FRACTIONAL POWERS OF OPERATORS, II INTERPOLATION SPACES

HIKOSABURO KOMATSU

This is a continuation of an earlier paper "Fractional Powers of Operators" published in this Journal concerning fractional powers A^{α} , $\alpha \in C$, of closed linear operators A in Banach spaces X such that the resolvent $(\lambda + A)^{-1}$ exists for all $\lambda > 0$ and $\lambda(\lambda + A)^{-1}$ is uniformly bounded. Various integral representations of fractional powers and relationship between fractional powers and interpolation spaces, due to Lions and others, of X and domain $D(A^{\alpha})$ are investigated.

In §1 we define the space $D_p^{\sigma}(A)$, $0 < \sigma < \infty$, $1 \leq p \leq \infty$ or $p = \infty$, as the set of all $x \in X$ such that

$$\lambda^{\sigma}(A(\lambda + A)^{-1})^m x \in L^p(X)$$
 ,

where *m* is an integer greater than σ and $L^{p}(X)$ is the L^{p} space of *X*-valued functions with respect to the measure $d\lambda/\lambda$ over $(0, \infty)$.

In §2 we give a new definition of fractional power A^{α} for Re $\alpha > 0$ and prove the coincidence with the definition given in [2]. Convexity of $||A^{\alpha}x||$ is shown to be an immediate consequence of the definition. The main result of the section is Theorem 2.6 which says that if $0 < \operatorname{Re} \alpha < \sigma, x \in D_p^{\sigma}$ is equivalent to $A^{\alpha}x \in D_p^{\sigma-\operatorname{Re}\alpha}$. In particular, we have $D_1^{\operatorname{Re}\alpha} \subset D(A^{\alpha}) \subset D_{\infty}^{\operatorname{Re}\alpha}$. For the application of fractional powers it is important to know whether the domain $D(A^{\alpha})$ coincides with $D_p^{\operatorname{Re}\alpha}$ for some p. We see, as a consequence of Theorem 2.6, that if we have $D(A^{\alpha}) = D_p^{\operatorname{Re}\alpha}$ for an α , it holds for all Re $\alpha > 0$. An example and a counterexample are given. At the end of the section we prove an integral representation of fractional powers.

Section 3 is devoted to the proof of the coincidence of D_p^{σ} with the interpolation space $S(p, \sigma/m, X; p, \sigma/m - 1, D(A^m))$ due to Lions-Peetre [4]. We also give a direct proof of the fact that $D_p^{\sigma}(A^{\alpha}) = D_p^{\alpha\sigma}(A)$.

In §4 we discuss the case in which -A is the infinitesimal generator of a bounded strongly continuous semi-group T_t . A new space $C_{p,m}^{\sigma}$ is introduced in terms of $T_t x$ and its coincidence with D_p^{σ} is shown. Since $C_{\infty,m}^{\sigma}, \sigma \neq$ integer, coincides with C^{σ} of [2], this solves a question of [2] whether $C^{\sigma} = D^{\sigma}$ or not affirmatively. The coincidence of $C_{p,m}^{\sigma}$ with $S(p, \sigma/m, X; p, \sigma/m - 1, D(A^m))$ has been shown by Lions-Peetre [4]. Further, another integral representation of fractional powers is obtained.

Finally, §5 deals with the case in which -A is the infinitesimal generator of a bounded analytic semi-group T_t . Analogous results to §4 are obtained in terms of $A^{\beta}T_tx$.

1. Spaces D_p^{σ} . Throughout this paper we assume that A is a closed linear operator with a dense domain D(A) in a Banach space X and satisfies

$$(1.1) \qquad \qquad ||\lambda(\lambda+A)^{-1}|| \leq M, \qquad 0 < \lambda < \infty \,.$$

We defined fractional powers in [2] for operators A which may not have dense domains. It was shown, however, that if $\operatorname{Re} \alpha > 0$, A^{α} is an operator in $\overline{D(A)}$ and it is determined by a restriction $A_{\mathcal{D}}$ which has a dense domain in $\overline{D(A)}$. Thus our requirement on domain D(A)is not restrictive as far as we consider exponent α with positive real part. As a consequence we have

(1.2)
$$(\lambda(\lambda + A)^{-1})^m x \to x, \qquad \lambda \to \infty, \ m = 1, 2, \cdots$$

for all $x \in X$. As in [2] L stands for a bound of $A(\lambda + A)^{-1} = I - \lambda(\lambda + A)^{-1}$:

$$||A(\lambda + A)^{-1}|| \leq L, \qquad 0 < \lambda < \infty$$

We will frequently make use of spaces of X-valued functions $f(\lambda)$ defined on $(0, \infty)$. By $L^{p}(X)$ we denote the space of all X-valued measurable functions $f(\lambda)$ such that

(1.4)
$$\begin{aligned} ||f||_{L^{p}} &= \left(\int_{0}^{\infty} ||f(\lambda)||^{p} d\lambda/\lambda)\right)^{1/p} < \infty \quad \text{if} \quad 1 \leq p < \infty \\ ||f||_{L^{\infty}} &= \sup_{0 < \lambda < \infty} ||f(\lambda)|| < \infty \quad \text{if} \quad p = \infty \; . \end{aligned}$$

We admit as an index $p = \infty - L^{\infty-}(X)$ represents the subspace of all functions $f(\lambda) \in L^{\infty}(X)$ which converge to zero as $\lambda \to 0$ and as $\lambda \to \infty$. Since $d\lambda/\lambda$ is a Haar measure of the multiplicative group $(0, \infty)$, an integral kernel $K(\lambda/\mu)$ with $\int_{0}^{\infty} |K(\lambda)| d\lambda/\lambda < \infty$ defines a bounded integral operator in $L^{p}(X)$, $1 \leq p \leq \infty$.

DEFINITION 1.1. Let $0 < \sigma < m$, where σ is a real number and m an integer, and p be as above. We denote by $D_{p}^{\sigma}{}_{m} = D_{p,m}^{\sigma}(A)$ the space of all $x \in X$ such that $\lambda^{\sigma}(A(\lambda + A)^{-1})^{m}x \in L^{p}(X)$ with the norm

(1.5)
$$||x||_{D^{\sigma}_{p,m}} = ||x||_{x} + ||\lambda^{\sigma}(A(\lambda + A)^{-1})^{m}x||_{L^{p}(X)}.$$

 $D_{\infty,1}^{\sigma}$ and $D_{\infty-,1}^{\sigma}$ coincide with D^{σ} and D_*^{σ} of [2], respectively.

It is easy to see that $D_{p,m}^{\sigma}$ is a Banach space. Since $(A(\lambda + A)^{-1})^m$ is uniformly bounded, only the behavior near infinity of $(A(\lambda + A)^{-1})^m x$

decides whether x belongs to $D_{p,m}^{\sigma}$ or not.

PROPOSITION 1.2. If integers m and n are greater than σ , the spaces $D_{p,m}^{\sigma}$ and $D_{p,m}^{\sigma}$ are identical and have equivalent norms.

Proof. It is enough to show that $D_{p,m}^{\sigma} = D_{p,m+1}^{\sigma}$ when $m > \sigma$. Because of (1.3) every $x \in D_{p,m}^{\sigma}$ belongs to $D_{p,m+1}^{\sigma}$. Since

$$rac{d}{d\lambda}(\lambda^m(A(\lambda+A)^{-1})^m)=m\lambda^{m-1}(A(\lambda+A)^{-1})^{m+1}\,,$$

we have

(1.6)
$$\lambda^{\sigma} (A(\lambda + A)^{-1})^m x = m \lambda^{\sigma-m} \int_0^{\lambda} \mu^{m-\sigma} \mu^{\sigma} (A(\mu + A)^{-1})^{m+1} x d\mu/\mu$$
.

This shows

$$|| \lambda^{\sigma} (A(\lambda + A)^{-1})^m x ||_L^{p}(x) \leq \frac{m}{m - \sigma} || \lambda^{\sigma} (A(\lambda + A)^{-1})^{m+1} x ||_L^{p}(x).$$

DEFINITION 1.3. We define D_p^{σ} , $\sigma > 0$, $1 \le p \le \infty$, as the space $D_{p,m}^{\sigma}$ with the least integer *m* greater than σ . We use $q_p^{\sigma}(x)$ to denote the second term of (1.5), so that D_p^{σ} is a Banach space with the norm $||x|| + q_p^{\sigma}(x)$.

PROPOSITION 1.4. If $\mu > 0$, $\mu(\mu + A)^{-1}$ maps D_p^{σ} continuously into $D_p^{\sigma+1}$. Futhermore, if $p \leq \infty -$, we have for every $x \in D_p^{\sigma}$

(1.7)
$$\mu(\mu + A)^{-1}x \to x \ (D_p^{\sigma}) \quad \text{as} \quad \mu \to \infty \ .$$

Proof. Let $x \in D_p^{\sigma}$. Since

$$egin{aligned} &\|\lambda^{\sigma+1}(A(\lambda+A)^{-1})^{m+1}\mu(\mu+A)^{-1}x\,\|\ &\leq \mu\,\|\lambda(\lambda+A)^{-1}\,\|\,\|A(\mu+A)^{-1}\,\|\,\|\lambda^{\sigma}(A(\lambda+A)^{-1})^mx\,\|\ &\leq \mu ML\,\|\lambda^{\sigma}(A(\lambda+A)^{-1})^mx\,\|\ , \end{aligned}$$

 $\mu(\mu + A)^{-1}x$ belongs to $D_p^{\sigma+1}$.

