) we see that
(α — a, f(a — a)) also is a minimum point. Suppose that the minimum
value of η at these points is c0 and consider the level set

(21) {a, m) : η(a, m) = cQ} .

By the comparison theorem for eigenvalues this defines a function g
of ae[0,a]. We will show presently that g' exists. It will then
follow that fr(ά) = g'(a) and f'(a — a) = g\a — a) if a is the minimiz-
ing value of η(a, f{oc)), for otherwise the derivative of η in the direc-
tion of the curve determined by / would be nonzero unless the direc-
tional derivative of η(a, m) vanishes in a direction other than that
of a level cure. That the latter possibility is not the case will be
concluded at the same time we show that gr exists. Thus we conclude
that / and g are tangent at a as well as at a — a. From the
symmetry we concluded that f'(a) = f\a — a) so that the same must
be true of g at the minimizing value of a. We will show, however,
that g is a strictly convex function of a and thus reach a contradic-
tion. We will then be able to conclude that the minimum value of
η on the graph of / must occur at the point (α/2, M/2).
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To complete the proof we must show that / ' and gf exist for all
αe[0,α], that the directional derivative of rj in any direction save
that of a level curve is nonzero and that g is a strictly convex
function.

To prove the first two assertions, we recall that the system (6)
with p replaced by the functions defined by (10) or (11) has the
lowest eigenvalue η(a, m). We make a change of the independent
variable to get the system

(22) v" + \h(y)v = 0 , v(0) = v'(l) = 0 , y e [0,1]

where h(y) = Ha\y - 1/2) + am if aΉ ^ 2m and

Ha*(y - 1) + aWZmϊl , 1 -
aΉ

h{y) =

0 , o
if a2H > 2m. We note that the lowest eigenvalue of this new system
is still η(a, m). The derivatives / ' and g' will exist and even be con-
tinuous if the partial derivatives ηa and ηm exist, are continuous, and
ηm φ 0, for then

f(a)

ηja, f(a)) - Vm(l - a , l - f(a))

and

, g(a))g,{a) = _
ηja, g(a))

Furthermore, it is evident that, if in addition ηa Φ 0, the directional
derivative of η will be nonzero except in the direction of a level
curve.

To verify these properties of ηa and ηm, we use the formula

(23)
\ h(y)v\(y)dy
Jo

for rja and the same formula for ηm with dk/da replaced by dh/dm.
It seems likely that this formula is known, but since we know of no
reference we give an outline of the derivation. Let the change in h
due to a change Δa in a be denoted by Ah and consider the system
(22) with h replaced by h + Δh. We denote lowest eigenvalue of this
new system by ΎJ + Δrj and the corresponding eigenfunction by vlm

Then v1 satisfies the equation v" + (ΎJ + Δrj)(h + Δh)vx = 0. We multiply
this by vu use the fact that v" + r]hv1 — 0 and carry out an integra-
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tion by parts to get

S Δhv&dj
2

\\h
Jo

Dividing by Δa and letting Δa —*0, we get the formula (23). The
interchange of limit and integration is justified since v1 —• vu Δh-^0
and Δh/Δa —> h/a all uniformly (see [3] p. 151 for v1 —> v±). The same
proof holds for rjm.

It is clear from (23) and the corresponding formula for ηm that
ηa and ηm exist and are continuous whenever dh/da and dhjda exist
and are continuous. This is always the case with the possible excep-
tion of those points (a, m) such that Ha2 = 2m. But even for this
case we note that since

<¥L=SHa\y- 1/2)+ m
da

when a2H < 2m and

dh
da

O^ySl- / 2 m

2Ha%y - 1) + 2aλ/2mH , 1 - -j/2m
a2H

when a2H > 2m we have the same limiting value 6my — 2m as (a, m)
approaches a point on the curve a2H = 2m. Hence ηa exists and is
continuous for all positive a and m. The same remark holds for ηm.

We can also use (23) to show that ηa < 0 by showing that each
of the factors there are positive. This is clearly the case for in and

S i

dh/dvl(y)dy > 0, we must consider
0

the two cases a2H 5£ 2m and oCΉ. > 2m. In the first case, this
inequality will be evident if we note that

J

- l/2)vl(y)dy = ['* . + Γ . . .
Jo Jl/2

(y) + (1/2 - y)v\(l - y)]dy .