Let $p \leq \infty$ -. If $x \in D(A)$, then

$$(A(\lambda + A)^{-1})^m \mu(\mu + A)^{-1}x$$

= $(A(\lambda + A)^{-1})^m x - (A(\lambda + A)^{-1})^m (\mu + A)^{-1}Ax$

converges to $(A(\lambda + A)^{-1})^m x$ uniformly in λ . On the other hand, $(A(\lambda + A)^{-1})^m \mu(\mu + A)^{-1}$ is uniformly bounded. Thus it follows that $(A(\lambda + A)^{-1})^m \mu(\mu + A)^{-1} x$ converges to $(A(\lambda + A)^{-1})^m x$ uniformly in λ for every $x \in X$. Since $||\lambda^{\sigma}(A(\lambda + A)^{-1})^m \mu(\mu + A)^{-1} x|| \leq M ||\lambda^{\sigma}(A(\lambda + A)^{-1})^m x||$, this implies (1.7). THEOREM 1.5. $D_p^{\sigma} \subset D_q^{\tau}$ if $\sigma > \tau$ or if $\sigma = \tau$ and $p \leq q$. The injection is continuous. If $q \leq \infty - D_p^{\sigma}$ is dense in D_q^{τ} .

Proof. First we prove that D_p^{σ} , $p < \infty$, is continuously contained in D_{∞}^{σ} .

Let $x \in D_p^{\sigma}$. Applying Hölder's inequality to (1.6), we obtain

$$|| \lambda^{\sigma} (A(\lambda + A)^{-1})^m x || \leq \frac{m}{((m - \sigma)p')^{1/p'}} || \mu^{\sigma} (A(\mu + A)^{-1})^{m+1} x ||_{L^{p}(\mathbf{X})},$$

where p' = p/(p-1). Hence $x \in D^{\sigma}_{\infty}$. Considering the integral over the interval (μ, λ) , we have similarly

$$\begin{split} || \lambda^{\sigma} (A(\lambda + A)^{-1})^{m} x || &\leq \frac{\mu^{m-\sigma}}{\lambda^{m-\sigma}} || \ \mu^{\sigma} (A(\mu + A)^{-1})^{m} x || \\ &+ \frac{m}{((m-\sigma)p')^{1/p'}} \Big(1 - \frac{\mu^{m-\sigma}}{\lambda^{m-\sigma}} \Big) \Big(\int_{\mu}^{\lambda} || \ \tau^{\sigma} (A(\tau + A)^{-1})^{m+1} x \, ||^{p} d\tau / \tau)^{1/p} \Big). \end{split}$$

The second term tends to zero as $\mu \to \infty$ uniformly in $\lambda > \mu$ and so does the first term as $\lambda \to \infty$. Therefore, $x \in D_{\infty}^{\sigma}$.

Since $\lambda^{\sigma}(A(\lambda + A)^{-1})^m x \in L^p(X) \cap L^{\infty-}(X)$, it is in any $L^q(X)$ with $p \leq q < \infty$.

If $\tau < \sigma$, D_{σ}^{σ} is contained in D_{q}^{τ} for any q. Hence every D_{q}^{σ} is contained in D_{q}^{τ} .

Let $q \leq \infty$. Repeated application of Proposition 1.4 shows that $D_q^{\tau+m}$ is dense in D_q^{τ} for positive integer m. Since D_p° contains some $D_q^{\tau+m}$, it is dense in D_q^{τ} .

2. Fractional powers. If $x \in D_1^{\sigma}$, the integral

(2.1)
$$A^{\alpha}_{\sigma}x = \frac{\Gamma(m)}{\Gamma(\alpha)\Gamma(m-\alpha)} \int_{0}^{\infty} \lambda^{\alpha-1} (A(\lambda+A)^{-1})^{m} x d\lambda$$

converges absolutely for $0 < \operatorname{Re} \alpha \leq \sigma$ and represents a continuous operator from D_1^{σ} into X. Moreover, $A_{\alpha}^{\sigma}x$ is analytic in α for $0 < \operatorname{Re} \alpha < \sigma$.

 $A^{\alpha}_{\sigma}x$ does not depend on *m*. In fact, substitution of (1.6) into (2.1) gives

$$egin{aligned} &A_{\sigma}^{lpha}x=rac{\Gamma(m)m}{\Gamma(lpha)\Gamma(m-lpha)}\int_{\mathfrak{0}}^{\infty}\mu^{m-1}(A(\mu+A)^{-1})^{m+1}xd\mu\int_{\mu}^{\infty}\lambda^{lpha-m-1}d\lambda\ &=rac{\Gamma(m+1)}{\Gamma(lpha)\Gamma(m+1-lpha)}\int_{\mathfrak{0}}^{\infty}\mu^{lpha-1}(A(\mu+A)^{-1})^{m+1}xd\mu\ . \end{aligned}$$

This shows that $A^{\alpha}_{\sigma}x$ depends only on x and not on D^{σ}_{1} to which x belongs.

Obviously we have

$$(2.2) A^{\alpha}_{\sigma}(\mu(\mu+A)^{-1})^{m+1}x = (\mu(\mu+A)^{-1})^{m+1}A^{\alpha}_{\sigma}x, x \in D^{\alpha}_{1}.$$

Since the left-hand side and $(\mu(\mu + A)^{-1})^{m+1}$ are continuous in X, and $(\mu(\mu + A)^{-1})^{m+1}$ is one-to-one, it follows that A^{α}_{σ} is closable in X. In view of Theorem 1.5 the smallest closed extension does not depend on σ .

DEFINITION 2.1. The fractional power A^{α} for Re $\alpha > 0$ is the smallest closed extension of A^{α}_{σ} for a $\sigma \ge \operatorname{Re} \alpha$.

PROPOSITION 2.2. If α is an integer m > 0, A^{α} coincides with the power A^{m} .

To prove the proposition we prepare a lemma.

LEMMA 2.3. If m is an integer m > 0,

(2.3)
$$A^m x = \operatorname{s-lim}_{N \to \infty} m \int_0^N \lambda^{m-1} (A(\lambda + A)^{-1})^{m+1} x d\lambda .$$

Proof. By (1.6) we have

$$m\int_{0}^{N}\lambda^{m-1}(A(\lambda + A)^{-1})^{m+1}x = N^{m}(A(N + A)^{-1})^{m}x$$
 .

If $x \in D(A^m)$, $N^m(A(N+A)^{-1})^m x = (N(N+A)^{-1})^m A^m x$ tends to $A^m x$ as $N \to \infty$ by (1.2). Conversely if $N^m(A(N+A)^{-1})^m x = A^m(N(N+A)^{-1})^m x$ converges to an element $y, x \in D(A^m)$ and $y = A^m x$. For A^m is closed (see Taylor [5]) and $(N(N+A)^{-1})^m x$ converges to x.

Proof of Proposition 2.2. If $x \in D_1^{\sigma}$, $\sigma > m$, integral (2.3) converges absolutely. Therefore it follows from Lemma 2.3 that $x \in D(A^m)$ and $A^{\alpha}x = A^m x$. Thus A^m is an extension of A^{α} . Conversely if $x \in D(A^m)$, then $\mu(\mu + A)^{-1}x \in D(A^{m+1}) \subset D_{\infty}^{m+1}$ and we have

$$egin{array}{lll} A^lpha(\mu(\mu+A)^{-1})x&=(\mu(\mu+A)^{-1})A^mx\ & o A^mx \ ext{ as }\ \mu o\infty \end{array}$$

Since $\mu(\mu + A)^{-1}x \rightarrow x$, it follows that $x \in D(A^{\alpha})$ and $A^{\alpha}x = A^{m}x$.

The fractional power A^{α} defined above coincides with A^{α}_{+} defined in [2]. In fact, if m = 1, integeral (2.1) is the same as integral (4.2) of [2] for n = 0. Thus

$$A^{\alpha}x = A^{\alpha}_{+}x$$

holds for 0 < Re < 1 if $x \in D(A)$. If $x \in D(A^m)$, $m \ge 1$, both sides of

(2.4) are analytic for $0 < \operatorname{Re} \alpha < m$, so that (2.4) holds there. Since $D_1^m \subset D(A^m) \subset D_{\infty}^m$ by Lemma 2.3 and (1.2), both A^{α} and A_+^{α} are the smallest closed extension of their restrictions to $D(A^m)$, $m > \operatorname{Re} \alpha$. Thus we have $A^{\alpha} = A_+^{\alpha}$ for all $\operatorname{Re} \alpha > 0$.

Consequently we may employ all results of [2]. In particular, fractional powers satisfy additivity

$$(2.5) A^{\alpha+\beta} = A^{\alpha}A^{\beta}, \operatorname{Re} \alpha > 0, \operatorname{Re} \beta > 0$$

in the sense of product of operators and multiplicativity

$$(2.6)$$
 $(A^{lpha})^{eta} = A^{lphaeta}$, $0 < a < \pi/\omega$, $\operatorname{Re}\ eta > 0$,

where ω is the minimum number such that the resolvent set of -A contains the sector

 $|\arg \lambda| < \pi - \omega$.

Such an operator is said to be of type $(\omega, M(\theta))$ if

$$\sup_{|rg \lambda|= heta} || \, \lambda (\lambda + A)^{-1} || \leq M(heta)$$
 .

Any operator with a dense domain which satisfies (1.1) is of type $(\omega, M(\theta))$ with $0 \leq \omega < \pi$.

Some properties of fractional powers, however, are derived more easily through definition (2.1).

PROPOSITION 2.4. If $0 < \operatorname{Re} \alpha < \sigma$, there is a constant $C(\alpha, \sigma, p)$ such that

$$(2.7) || A^{\alpha}x || \leq C(\alpha, \sigma, p)q_p^{\sigma}(x)^{\operatorname{Re}\alpha/\sigma} || x ||^{(\sigma-\operatorname{Re}\alpha)/\sigma}, x \in D_p^{\sigma}.$$

Proof. Hölder's inequality gives

$$\begin{split} || A^{\alpha} x \, || &\leq \left| \frac{\Gamma(m)}{\Gamma(\alpha) \Gamma(m-\alpha)} \left| \left[\int_{0}^{N} |\lambda^{\alpha-1}| \, || \, (A(\lambda+A)^{-1})^{m} x \, || \, d\lambda \right. \\ &+ \int_{N}^{\infty} |\lambda^{\alpha-\sigma}| \, || \, \lambda^{\sigma} (A(\lambda+A)^{-1})^{m} x \, || \, d\lambda / \lambda \right] \\ &\leq \left| \frac{\Gamma(m)}{\Gamma(\alpha) \Gamma(m-\alpha)} \left| \left[\frac{L^{m} N^{\text{Re}\alpha}}{\text{Re} \, \alpha} \, || \, x \, || + \frac{N^{\text{Re}\alpha-\sigma}}{((\sigma-\text{Re} \, \alpha)p')^{1/p'}} \, q_{p}^{\sigma}(x) \right] \right. \end{split}$$

Taking the minimum of the right-hand side when N varies $0 < N < \infty$, we obtain (2.7).

PROPOSITION 2.5. If $\mu > 0$, then (2.8) $D_p^{\sigma}(A) = D_p^{\sigma}(\mu + A)$ with equivalent norms.

$$\begin{array}{ll} \textit{Proof.} \quad \text{Let } x \in D_{p,m}^{\sigma}(A) \text{ with } m > \sigma. \quad \text{Since} \\ & ||A^{k}(\lambda + \mu + A)^{-m}x|| \leq C \, ||A^{m}(\lambda + \mu + A)^{-m}x||^{k/m} \cdot \\ & ||(\lambda + \mu + A)^{-m}x||^{(m-k)/m} \,, \quad k = 1, \, 2, \, \cdots, \, m - 1 \,, \\ & \lambda^{\sigma}((\mu + A)(\lambda + \mu + A)^{-1})^{m}x \\ & = \lambda^{\sigma}(\mu^{m} + m\mu^{m-1}A + \cdots + A^{m})(\lambda + \mu + A)^{-m}x \end{array}$$

belongs to $L^{p}(X)$. The converse is proved in the same way.

THEOREM 2.6. Let $0 < \operatorname{Re} \alpha < \sigma$. Then $x \in D_p^{\sigma}$ if and only if $x \in D(A^{\alpha})$ and $A^{\alpha}x \in D_p^{\sigma-\operatorname{Re}\alpha}$.

Proof. Let $x \in D_p^{\sigma}$ and $m > \sigma$. Clearly $x \in D(A^{\alpha})$. To estimate the integral

$$egin{aligned} \lambda^{\sigma- ext{Re}lpha}(A(\lambda+A)^{-1})^mA^lpha x\ &=rac{\Gamma(m)\lambda^{\sigma- ext{Re}lpha}}{\Gamma(lpha)\Gamma(m-lpha)}\int_0^\infty\mu^{lpha-1}(A(\lambda+A)^{-1})^m(A(\mu+A)^{-1})^mxd\mu \;, \end{aligned}$$

we split it into two parts. First,

$$\begin{split} \left\| \lambda^{\sigma-\operatorname{Re}\alpha} \int_{0}^{\lambda} \mu^{\alpha-1} (A(\lambda+A)^{-1})^{m} (A(\mu+A)^{-1})^{m} x d\mu \right\| \\ & \leq \lambda^{\sigma-\operatorname{Re}\alpha} \int_{0}^{\lambda} \mu^{\operatorname{Re}\alpha-1} d\mu L^{m} \parallel (A(\lambda+A)^{-1})^{m} x \parallel \\ & = L^{m} (\operatorname{Re}\alpha)^{-1} \lambda^{\sigma} \parallel (A(\lambda+A)^{-1})^{m} x \parallel \in L^{p} \ . \\ & \left\| \lambda^{\sigma-\operatorname{Re}\alpha} \int_{\lambda}^{\infty} \mu^{\alpha-1} (A(\lambda+A)^{-1})^{m} (A(\mu+A)^{-1})^{m} x d\mu \right\| \\ & \leq L^{m} \lambda^{\sigma-\operatorname{Re}\alpha} \int_{\lambda}^{\infty} \mu^{\operatorname{Re}\alpha-\sigma} \parallel \mu^{\sigma} (A(\mu+A)^{-1})^{m} x \parallel d\mu/\mu \end{split}$$

also belongs to L^p because $\operatorname{Re} \alpha - \sigma < 0$.

Conversely, let $A^{\alpha}x \in D_p^{\sigma-\operatorname{Re}\alpha}$. If n is an integer greater than $\operatorname{Re} \alpha$, we have

$$egin{aligned} &\|A^{n-lpha}(\lambda+A)^{-n}\,\| \leq C\,\|A^n(\lambda+A)^{-n}\,\|^{(n-\operatorname{Re}lpha)/n}\,\|(\lambda+A)^{-n}\,\|^{\operatorname{Re}lpha/n} \ &\leq C'\lambda^{-\operatorname{Re}lpha} \end{aligned}$$

Thus it follows from (2.5) that

$$egin{aligned} \lambda^{\sigma} \parallel (A(\lambda+A)^{-1})^{m+n}x \parallel &\leq \lambda^{\sigma} \parallel A^{n-lpha}(\lambda+A)^{-n} \parallel \parallel (A(\lambda+A)^{-1})^m A^{lpha}x \parallel \ &\leq C'\lambda^{\sigma-\operatorname{Re}lpha} \parallel (A(\lambda+A)^{-1})^m A^{lpha}x \parallel \in L^p \ . \end{aligned}$$

This completes the proof.

As a corollary we see that if σ is not an integer, D_{∞}^{σ} and D_{∞}^{σ} coincide with D^{σ} and D_{*}^{σ} of [2], respectively.

THEOREM 2.7. If the domain $D(A^{\alpha})$ contains (is contained in) $D_p^{\text{Re}\alpha}$ for an Re $\alpha > 0$, then $D(A^{\alpha})$ contains (is contained in) $D_p^{\text{Re}\alpha}$ for all Re $\alpha > 0$.

Proof. By virtue of Theorem 6.4 of [2] and Proposition 2.5 we have $D(A^{\alpha}) = D((\mu + A)^{\alpha})$ and $D_p^{\text{Re}\alpha}(A) = D_p^{\text{Re}\alpha}(\mu + A), \mu > 0$, Re $\alpha > 0$, so that we may assume that A has a bounded inverse without loss of generality. The theorem is obvious if we show that $A^{\beta}, -\infty < \text{Re }\beta < \text{Re }\alpha$, is a one-to-one mapping from $D(A^{\alpha})$ and $D_p^{\text{Re}\alpha}$ onto $D(A^{\alpha-\beta})$ and $D_p^{\text{Re}\alpha-\text{Re}\beta}$, respectively.

Since $D(A^{\alpha}) = R(A^{-\alpha})$, Re $\alpha > 0$ ([2], Theorem 6.4), and since $A^{\beta-\alpha} = A^{\beta}A^{-\alpha}$ ([2], Theorem 7.3), the statement concerning $D(A^{\alpha})$ is immediate.

Let $\operatorname{Re} \beta < 0$. Then $x \in D_p^{\operatorname{Rea}-\operatorname{Re}\beta}$ if and only if $x \in D(A^{-\beta})$ and $A^{-\beta}x \in D_p^{\operatorname{Re}\alpha}$. Since A^{β} is a bounded inverse of $A^{-\beta}$, we have $x \in D_p^{\operatorname{Re}\alpha-\operatorname{Re}\beta}$ if and only if x is in the image of $D_p^{\operatorname{Re}\alpha}$ by A^{β} . If $\operatorname{Re} \beta \ge 0$, choose a number γ so that $\operatorname{Re} \beta < \gamma < \operatorname{Re} \alpha$. If $x \in D_p^{\operatorname{Re}\alpha-\operatorname{Re}\beta}$, x belongs to $D(A^{-\beta})$. Thus there is an element y such that $x = A^{\beta}y$. By the former part we have $A^{-\gamma}x = A^{\beta-\gamma}y \in D_p^{\operatorname{Re}\alpha-\operatorname{Re}\beta+\gamma}$. Thus y belongs to $D_p^{\operatorname{Re}\alpha}$. On the other hand, if $y \in D_p^{\operatorname{Re}\alpha}$, then $y \in D(A^{\beta})$ and we have $A^{-\gamma}x = A^{\beta-\gamma}y \in D_p^{\operatorname{Re}\alpha-\operatorname{Re}\beta+\gamma}$. Then it follows from the former part that x belongs to $D_p^{\operatorname{Re}\alpha-\operatorname{Re}\beta}$.

Theorem 6.5 of [2] is obtained as a corollary.

Proposition 2.8. For every $\operatorname{Re} \alpha > 0$

$$(2.9) D_1^{\operatorname{Re}\alpha} \subset D(A^{\alpha}) \subset D_{\infty}^{\operatorname{Re}\alpha} .$$

Proof. It is enough to prove it only in the case $\alpha = 1$. The former inclusion is clear from Lemma 2.3. The latter follows from (1.2), for

$$\lambda (A(\lambda + A)^{-1})^2 x = \lambda (\lambda + A)^{-1} (1 - \lambda (\lambda + A)^{-1}) A x \rightarrow 0$$

for $x \in D(A)$ as $\lambda \to \infty$.