The expression in the square brackets is positive since v\ is an increas-
ing function. In the second case, we have

Γ _. [ZHa2(y - 1) + 2aV2mH]vl(y)dy .

The expression in the square brackets is greater than ZHa\y — 1) +
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3/2αv/2mϋΓ. It can be shown that the above integral with this
substituted for the square brackets is positive by the same method
used in the first case.

It can be shown in a similar way that rjm < 0.
To complete the proof of Theorem 2, we must show that the

level curve defined by (21) is convex. Since the proof is rather long
we put it in a separate section.

3* Proof of the convexity of level curve η{a, m) — c0. To
prove the convexity of the level line

(21) {(a, m ) : τj(af m) = c0}

we note that η is the least positive root of (8) or (9) depending on
the magnitude of Hcf/m and that the function g satisfies the equation
7](a, g{a)) = c0. It follows that g is determined by the least positive
root m = g(a) of the equation

if Ha2 ^ 2m and of

- a

if Ha2 > 2m.
It will be necessary for us to consider the level line determined

by Ύ](a, m) = c for any positive value of c. We show that if the
level line corresponding to a given value of c and a given value of
H is convex, then the level line corresponding to c0 and HQ is convex.
For some value of c and H, we assume that the corresponding func-
tion defined by mc = g(a) is convex so that, by (18),

VHca. But for any value of c0 with η{a, m) — cQ, we have m0 = gQ(oc)
determined by τ1(Ho?\mi) — VHcQa or

τ^Hi Vcjcaγ/i Vφ)*m0) = VΉϊ Vφa .

This implies that mc = (cQ/cfl5m0 = g( Vcjca) so that the convexity of
g implies that of gQ. Similarly, if g is the function determined for
an arbitrary value of H, it can be shown that mH = ( v/ίί0/ίί)~1m0 =
g{ ψHJHcή, so that g0 is convex if g is. Thus, to verify the convexity
of the level curve corresponding to c0, we may choose H = 1 and c
may be any positive value which is convenient.
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We first consider the case where Ha2 = a2 ^ 2m and let z =
Vc(m/a + a/2) and w = Vc(m/a—a/2) so that (8) becomes

F(z, w) = UάvήU&z) - TJt(w)ϋ&z) = 0 .

It will be convenient to define

H(z, w) = U&Ww) - U^U^w) ,

I(z, w) = Uί{w)Ul{z) - Ui(w)Ul(z) ,

and

G(z, w) = U^Uiiw) - U;(w)U2(z) .

If we restrict z and w to the set S = {(z, w): F(z, w) = 0} then the
identities Fz = zH, Fw = I, H, = 0, Hw = G, Ig = zG and Iw = 0 are all
valid.

We then calculate

(24) m' =
da Fm Fzzm + Fwwn

_ z I + wH

Note that m' — — τja/ηm < 0 since ηa and ηm are negative. We want
to show

d2m _ dm' dz dm' dw . Q

d 2 3 d 3 d

Since « and w are position for the case under consideration, we have
from the definition of z and w that

and

dw z , ^ c
m' < 0 .

Thus (25) will be verified if we show that dm'/dz and dm'jdw are
negative.

Using the identities in F, G, H and / listed above, we find that

dm'
~3z~

and

L / + wH I + zH J
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dm' = ,Γ H + wG _ zG "I
d L l f f 7 + z i ϊ - Γ

Since m' < 0, we need only show that the terms in the square brackets
are positive on S. We do this by showing that

(i) I+zH<0,
(ii) I+wH>0,
(iϋ) G > 0 ,
(iv) H+zG>H+wG>0

on S for c sufficiently large.
We first note that on S,

H(z, w) = Ut(w)[U,.(z) - Uz

- Ut(z)U{(z)/Ui(z)]

- U,{z)U[{z)}U,{w)IUl{z)}

= Ut(w)/Ui(z)

since F(z, w) — 0 and the wronskian W(UU U2) — 1. Similarly, it may
be seen that I(z, w) = - Ui(z)/U2(w) on S. Thus, IH = - 1 and
since H and / have finite values on S, they must be nonzero and of
opposite sign there. At w = 0 we see that F(z, 0) = Ui(z) — 0 gives the
value s = s0 = 1.5 and hence /(s0, 0) = - J7/(s0) = .9 > 0 (see [7] p. 30).
We may thus conclude that H(z, w) < 0 and /(s, w) > 0 on S. We
note that s > w so that

/(s, tt;) + sJΪ(s, w) < /(^, w) + ̂ ίί(^, w) .