PROPOSITION 2.9. If there is a complex number $\operatorname{Re} \alpha > 0$ such that $D(A^{\alpha}) = D_p^{\operatorname{Re}\alpha}$, then $D(A^{\beta}) = D_p^{\operatorname{Re}\beta}$ for all $\operatorname{Re} \beta > 0$. In particular, $D(A^{\alpha})$ coinsides with $D(A^{\beta})$ if $\operatorname{Re} \alpha = \operatorname{Re} \beta$. Furthermore, if A has a bounded inverse, A^{it} is bounded for all real t, where A^{it} is defined in [2].

Proof. We need to prove only the last statement. Because of [2], Corollary 7.4 we have

$$A^{it} = A^{1+it}A^{-1}$$
,

Since $D(A^{1+it}) = D(A) = R(A^{-1})$, A^{it} is defined everywhere and closed, so that it is bounded.

We proved in [2] that the operator A of § 14, Example 6 has unbounded purely imaginary powers A^{it} . The above proposition shows that $D(A^{\alpha})$ cannot be the same as $D_p^{\text{Re}\alpha}$ for any p.

However, there are also operators A for which $D(A^{\alpha})$ coincides with $D_x^{\text{Re}\alpha}$.

Let X be $L^{p}(S, B, m)$, where B is a Borel field over a set S and m a measure on B, and let A(s) be a measurable function on S such that

$$|\arg A(s)| \leq \omega$$
, a.e.s

for an $0 \leq \omega < \pi$. Define

$$Ax(s) = A(s)x(s)$$

for all $x(s) \in X$ such that $A(s)x(s) \in X$. Then it is easy to see that A is an operator of type $(\omega, M(\theta))$ if $p \leq \infty -$, where $L^{\infty-}$ denotes the closure of D(A) in L^{∞} . For this operator A we have $D(A) = D_p^1$, so that $D(A^{\alpha}) = D_p^{\text{Re}\alpha}$ for all Re $\alpha > 0$.

In fact, we have

$$(A(\lambda+A)^{-1})^2 x(s) = A(s)^2 x(s)/(\lambda+A(s))^2$$
 .

Therefore,

$$egin{aligned} &\int_0^\infty \mid\mid \lambda(A(\lambda+A)^{-1})^s x(s)\mid\mid^p d\lambda/\lambda\ &=\int_0^\infty \lambda^{p-1} d\lambda \int_{S} \left|rac{\cdot A(s)^2}{(\lambda+A(s))^2}\,x(s)
ight|^p dm(s)\ &=\int_{S}\mid x(s)\mid^p dm(s) \int_0^\infty \lambda^{p-1} \left|rac{A(s)}{\lambda+A(s)}
ight|^{2p} d\lambda\ &\sim\mid\mid Ax\mid\mid^p . \end{aligned}$$

Any normal operator A of type $(\omega, M(\theta))$ can be represented as an operator of the above type. Therefore, it satisfies $D(A^{\alpha}) = D_{2}^{\text{Re}\alpha}$ for Re $\alpha > 0$. T. Kato [1] proved that this holds also for any maximal accretive operator A (see J.-L. Lions [3]).

Now let us complete the definition of fractional powers.

THEOREM 2.10. Let $0 < \operatorname{Re} \alpha < m$. If there is a sequence $N_j \rightarrow \infty$

such that

$$y = w - \lim_{j o \infty} rac{ \Gamma(m) }{ \Gamma(lpha) \Gamma(m-lpha) } \int_{0}^{N_j} \lambda^{lpha-1} (A(\lambda+A)^{-1})^m x d\lambda$$

exists, then $x \in D(A^{\alpha})$ and $y = A^{\alpha}x$. Conversely, if $x \in D(A^{\alpha})$, then

(2.10)
$$A^{\alpha}x = s - \lim_{N \to \infty} \frac{\Gamma(m)}{\Gamma(\alpha)\Gamma(m-\alpha)} \int_0^N \lambda^{\alpha-1} (A(\lambda+A)^{-1})^m x d\lambda ,$$

possibly except for the case in which $\text{Im } \alpha \neq 0$ and $\text{Re } \alpha$ is an integer.

Proof. The former statement is obtained by modifying the proof of [2], Proposition 4.6. Since $(\mu(\mu + A)^{-1})^m x \in D_1^{\text{Re}\alpha}$, we have

$$egin{aligned} &A^{lpha}(\mu(\mu+A)^{-1})^{m}\,x=c\!\int_{_{0}}^{^{\infty}}\!\lambda^{lpha-1}(A(\lambda+A)^{-1})^{m}(\mu(\mu+A)^{-1})^{m}xd\lambda\ &=(\mu(\mu+A)^{-1})^{m}\,w ext{-lim}\,c\!\int_{_{0}}^{^{N_{j}}}\!\lambda^{lpha-1}(A(\lambda+A)^{-1})^{m}xd\lambda\ &=(\mu(\mu+A)^{-1})^{m}y\,\,. \end{aligned}$$

By virtue of (1, 2), it follows that $x \in D(A^{\alpha})$ and $y = A^{\alpha}x$.

The proof of the latter statement may be reduced to the case in which $0 < \operatorname{Re} \alpha < 1$ and m = 1. Suppose that $x \in D(A^{\alpha})$ and an integer $m > \operatorname{Re} \alpha$. Substituting (1.6), we have

$$egin{aligned} &\int_{0}^{N}\lambda^{lpha-1}(A(\lambda+A)^{-1})^{m}xd\lambda\ &=m\int_{0}^{N}\lambda^{lpha-m-1}d\lambda\int_{0}^{\lambda}\mu^{m-1}(A(\mu+A)^{-1})^{m+1}xd\mu\ &=rac{m}{m-lpha}\int_{0}^{N}\Bigl(1-rac{\mu^{m-lpha}}{N^{m-lpha}}\Bigr)\mu^{lpha-1}(A(\mu+A)^{-1})^{m+1}xd\mu\ . \end{aligned}$$

Since $x \in D(A^{\alpha}) \subset D_{\infty}^{\text{Rea}}$, it follows that

$$\left\|\int_0^N \frac{\mu^{m-\alpha}}{N^{m-\alpha}} \ \mu^{\alpha-1} (A(\mu+A)^{-1})^{m+1} x d\mu\right\| \to 0 \quad \text{as} \quad N \to \infty \ .$$

Thus the limit (2.10), if it exists, does not depend on $m > \operatorname{Re} \alpha$.

Next, let $\operatorname{Re} \alpha > 1$ and $m \ge 2$. Since $x \in D(A^{\alpha})$ belongs to D(A), integration by parts yields

$$egin{aligned} &\int_{0}^{N}\!\!\lambda^{lpha-1}\!(A(\lambda+A)^{-1})^{m}\!xd\lambda\ &=rac{lpha-1}{m-1}\!\!\int_{0}^{N}\!\lambda^{lpha-2}\!(A(\lambda+A)^{-1})^{m-1}\!Axd\lambda-rac{N^{lpha-1}}{m-1}(A(N+A)^{-1})^{m-1}\!Ax\,. \end{aligned}$$

98

The second term tends to zero as $N \to \infty$ because $Ax \in D(A^{\alpha-1}) \subset D_{\infty}^{\mathbb{R}\alpha^{\alpha-1}}$. Therefore, we obtain (2.10) if we can prove it when both α and m are reduced by one.

To prove (2.10) in the case $0 < \operatorname{Re} \alpha < 1$ and m = 1 we assume for a moment that A has a bounded inverse. Then $D(A^{\alpha})$ is identical with the range of $A^{-\alpha}$, which may be represented by the absolulely convergent integral:

$$A^{-\alpha}x = \frac{\sin \pi x}{\pi} \int_0^\infty \lambda^{-\alpha} (\lambda + A)^{-1} x d\lambda$$

([2], Proposition 5.1). Employing the resolvent equation and (1.6), we get

$$egin{aligned} &rac{\Gamma(1)}{\Gamma(lpha)\Gamma(1-lpha)}\int_{0}^{N}\lambda^{lpha-1}A(\lambda+A)^{-1}A^{-lpha}xd\lambda\ &= \Big(rac{\sin\pilpha}{\pi}\Big)^2\!\!\int_{0}^{N}\lambda^{lpha-1}d\lambda\!\!\int_{0}^{\infty}\mu^{-lpha}rac{\lambda(\lambda+A)^{-1}-\mu(\mu+A)^{-1}}{\lambda-\mu}xd\mu\ &= \Big(rac{\sin\pilpha}{\pi}\Big)^2\!\!\int_{0}^{N}\lambda^{lpha-1}d\lambda\!\!\int_{0}^{\infty}\mu^{-lpha}(\lambda-\mu)^{-1}d\mu\!\!\int_{\mu}^{\lambda}\!\!A(
u+A)^{-2}xd
u\ . \end{aligned}$$

It is enough to show that this converges strongly to the identity, or more weakly that it simply converges, because if it converges, the limit must be $A^{\alpha}A^{-\alpha}x = x$.