But, by (24), we know that the ratio of these two quantities is
negative so that (i) and (ii) must be satisfied.

To prove (iii) we first show that G(z, w) must be of one sign on
S. We consider the lowest eigenvalue v1 of the system

(26) U" + vp{x)U = 0 , i7'(0) = U(a) = 0 , x e [0, a]

with p(x) = x — a/2 + m/a. Solving this system we find that v1 =
σl(a2/m)/aP where σ^K) is the least positive root of the equation
G((l/K + l/2)σ, (1/K - l/2)σ) = 0. Now suppose that G(z, w) = 0 for
some point in S. By the definition of z and w and the fact that η(a, m) =
c we see that

a 2/ J \a

But then ^ = (σ/α:)3 must be an eigenvalue of the system (26). By
Nehari's comparison theorem the lowest eigenvalue of this system is
strictly greater than η so that rj can not be the lowest or any other



404 DALLAS 0. BANKS

eigenvalue of (26). Thus G does not vanish on S and computing G
at the point corresponding to w = 0 we get G(z0, 0) = .48 > 0.
Hence (iii) is established.

The first inequality of (iv) now follows from (iii) and the inequality
z > w. We show that the last inequality holds for z = V c (m/a + a/2)
and w = V c (m/a — a/2) sufficiently large and that this is sufficient for
our purpose. We will need an asymptotic expansion of H and G.
These can be obtained from the asymptotic formulas for the funda-
mental solutions of the Airy equation which in turn can be obtained
from the asymptotic formulas for the Bessel functions of order
± 1/3, ± 2/3 (see [7]). We thus find that

s i n
UM β s i n (

τ/τr V 12
and

β 'V

From these formulas it follows directly that

and

H(z, w) = 4—±- sin
1/ 3 (zw)1/4

where have used the relation Γr(p)JΓ(l — p) = ττ/sinπ^ and the appro-
priate trigonometric formulas.

Since F vanishes on the set S it follows that the cosine term
can be made arbitrarily small for z and w sufficiently large. It then
follows that the expression for G is arbitrarily close to

v
/W \ 1 / 4

 c o g

3 \ z /
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and in a similar manner we see that H is arbitrarily close to
— l/i/ 3 (wz)iμ. We finally conclude that H + wG can be made
arbitrarily close to

which, from the definition of £ and w, will be positive for c sufficiently
large provided m/a — a/2 > 0. But this is just the case under con-
sideration. The case where a2 = 2m will be discussed at the end of
this section.

We turn to the case where Ha2 > 2m. Here we take H = 2 and
consider the curve defined by η(a, m) = 1/2. The g(a) is determined
by the least positive root m1 of the equation

Ui(i/m) = (Ί/m - a) Uί{Vm) .

We let y = VmΊ so that

(27) a=f(y) = y- Ui(y)/Ui(y) .

It has already been shown that ηm and ^α are negative so that da/dm =
-yjηa < 0. This implies that /'(#) < 0. Now

where f'(y) < 0 and d2y/dm2 < 0. Hence d2a/dm2 > 0 if /"(#) > 0.
To show that f'\y) > 0 we first investigate the range of y

determined by the condition a2 > m or a > 7/ = α/m". We show that this
condition requires that y < y0 where y0 = 1.51 is the least positive
root of Ui(s) = 0. For any value of y we have that —Ui(y)/Ul(y)
has the derivative —y/U(2(y) < 0 and hence is decreasing except at
zeros of U[(y) where it has asymptotic. In particular, it is decreasing
for y e (0, s0) where s0 is the least positive zero of Z7/(s) = 0 and has
a zero at y0 < s0. Comparing —Ui(y)IUi{y) with a — y, we see that
unless y < y0, the value of y determined for a given a by (27) satisfies
y > a which is a contradiction. In particular, when y = y0, a = y0.

To show f"(y) > 0 for y e [0, τ/0], we use the fact that U1 decreases
from the value one at y — 0 to a value Ux(y^ > .48 at y0, (see [7]).
Calculating f"(y), we have

f"(v) = - [Ul(y) - 2y2U1(y)]/\U((y)Y .