First of all, we have

$$egin{aligned} I_1 &= \int_0^N \lambda^{lpha-1} d\lambda \int_0^\lambda \mu^{-lpha} (\lambda-\mu)^{-1} d\mu \int_\mu^\lambda A(oldsymbol{
u}+A)^{-2} x doldsymbol{
u} \ &= \int_0^N A(oldsymbol{
u}+A)^{-2} x doldsymbol{
u} \int_
u^N \lambda^{lpha-1} d\lambda \int_0^
u \mu^{-lpha} (\lambda-\mu)^{-1} d\mu \ . \end{aligned}$$

Changing variables by $\lambda = \nu l$, $\mu = \nu m$ and integrating by parts with respect to ν , we obtain

$$egin{aligned} &I_1 = \int_1^\infty l^{lpha-1} dl \int_0^1 m^{-lpha} (l-m)^{-1} dmx \ &- \int_0^N A(oldsymbol{
u}+A)^{-1} x doldsymbol{
u} N^{lpha} oldsymbol{
u}^{-lpha-1} \int_0^1 m^{-lpha} (Noldsymbol{
u}^{-1}-m)^{-1} dm \ &= c_1 x - \int_0^1 A(Nn+A)^{-1} x n^{-lpha-1} dn \int_0^1 m^{-lpha} (n^{-1}-m)^{-1} dm \ &= c_1 x - \int_0^1 A(Nn+A)^{-1} x n^{-lpha-1} dn \int_0^1 m^{-lpha} (n^{-1}-m)^{-1} dm \ &= c_1 x - \int_0^1 A(Nn+A)^{-1} x n^{-lpha-1} dn \int_0^1 m^{-lpha} (n^{-1}-m)^{-1} dm \ &= c_1 x - \int_0^1 A(Nn+A)^{-1} x n^{-lpha-1} dn \int_0^1 m^{-lpha} (n^{-1}-m)^{-1} dm \ &= c_1 x - \int_0^1 A(Nn+A)^{-1} x n^{-lpha-1} dn \int_0^1 m^{-lpha} (n^{-1}-m)^{-1} dm \ &= c_1 x - \int_0^1 A(Nn+A)^{-1} x n^{-lpha-1} dn \int_0^1 m^{-lpha} (n^{-1}-m)^{-1} dm \ &= c_1 x - \int_0^1 A(Nn+A)^{-1} x n^{-lpha-1} dn \int_0^1 m^{-lpha} (n^{-1}-m)^{-1} dm \ &= c_1 x - \int_0^1 A(Nn+A)^{-1} x n^{-lpha-1} dn \int_0^1 m^{-lpha} (n^{-1}-m)^{-1} dm \ &= c_1 x - \int_0^1 A(Nn+A)^{-1} x n^{-lpha-1} dn \int_0^1 m^{-lpha} (n^{-1}-m)^{-1} dm \ &= c_1 x - \int_0^1 A(Nn+A)^{-1} x n^{-lpha-1} dn \int_0^1 m^{-lpha} (n^{-1}-m)^{-1} dm \ &= c_1 x - \int_0^1 A(Nn+A)^{-1} x n^{-lpha-1} dn \int_0^1 m^{-lpha-1} dn \int_0^1 m^{-lpha-1$$

Since $n^{-\alpha-1} \int_0^1 m^{-\alpha} (n^{-1} - m)^{-1} dm$ is absolutely integrable in *n* and since $A(Nn + A)^{-1}x = x - Nn(Nn + A)^{-1}x$ tends to zero as $N \to \infty$, the second term converges to zero as $N \to \infty$.

Next we write

$$egin{aligned} &\int_{\mathfrak{d}}^{m{N}}\lambda^{lpha-1}d\lambda \int_{\lambda}^{m{\infty}}\mu^{-lpha}(\lambda-\mu)^{-1}d\mu \int_{\mu}^{\lambda}A(m{
u}+A)^{-2}xdm{
u} \ &=\int_{\mathfrak{d}}^{m{N}}A(m{
u}+A)^{-2}xdm{
u}\int_{\mathfrak{d}}^{m{
u}}\lambda^{lpha-1}d\lambda \int_{
u}^{m{
u}}\mu^{-lpha}(\mu-\lambda)^{-1}d\mu \ &+\int_{m{N}}^{m{\infty}}A(m{
u}+A)^{-2}xdm{
u}\int_{\mathfrak{d}}^{m{N}}\lambda^{lpha-1}d\lambda \int_{
u}^{m{
u}}\mu^{-lpha}(\mu-\lambda)^{-1}d\mu \ &=I_{2}+I_{3}\;. \end{aligned}$$

Changing variables as above, we have

$$egin{aligned} I_2 &= \int_0^N A(m{
u} + A)^{-2} x dm{
u} \int_0^1 l^{lpha - 1} dl \int_1^\infty m^{-lpha} (m - l)^{-1} dm \ &= c_2 N (N + A)^{-1} x o c_2 x \ \ \ ext{as} \ \ \ N o \infty \ . \end{aligned}$$

Finally,

tends to zero as $N \to \infty$ because $\int_{N}^{mN} A(\nu + A)^{-2} x d\nu = mN(mN + A)^{-1}x - N(N + A)^{-1}x$ tends to zero and $m^{-\alpha} \int_{0}^{1} l^{\alpha-1}(m-l)^{-1} dl$ is absolutely integrable.

Next suppose that A has not necessarily a bounded inverse. We have, for $\mu > 0$,

$$egin{aligned} &(A^lpha-(\mu+A)^lpha)(\mu+A)^{-lpha}x\ &=rac{\sin\pilpha}{\pi}\Bigl(\int_0^\mu\!\!\!\!\!\lambda^{lpha-1}A+\int_\mu^\infty\!(\lambda^{lpha-1}A-(\lambda-\mu)^{lpha-1}(\mu+A)\Bigr)(\lambda+A)^{-1}(\mu+A)^{-lpha}xd\lambda \end{aligned}$$

because the integral is absolutely convergent and the equality holds for all $x \in D(A)$ which is dense in X. This shows together with the above that

$$egin{aligned} &A^lpha(\mu+A)^{-lpha}x=(\mu+A)^lpha(\mu+A)^{-lpha}x\ &+ ext{s-lim}\,rac{\sin\pilpha}{\pi}\Bigl(\int_0^\mu\!\!\!\!\lambda^{lpha-1}\!A+\int_\mu^N(\lambda^{lpha-1}\!A-(\lambda-\mu)^{lpha-1}\!(\mu+A)\Bigr)\ &\cdot(\lambda+A)^{-1}\!(\mu+A)^{-lpha}xd\lambda\ &= ext{s-lim}\,rac{\Gamma(1)}{\Gamma(lpha)\Gamma(1-lpha)}\int_0^N\!\!\!\lambda^{lpha-1}\!A(\lambda+A)^{-1}\!(\mu+A)^{-lpha}xd\lambda\ . \end{aligned}$$

3. Interpolation spaces. Let X and Y be Banach spaces contained in a Hausdorff vector space Z. Lions and Peetre [4] defined the mean space $S(p, \theta, X; p, \theta - 1, Y)$, $1 \le p \le \infty, 0 < \theta < 1$, of X and Y as the space of the means

(3.1)
$$x = \int_0^\infty u(\lambda) d\lambda / \lambda$$
 ,

where $u(\lambda)$ is a Z-valued function such that

(3.2)
$$\lambda^{\theta} u(\lambda) \in L^{p}(X) \text{ and } \lambda^{\theta-1} u(\lambda) \in L^{p}(Y)$$

 $S(p, \theta, X; p, \theta - 1, Y)$ is a Banach space with the norm

$$(3.3) \quad ||x||_{S(p,\theta,\boldsymbol{x},p,\theta-1,\boldsymbol{Y})} = \inf\left\{\max\left(||\lambda^{\theta}u(\lambda)||_{\boldsymbol{z}^{p}(\boldsymbol{X})}, ||\lambda^{\theta-1}u(\lambda)||_{\boldsymbol{z}^{p}(\boldsymbol{Y})}\right); x = \int_{0}^{\infty} u(\lambda)d\lambda/\lambda\right\}.$$

Theorem 3.1. $S(p, \theta, X; p, \theta - 1, D(A^m)), 0 < \theta < 1, 1 \leq p \leq \infty$, coincides with $D_p^{\theta m}(A)$.

Proof. By virtue of Proposition 2.5, we may assume that A has a bounded inverse without loss of generality. In particular, $D(A^m)$ is normed by $||A^m x||$. Further, if we change the variable by $\lambda' = \lambda^{1/m}$, condition (3.2) becomes

(3.4)
$$\lambda^{m\theta}u(\lambda) \in L^p(X) \text{ and } \lambda^{m(\theta-1)}A^mu(\lambda) \in L_p(X)$$
.

Suppose $x \in D_p^{\sigma}$ and define

$$u(\lambda) = c\lambda^m A^m (\lambda + A)^{-2m} x$$
,

where $c = \Gamma(2m)/(\Gamma(m))^2$. Then

$$\lambda^{\sigma} u(\lambda) = c(\lambda(\lambda + A^{-1})^m \lambda^{\sigma} (A(\lambda + A)^{-1})^m x \in L^p(X))$$

and

$$\lambda^{\sigma-m}A^m u(\lambda)=c\lambda^{\sigma}(A(\lambda+A)^{-1})^{2m}x\in L^p(X)$$
 .

Thus $u(\lambda)$ satisfies (3.4) with $\sigma = m\theta$. Moreover, it follows from Lemma 2.3 that

$$\int_{\scriptscriptstyle 0}^{\infty} u(\lambda) d\lambda/\lambda = rac{\Gamma(2m)}{(\Gamma(m))^2} \int_{\scriptscriptstyle 0}^{\infty} \lambda^{m-1} (A(\lambda+A)^{-1})^{2m} A^{-m} x \ = x \; .$$

Therefore, x belongs to $S(p, \sigma/m, X; p, \sigma/m - 1, D(A^m))$.

Conversely, let $x \in S(p, \sigma/m, X; p, \sigma/m - 1, D(A^m))$ so that x is represented by integral (3.1) with an integrand satisfying (3.4). Then

$$egin{aligned} \lambda^{\sigma}(A(\lambda+A)^{-1})^{m}x&=(A(\lambda+A)^{-1})^{m}\lambda^{\sigma}\!\!\int_{\lambda}^{\infty}\!\!\mu^{-\sigma}\mu^{\sigma}u(\lambda)d\mu/\mu\ &+(\lambda(\lambda+A)^{-1})^{m}\lambda^{\sigma-m}\!\!\int_{0}^{\lambda}\mu^{m-\sigma}\mu^{\sigma-m}A^{m}u(\lambda)d\mu/\mu\ . \end{aligned}$$

Since both $(A(\lambda + A)^{-1})^m$ and $(\lambda(\lambda + A)^{-1})^m$ are uniformly bounded, $\lambda^{\sigma}(A(\lambda + A)^{-1})^m x$ belongs to $L^p(X)$, that is, $x \in D_p^{\sigma}$.

THEOREM 3.2. Let A be an operator of type $(\omega, M(\theta))$. Then

$$D_p^{\,\sigma}(A^lpha)=D_p^{\,\sigmalpha}(A)\;,\qquad 00$$
 .

Proof. It is sufficient to prove it in the case $0 < \alpha < 1$, because otherwise we have $A = (A^{\alpha})^{1/\alpha}$ with $0 < 1/\alpha < 1$ (see (2.6)). In view of Theorem 2.6 we may also assume that σ is sufficiently small.

By [2] Proposition 10.2 we have

$$\lambda^{\sigma}A^{lpha}(\lambda+A^{lpha})^{-1}x=rac{\sin\pilpha}{\pi}\int_{0}^{\infty}rac{\lambda^{\sigma+1} au^{lpha-lpha\sigma}}{\lambda^{2}+2\lambda au^{lpha}\cos\pilpha+ au^{2lpha}}t^{lpha\sigma}A(au+A)^{-1}xd au/ au$$
 .

Since the kernel

$$rac{(\lambda^{-1} au^lpha)^{1-\sigma}}{1+2(\lambda^{-1} au^lpha)\cos\pilpha+(\lambda^{-1} au^lpha)^2}$$
 , $0<\sigma<1$,

defines a bounded integral operator in $L^{p}(X)$, $D_{p}^{\sigma\alpha}(A)$ is contained in $D_{p}^{\sigma}(A^{\alpha})$.

If $\alpha = 1/m$ with an odd integer m, we have conversely

$$D_p^{\sigma}(A^{1/m}) \subset D_p^{\sigma/m}(A)$$
 .

In fact, let $x \in D_p^{\sigma}(A^{1/m})$. Since

$$\lambda^{\sigma}A(\lambda^m+A)^{-1}=\lambda^{\sigma}\prod_{i=1}^m{(A^{1/m}(arepsilon_i\lambda+A^{1/m})^{-1})x}$$
 ,

where ε_i are roots of $(-\varepsilon)^m = -1$ with $\varepsilon_1 = 1$, and since

$$A^{1/m}(\varepsilon_i\lambda + A^{1/m})^{-1}, \qquad i=2, \cdots, m,$$

are uniformly bounded, $\lambda^{\sigma}A(\lambda^m + A)^{-1}x \in L^p(X)$. Changing the variable by $\lambda' = \lambda^m$, we get $\lambda^{\sigma/m}A(\lambda + A)^{-1}x \in L^p(X)$.

In a general case choose an odd number m such that $0 < 1/m < \alpha$. Since $A^{1/m} = (A^{\alpha})^{1/(\alpha m)}$, we have

$$D_p^{\alpha\sigma}(A) \subset D_p^{\sigma}(A^{lpha}) \subset D_p^{\alpha\sigma\,m}(A^{1/m}) \subset D_p^{\alpha\sigma}(A)$$
 .

Another less computational proof will be obtained from the Lions-Peetre theory and Proposition 2.8.

4. Infinitesimal generators of bounded semi-groups. Throughout this section we assume that $T_t, t \ge 0$, is a bounded strongly continuous semi-group of operators in X and -A is its infinitesimal generator:

$$(4.1) T_t = \exp(-tA), || T_t || \le M.$$

A is an operator of type $(\pi/2, M(\theta))$.

DEFINITION 4.1. Let $0 < \sigma < m$, where σ is a real number and m an integer, and let $1 \leq p \leq \infty$. We denote by $C_{p,m}^{\sigma} = C_{p,m}^{\sigma}(A)$ the set of all elements $x \in X$ such that

$$(4.2) t^{-\sigma}(I - T_t)^m x \in L^p(X) .$$

As is easily seen, $C_{p,m}^{\sigma}$ is a Banach space with the norm

$$||x||_{\sigma_{n,m}^{\sigma}} = ||x|| + ||t^{-\sigma}(I - T_t)^m x||_{L^{p}(X)}$$

Since $(I - T_t)^m$ is uniformly bounded, condition (4.2) is equivalent to that $t^{-\sigma}(I - T_t)^m x$ belongs to $L^p(X)$ near the origin. In particular, we have

(4.3)
$$C_{p,m}^{\sigma}(A) = C_{p,m}^{\sigma}(\mu + A), \, \mu > 0$$
.

 $C_{\infty,1}^{\sigma}$ and $C_{\infty-,1}^{\sigma}$ coincide with C^{σ} and C_{*}^{σ} of [2], respectively, and $C_{\infty,1}^{\sigma}$ consists of all elements x such that $T_{t}x$ is (weakly) uniformly Hölder continuous with exponent σ .

PROPOSITION 4.2. If $x \in C_{p,m}^{\sigma}$, then x belongs to $D(A^{\alpha})$ for all $0 < \operatorname{Re} \alpha < \sigma$, and

$$(4.4) \qquad A^{\alpha}x = \frac{1}{K_{\alpha,m}} \int_0^{\infty} t^{-\alpha-1} (I - T_t)^m x dt, \qquad 0 < \operatorname{Re} \alpha < \sigma \,,$$

where

$$K_{lpha,m}=\int_{\scriptscriptstyle 0}^{\infty}t^{-lpha-1}(1-e^{-t})^mdt\;.$$

Proof. If $0 < \text{Re } \alpha < \sigma$, the right-hand side of (4.4) converges absolutely and represents an analytic function of α .

If $x \in D(A)$, then we have by [2] Proposition 11.4

$$\int_0^\infty t^{-\alpha-1} (I - T_t)^m x dt$$

$$egin{aligned} &=\sum\limits_{k=1}^m{(-1)^{k+1}\binom{m}{k}}{\int_0^\infty}t^{-lpha-1}(I-\ T_{kt})xdt\ &=\Gamma(-lpha)\sum\limits_{k=1}^m{(-1)^{k+1}\binom{m}{k}}k^lpha A^lpha x,\qquad 0<{
m Re}\ lpha<1\ . \end{aligned}$$

The coefficient of $A^{\alpha}x$ does not depend on A. Taking A = 1, we see that it is equal to $K_{\alpha,m}$.

Next let $0 < \operatorname{Re} \alpha < \min(\sigma, 1)$ and $x \in C_{p,m}^{\sigma}$. Then integral (4.4) with x replaced by $\mu(\mu + A)^{-1}x, \mu > 0$, exists and converges to the integral (4.4) as $\mu \to \infty$. Thus $A^{\alpha}\mu(\mu + A)^{-1}x$ converges to the integral (4.4). Since A^{α} is closed and $\mu(\mu + A)^{-1}x \to x$ as $\mu \to \infty$, it follows that $x \in D(A^{\alpha})$ and (4.4) holds.

In the general case the assertion is obtained by [2], Proposition 8.4 or by repeating an argument as above.

Lions and Peetre [4] gave another proof when α is an integer.

THEOREM 4.3. $C_{p,m}^{\sigma}$ coincides with D_p^{σ} with equivalent norms.

Proof. First we note that

$$(4.5) (I-T_t)x = AI_tx, x \in X,$$

where

$$(4.6) I_t x = \int_0^t T_s x ds .$$

Obviously we have

(4.7)
$$||I_t|| \leq M_t$$
, $t > 0$.

Let $x \in C_{p,m}^{\sigma}$. Then $(\lambda + A)^{-m}x$, $\lambda > 0$, belongs to $C_{p,2m}^{\sigma+m}$ since

$$\begin{split} t^{-\sigma-m} \, || \, (I - \, T_t)^{^{2m}} (\lambda + A)^{-m} x \, || \\ & \leq t^{-m} \, || \, I_t^m \, || \, || \, (A(\lambda + A)^{-1})^m \, || \, t^{-\sigma} \, || \, (I - \, T_t)^m x \, || \, . \end{split}$$

Hence we have by Proposition 4.2

$$egin{aligned} &(A(\lambda+A)^{-1})^m x=c \int_0^\infty t^{-m-1}(I-T_t)^{2m}(\lambda+A)^{-m}x\ &=c \int_0^{1/\lambda} (A(\lambda+A)^{-1})^m t^{-m-1}I_t^m(I-T_t)^m xdt\ &+c \int_{1/\lambda}^\infty (\lambda+A)^{-m}t^{-m-1}(I-T_t)^{2m}xdt \ , \end{aligned}$$

where $c = K_{m,2m}^{-1}$. Therefore,

$$egin{aligned} \lambda^{\sigma} \mid\mid (A(\lambda+A)^{-1})^m x \mid\mid &\leq c L^m M^m \lambda^{\sigma} \! \int_0^{1/\lambda}\!\! t^{\sigma} t^{-\sigma} \mid\mid (I-T_t)^m x \mid\mid dt/t \ &+ c \, M^m (2M)^m \lambda^{\sigma-m} \! \int_{1/\lambda}^\infty\!\! t^{\sigma-m} t^{-\sigma} \mid\mid (I-T_t)^m x \mid\mid dt/t \ . \end{aligned}$$

This shows that $x \in D_{p,m}^{\sigma}$.