Since U[(y) is negative we want the expression in the square bracket
in the numerator to be positive. But

- U&y) - - \VU['{t)dt = Γ tϋx(t)dt
Jo Jo
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since 0 < Ux{t) < 1 for t e (0, y0). Hence

2y2U1(y) ^ - y2/2 + 2y2U1(y)

- 1/4] > 0 ,

which proves f"(y) > 0, y e (0, y0].
Thus, in both cases Ha2 > 2m and Ha2 < 2m, the level lines are

convex. If Ha2 = 2m, we use the fact that these lines have a con-
tinuously turning tangent so that the convexity is proved for all
cases.

4* Bounds for the higher eigenvalues* While the proof of
Theorem 2 was rather long, it leads to an immediate proof of the
following:

THEOREM 3. Let Xn[p] be the nth eigenvalue of a string fixed
under unit tension between x — 0 and x = a. If the density function
peE(H, M), then

(28)

where t^K) is the least positive root of (4) when K ̂  4 and of (5)
when K > 4. Moreover, equality holds if and only if p = ρQ where
p0 is defined by

[H(X -JL) + JL,

(29) po(x) = 1ft — - *
n

P.(x + **-)
\ n /

2n

a ^x^
 a

2n n
(k-i)±<x<h±

(k = 2, 3, , n) if a2H/nM ̂  4 and

0

1M

(30) po(x) =

H(x - JL)
n

ft — -

n

0 ^ x ^

α
2ti

2ΪΓ =

n

a
2n

~Έ_ <

nH~

n

2n '

n
(k - 1)— ^ x ^ —

= 2,3, ",n) if aΉjnM> 4.
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Proof. We give a proof by induction. For n — 1, the theorem
is a restatement of Theorem 2. Because of the nature of the induc-
tion, it will be necessary to prove the theorem for n = 2 before going
to the general case. Thus, we start by considering the second eigen-
value X2[p] and the associated eigenfunction u2 of the system (1).
This eigenfunction has exactly one nodal point in the open interval
(0, a) which we denote by a. X2[ρ] is also then the lowest eigenvalue
of each of the differential systems

u" + Xp(x)u = 0 , u(0) = u{a) = 0 , xe[0,a]

and

v>" + Xp{x)u = 0 , u(a) = u(ά) = 0 , x e [a, a] .

By Theorem 2, we conclude that

(31) X2[p] ^ tl(**L)la?H and X2[p] ^ ti

p(x)dx and m' = ikf — m.
0

We now use the same argument as that used in the proof of
Theorem 2. We increase or decrease m so that m + m' remains con-
stant and the right hand quantities of the inequalities (31) become
equal. For each a there is determined a unique value of m so that
a function / is defined. The minimum of tJfifH\m)a?H on the graph
of / is then found to occur at a = a/2, m — M/2 just as in the proof
of Theorem 2. Hence we find that

To complete the induction, we consider the nth. eigenvalue Xn[ρ]
and the corresponding eigenfunction un of (1). This function will have
n — 1 distinct nodal points xk(k = 1, , n — 1) in the open interval
(0, a). We assume that these points are ordered, i.e., xk < xk+u and
consider the differential systems

(32) u" + X{1)ρ(x)u = 0 , u(0) = u(xύ = 0 , x e [0, x,]

and

(33) v," + X{2)ρ(x)u = 0, i φ x ) = u(a) = 0 , XG [^, α]

where xλ is the smallest nodal point. Then Xn[ρ] is equal to the

1 We note at this point that it is easy to prove the theorem for n = 2<*, q a
positive integer. One would hope to be able to carry out a reverse induction as
in [6]. Unfortunately, the method used there cannot be directly applied here.



408 DALLAS 0. BANKS

lowest eigenvalue X[1] of the system (32) and it is equal to the (n — 1)
st eigenvalue λ̂ 2i of the system (33). Then corresponding eigenfunc-
tions are just un with the domain restricted to [0, x^\ for the system

(32) and to [xu a] for the system (33). From Theorem 2, we have

(34) \n[p] = \?> ^

p(x)dx. By the induction hypothesis
0

(35) Xn[p] = λίίlx ^ n(**L)lά*H = η(a, m)

\ m π

p(x)dx. Equality holds

in (34) if and only if p is defined by (15) or (16). Equality holds in
(35) if and only if p is defined by (29) or (30) with n replaced by
(n — 1), M/n by m, and a/n by a. Since the function defined by (29)
or (30) is periodic of period (α — x^/(n — 1) the nodal points of the
(n — l)st eigenf unction will occur at the points xλ + ka(k = 1, 2, ,
n — 2). By holding the string fixed at the last nodal point we get a
string fixed between x1 and x1 + (n — 2)a whose (n — 2)nd eigenvalue
is equal to Ύ](a, m) as defined in (35). This is also the lowest eigen-
value of the piece of the string between x1 + (n — 2)a and α.