Conversely, let $x \in D_{p,m}^{\sigma}$. Since

$$(A(\lambda + A)^{-1})^{2m}I_t^m x = (\lambda + A)^{-m}(I - T_t)^m(A(\lambda + A)^{-1})^m x$$
,

it follows that $I_t^m x \in D_{p,2m}^{\sigma+m}$. Thus by Proposition 2.2 we get

$$egin{aligned} (I-\ T_t)^m \, x &= A^m I_t^m \, x = c \! \int_0^\infty \lambda^{m-1} (A(\lambda+A)^{-1})^{2m} I_t^m x \ &= c \! \int_0^{1/t} \! I_t^m \lambda^{m-1} (A(\lambda+A)^{-1})^{2m} x d\lambda \ &+ c \! \int_{1/t}^\infty \! (I-\ T_t)^m \lambda^{m-1} (\lambda+A)^{-m} (A(\lambda+A)^{-1})^m x d\lambda \ , \end{aligned}$$

where $c = \Gamma(2m)/(\Gamma(m))^2$. By the same computation as above we conclude that $x \in C_{p,m}^{\sigma}$.

In particular, $C_{p,m}^{\sigma}$ does not depend on m. We denote $C_{p,m}^{\sigma}$ with the least $m > \sigma$ by C_p^{σ} . Because of Theorem 2.6, C_{∞}^{σ} coincides with C^{σ} of [2] if σ is not an integer.

THEOREM 4.4. Let $0 < \operatorname{Re} \alpha < m$. If there is a sequence $\varepsilon_j \rightarrow 0$ such that

(4.8)
$$y = w - \lim_{j \to \infty} \frac{1}{K_{\alpha,m}} \int_{\varepsilon_j}^{\infty} t^{-\alpha - 1} (I - T_i)^m x dt$$

exists, then $x \in D(A^{\alpha})$ and $y = A^{\alpha}x$. Conversely, if $x \in D(A^{\alpha})$, then

(4.9)
$$A^{\alpha}x = s - \lim_{\varepsilon \to 0} \frac{1}{K_{\alpha,m}} \int_{\varepsilon}^{\infty} t^{-\alpha-1} (I - T_t)^m x dt .$$

Proof. The former part is proved in the same way as Theorem 2.10.

To prove the latter part, let us assume for a moment that T_t satisfies

$$|| \ T_t || \leq M e^{-\mu t}, \qquad t>0$$

for a $\mu > 0$. Then A^{α} is the inverse of $A^{-\alpha}$ which can be represented by the absolutely convergent integral

(4.10)
$$A^{-\alpha}x = \frac{1}{\Gamma(\alpha)} \int_0^\infty s^{\alpha-1} T_s x ds$$

([2], Theorem 7.3 and Proposition 11.1).

Now it is enough to prove that

$$\frac{1}{K_{\alpha,m}\Gamma(\alpha)}\int_{\varepsilon}^{\infty}t^{-\alpha-1}(I-T_{t})^{m}dt\int_{0}^{\infty}s^{\alpha-1}T_{s}xds$$

converges strongly as $\varepsilon \to 0$, because the limit must coincide with $A^{\alpha}A^{-\alpha}x = x$.

We have

$$egin{aligned} I_s &= \int_{arepsilon}^{\infty} t^{-lpha-1} (I - \ T_t)^m dt \! \int_{0}^{\infty} \! s^{lpha-1} T_s x ds \ &= \sum\limits_{k=1}^{m} \, (-1)^{k+1} {m \choose k} k^{lpha} \! \int_{karepsilon}^{\infty} t^{-lpha-1} (I - \ T_t) dt \int_{0}^{\infty} \! s^{lpha-1} T_s x ds \; . \end{aligned}$$

Now

$$\begin{split} \int_{k\varepsilon}^{\infty} t^{-\alpha-1} T_t dt & \int_{0}^{\infty} s^{\alpha-1} T_s x ds \\ &= \int_{k\varepsilon}^{\infty} t^{-\alpha-1} dt \int_{t}^{\infty} (s-t)^{\alpha-1} T_s x ds \\ &= \int_{k\varepsilon}^{\infty} T_s x ds \int_{k\varepsilon}^{s} t^{-\alpha-1} (s-t)^{\alpha-1} dt \\ &= \frac{1}{\alpha (k\varepsilon)^{\alpha}} \int_{k\varepsilon}^{\infty} (s-k\varepsilon)^{\alpha} T_s x ds / s . \end{split}$$

Furthermore,

$$\sum\limits_{k=1}^m{(-1)^{k+1}{m \choose k}k^lpha \int_{karepsilon}^\infty{t^{-lpha-1}dt} \int_0^\infty{s^{lpha-1}T_sxds} \ = rac{1}{lphaarepsilon^lpha} \int_0^\infty{s^{lpha-1}T_sxds} \;,$$

so that we obtain

$$I_{\varepsilon} = rac{1}{lpha arepsilon^{lpha}} \sum_{k=0}^m \, (-1)^k {m \choose k} \int_{k arepsilon}^\infty (s \, - \, k arepsilon)^{lpha} \, T_s x ds / s \, \, .$$

Since $T_s x \to x$ as $s \to 0$, it follows that

$$\begin{split} \frac{1}{\alpha \varepsilon^{\alpha}} \sum_{k=0}^{m} (-1)^{k} {m \choose k} \int_{k\varepsilon}^{m\varepsilon} (s - k\varepsilon)^{\alpha} T_{s} \alpha ds / s \\ &= \frac{1}{\alpha} \sum_{k=0}^{m} (-1)^{k} {m \choose k} \int_{k}^{m} (s - k)^{\alpha} T_{\varepsilon s} x ds / s \\ &\to \frac{1}{\alpha} \sum_{k=0}^{m} (-1)^{k} {m \choose k} \int_{k}^{m} (s - k)^{\alpha} ds / s x \text{ as } \varepsilon \to 0 . \end{split}$$

On the other hand, the Taylor expansion up to order m gives

$$egin{aligned} f_arepsilon(s) &= \sum\limits_{k=0}^m {(-1)^k {m \choose k}} (s-karepsilon)^lpha \ &= \sum\limits_{k=0}^m {(-1)^k {m \choose k}} \, rac{lpha (lpha - 1) \cdots (lpha - m + 1)}{m!} \, (s-k'arepsilon)^{lpha - m} (-karepsilon)^m \; , \end{aligned}$$

where 0 < k' < k. Hence we have

$$\begin{split} & \frac{1}{\alpha \varepsilon^{\alpha}} \int_{m\varepsilon}^{\infty} f_{\varepsilon}(s) T_s x ds/s \\ & = \frac{(\alpha-1) \cdots (\alpha-m+1)}{m!} \sum_{k=0}^{m} (-1)^{k+m} {m \choose k} k^m \int_{m}^{\infty} (s-k')^{\alpha-m} T_{\varepsilon s} x ds/s \; . \end{split}$$

Since $(s - k')^{\alpha - m} s^{-1}$ is absolutely integrable, this converges to a constant times x as $\varepsilon \to 0$.

To prove (4.9) in the general case, it is sufficient to show that
(4.11)
$$(A^{\alpha} - (\mu + A)^{\alpha})(\mu + A)^{-\alpha}x$$

 $= \frac{1}{K_{\alpha,m}} \int_{0}^{\infty} t^{-\alpha-1} \{(I - T_t)^m - (I - e^{-\mu t}T_t)^m\}(\mu + A)^{-\alpha}xdt,$
 $\mu > 0, x \in X,$

and that the integral converges absolutely.

By Theorem 2.6, (4.5) and a similar decomposition of $I - e^{-\mu t} T_t$ we have

$$(I-T_t)^m(I-e^{-\mu t}T_t)^n x=O(t^\sigma),\,x\in C^{\,\sigma}_\infty,\,\,m+n>\sigma$$
 .

Since $(\mu + A)^{-\alpha} x \in D(A^{\alpha}) \subset C_{\infty}^{\operatorname{Re}\alpha}$, it follows that

$$egin{aligned} &\{(I - T_t)^m - (I - e^{-\mu t} T_t)^m\}x \ &= (e^{-\mu t} - 1) T_t \{(I - T_t)^{m-1} + \cdots + (I - e^{-\mu t} T_t)^{m-1}\}x \ &= O(t^{\min(\operatorname{Rea}, m-1)+1}) \ . \end{aligned}$$

This shows that integral (4.11) is absolutely convergent. (4.11) is valid for all $x \in D(A)$ which is dense in X. Therefore, (4.11) holds for all $x \in X$.

5. Infinitesimal generators of bounded analytic semi-groups. Let T_t be a semi-group of operators analytic in a sector $|\arg t| < \pi/2 - \omega$, $0 \le \omega < \pi/2$, and uniformly bounded in each smaller sector $|\arg t| \le \pi/2 - \omega - \varepsilon$, $\varepsilon > 0$. We call such a semi-group a bounded analytic semi-group.

It is known that the negative of an operator A generates a bounded analytic semi-group if and only if A is of type $(\omega, M(\theta))$ for some $0 \leq \omega < \pi/2$. A bounded strongly continuous semi-group T_t has a bounded analytic extension if there is a complex number $\operatorname{Re} \alpha > 0$ such that

$$||A^{\alpha}T_t|| \leq Ct^{-\operatorname{Re}\alpha}, t > 0,$$

with a constant C independent of t. Conversely, if T_t is bounded analytic,

(5.1) holds for all $\operatorname{Re} \alpha > 0$ ([2], Theorems 12.1 and 12.2).

We assume throughout this section that -A is the infinitesimal generator of a bounded analytic semi-group T_i .