We want now to piece together the part of the string between 0
and xL with density defined (15) or (16) and that part between x1 and
Xί + (n ~ 2)a with density defined by (29) or (30) in such a way that
the (n — l)st eigenvalue of the resulting string fixed between 0 and
xx + (n ~ 2)a is less than Xn[p], This can be done by increasing (or
decreasing) the mass of the string between 0 and x1 and decreasing
(or increasing) the mass of the string between x1 and x1 + (n — 2)a
in such a way that the total mass between 0 and x1 + (n —2)a remains
constant and such that the equality
(36) η{xu m1±θ) = η(a, m + θ/(n - 2))

results. Here θ denotes the change in the mass m1# This is essentially
the same argument used in deriving (19) in the proof of Theorem 2.
Equation (36) defines a function /. We assume as part of the induc-
tion hypothesis that the minimum value of η over the graph of this
function occurs at the point ([α̂  + (n — 2)a]/n — 1, [m1 + (n — 2)m]/n — 1),
and that this value of η is the (n — l)st eigenvalue of a string with
density defined by (29) or (30) with n replaced by n — 1, M/n by
[m L + (n — 2)m]/(n — 1), and a/n by [xx + (n - 2)a]/(n — 1). We now
repeat this process, first fixing this new string at its first nodal point
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and adjoining the right-hand piece to that part of the string between
x1

Jr(n — l)a and a. Continuing this process indefinitely, we define
a sequence of numbers

all less than λ ^ ] . We show that this sequence converges to the
value 7}(a/n, M/n).

We see that the above process generates a sequence of first nodal
points which satisfies the recurrence relation.

x[^2) = [x[» + (n- 2)xίv+1)]/(n - 1)

with the initial conditions x[1] = x1 and x[2) = [xλ + (n — 2)a]/(n — 1). This
may be solved by letting x{v) = rv and determining r. We thus find that

where cx and c2 are constants to be determined from the initial con-
ditions. We see immediately that x{u) —» cx as γ ^ o o where c1 =a/n.
Similarly m[v) —> M/n. By the construction of the sequence {η(x[v\ mi10)}
we have

K[p] ^ 7){a/n, M/n) .

This proves Theorem 3.

5* Remarks* The methods used to prove Theorems 2 and 3
can also be used to find lower bounds for the eigenvalues of a vibrat-
ing string when the end points of the string are free, i.e., when
π'(0) = ur{a) = 0 and when an end is fixed and the other is free, i.e.,
u(0) = u'(a) = 0. We do not state these theorems but merely note that
for the free end point problem the lower bound of the nth eigenvalue
μn[<o] is the same as the lower bound for the (n — l)st eigenvalue of
the fixed end point problem. The same can be said for Krein's results
quoted in the introduction.

For the fixed free problem the lower bound for the nth eigenvalue
μn[p] is the same as the lower bound for the (2n)th eigenvalue of
the fixed end point problem which is obtained from the fixed free
problem by defining the density p to be symmetric about x = a and
considering the system

u" + Xp(x)u = 0 , u(0) = u(2a) = 0

x e [0, 2α].
Finally, we note that the methods used in this paper can be used

to obtain the lower bounds given by Krein for the wth eigenvalue of a
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string with density | p{x) | ^ H. Our methods also yield bounds for
the nth eigenvalue of a string with a continuous concave density,
i.e., where

These bounds will not be sharp except in the case of the lowest
eigenvalue.

In general, it is to be expected that lower bounds will be obtained
if the extreme eigenvalue, which corresponds to η(a, m) in this paper,
yields convex level lines in the a, m plane whenever it is set equal to
a constant. If we apply this idea to the concave case just mentioned,
the extreme eigenvalue turns out to be μo/am where μ0 is a fixed
constant so the level lines are given by m = const./α which is clearly
convex.
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