DEFINITION 5.1. Let $0 < \sigma < \operatorname{Re} \beta$ and $1 \leq p \leq \infty$. We denote by $B_{p,\beta}^{\sigma} = B_{p,\beta}^{\sigma}(A)$ the set of all $x \in X$ such that

(5.2)
$$t^{\operatorname{Re}\beta-\sigma}A^{\beta}T_{t}x \in L^{p}(X).$$

 $B_{p,\beta}^{\sigma}$ is a Banach space with the norm

$$||x||_{B^{\sigma}_{p,\beta}} = ||x|| + ||t^{\mathrm{Re}\beta-\sigma}A^{\beta}T_{t}x||_{L^{p}(X)}$$

PROPOSITION 5.2. Let $0 < \operatorname{Re} \alpha < \sigma$. Then every $x \in B^{\sigma}_{p,\beta}$ belongs to $D(A^{\alpha})$ and

(5.3)
$$A^{\alpha}x = \frac{1}{\Gamma(\beta - \alpha)} \int_{0}^{\infty} t^{\beta - \alpha - 1} A^{\beta} T_{t} x dt ,$$

where the integral converges absolutely.

Proof. Since $A^{\beta}T_{t}x$ is of order $t^{\sigma-\operatorname{Re}\beta}$ as $t \to 0$ and of order $t^{-\operatorname{Re}\beta+\epsilon}$ as $t \to \infty$ in the sense of $L^{p}(X)$, the integral converges absolutely for $0 < \operatorname{Re} \alpha < \sigma$.

To prove (5.3), first let $x \in D(A^{\beta})$. Then it follows from [2], Proposition 11.1 and Theorem 7.3 that

$$egin{aligned} &rac{1}{\Gamma(eta-lpha)} \int_0^\infty t^{eta-lpha-1} A^eta T_t x dt \ &= s ext{-lim} rac{1}{\Gamma(eta-lpha)} \int_0^\infty t^{eta-lpha-1} e^{-arepsilon t} T_t A^eta x dt \ &= s ext{-lim} (arepsilon+A)^{lpha-eta} A^eta x \ &= s ext{-lim} A^{eta-lpha} (arepsilon+A)^{lpha-eta} A^eta x \ &= s ext{-lim} A^{eta-lpha} (arepsilon+A)^{lpha-eta} A^eta x \ . \end{aligned}$$

Because of [2], Propositions 6.2 and 6.3, $A^{\beta-\alpha}(\varepsilon + A)^{\alpha-\beta}$ converges strongly to the identity on $\overline{R(A)}$ as $\varepsilon \to 0$. Since $A^{\alpha}X$ is contained in $\overline{R(A)}$ ([2], Proposition 4.3), (5.3) holds for all $x \in D(A^{\beta})$. In the general case (5.3) is proved by approximating $x \in B_{p,\beta}^{\sigma}$ by $(\mu(\mu + A)^{-1})^m x$, $m > \operatorname{Re} \beta$, which belongs to $D(A^{\beta})$.

THEOREM 5.3. $B_{p,\beta}^{\sigma}$ coincides with D_p^{σ} . In particular, $B_{p,\beta}^{\sigma}$ does not depend on β .

Proof. Let $x \in B_{p,\beta}^{\sigma}$. If *m* is an integer greater than $\operatorname{Re} \beta, x$ belongs to $B_{p,m}^{\sigma}$, for

108

$$t^{m-\sigma}A^mT_tx = t^{m-\beta}A^{m-\beta}T_{t/2} \cdot t^{\beta-\sigma}A^{\beta}T_{t/2}x$$

and $t^{m-\beta}A^{m-\beta}T_{t/2}$ is uniformly bounded. Since

$$t^{m-\sigma}A^{2m}T_t(\lambda+A)^{-m}x = (A(\lambda+A)^{-1})^mt^{m-\sigma}A^mT_tx$$
 ,

 $(\lambda + A)^{-m}x$ belongs to $B_{p,2m}^{\sigma+m}$. Hence it follows from Proposition 5.2 that

$$egin{aligned} &A^{m}(\lambda+A)^{-m}x=c\int_{0}^{\infty}t^{m}A^{2m}T_{t}(\lambda+A)^{-m}xdt/t\ &=c(A(\lambda+A)^{-1})^{m}\int_{0}^{1/\lambda}t^{m}A^{m}\,T_{t}xdt/t\ &+c(\lambda+A)^{-m}\!\int_{1/\lambda}^{\infty}t^{m}A^{2m}\,T_{t}xdt/t\ , \end{aligned}$$

where $c = \Gamma(m)^{-1}$. The rest of the proof is the same as that of Theorem 4.3.

Conversely, assume that $x \in D_{p,m}^{\sigma} = D_{p,2m}^{\sigma}$. Since $T_{t}x, t > 0$, belongs to any $D_{p,m}^{\sigma}$, we have by (2.1)

$$egin{aligned} A^eta \, T_t x &= c \int_0^\infty \lambda^{eta - 1} (A(\lambda + A)^{-1})^{2m} T_t x d\lambda \ &= c \, T_t \int_0^{1/t} \lambda^{eta - 1} (A(\lambda + A)^{-1})^{2m} x d\lambda \ &+ c A^m T_t \int_{1/t}^\infty \lambda^{eta - 1} (\lambda + A)^{-m} (A(\lambda + A)^{-1})^m x d\lambda \ , \end{aligned}$$

where $c = \Gamma(2m)/(\Gamma(\beta)\Gamma(2m-\beta))$. Arguing as before, we get $x \in B_{p,\beta}^{\sigma}$.

Theorem 5.4 Let $0 < \operatorname{Re} \alpha < \operatorname{Re} \beta$. If

(5.4)
$$y = w - \lim_{\varepsilon_j \to 0} \frac{1}{\Gamma(\beta - \alpha)} \int_{\varepsilon_j}^{\infty} t^{\beta - \alpha - 1} A^{\beta} T_i x dt$$

exists, then $x \in D(A^{\alpha})$ and $y = A^{\alpha}x$. If $x \in D(A^{\alpha})$, then

(5.5)
$$A^{\alpha}x = s - \lim_{\varepsilon \to 0} \frac{1}{\Gamma(\beta - \alpha)} \int_{\varepsilon}^{\infty} t^{\beta - \alpha - 1} A^{\beta} T_{t} x dt$$

Proof. The former part is proved in the same way as Theorem 2.10. Let us prove the latter assuming that $\mu - A$ generates a bounded analytic semi-group for a $\mu > 0$. $D(A^{\alpha})$ is the same as the range $R(A^{-\alpha})$ in this case, and we have $A^{\beta}T_{t}A^{-\alpha}x = A^{\beta-\alpha}T_{t}x$ by the additivity of fractional powers. So it is sufficient to prove the following:

(5.6)
$$x = s - \lim_{\varepsilon \to 0} \frac{1}{\Gamma(\beta)} \int_{\varepsilon}^{\infty} t^{\beta - 1} A^{\beta} T_{t} x dt, \qquad x \in X ,$$

when $\operatorname{Re} \beta > 0$.

First we note that if $\operatorname{Re} \alpha > 0$, then

(5.7)
$$t^{\alpha}A^{\alpha}T_{t}x \to 0 \text{ as } t \to 0 \text{ or as } t \to \infty$$

for each $x \in X$, because (5.7) holds for $x \in D(A)$ and $t^{\alpha}A^{\alpha}T_{t}$ is uniformly bounded.

Let β be equal to an integer *m*. Since $d/dt A^{\beta}T_t x = -A^{\beta+1}T_t x$, we have, by integrating by parts,

$$\int_{arepsilon}^{\infty} t^{m-1}A^m T_t x dt \ = arepsilon^{m-1}A^{m-1}T_{arepsilon}x + (m-1)\!\int_{arepsilon}^{\infty} t^{m-2}A^{m-1}T_t x dt \;.$$

(5.7) shows that the first term tends to zero as $\varepsilon \to 0$ if m > 1. When m = 1, we have

$$\int_{arepsilon}^{\infty} AT_{\iota}xdt = T_{arepsilon}x
ightarrow x ext{ as } arepsilon
ightarrow 0$$
 .

Thus (5.6) holds if β is an integer.

If β is not an integer, take an integer $m > \operatorname{Re} \beta$. We have

$$egin{aligned} A^eta T_t &x = A^{eta - m} A^m T_t x \ &= rac{1}{arGamma(m-eta)} \int_t^\infty (s-t)^{m-eta - 1} A^m T_s x ds, \qquad t>0 \;, \end{aligned}$$

by [2], Proposition 11.1. Therefore,

$$\begin{split} &\frac{1}{\Gamma(\beta)}\int_{\mathfrak{e}}^{\infty}t^{\beta-1}A^{\beta}T_{t}xdt\\ &=\frac{1}{\Gamma(\beta)\Gamma(m-\beta)}\int_{\mathfrak{e}}^{\infty}A^{m}T_{s}xds\int_{\mathfrak{e}}^{s}t^{\beta-1}(s-t)^{m-\beta-1}dt\\ &=\frac{1}{\Gamma(m)}\int_{\mathfrak{e}}^{\infty}s^{m-1}A^{m}T_{s}xds\\ &-\frac{\varepsilon^{m}}{\Gamma(\beta)\Gamma(m-\beta)}\int_{\mathfrak{1}}^{\infty}A^{m}T_{\varepsilon\sigma}xd\sigma\int_{\mathfrak{0}}^{1}\tau^{\beta-1}(\sigma-\tau)^{m-\beta-1}d\tau \ . \end{split}$$

The first term tends to x as $\varepsilon \to 0$. The second term converges to zero, because

$$\int_{1}^{\infty} \sigma^{-m} d\sigma \int_{0}^{1} \tau^{\beta-1} (\sigma - \tau)^{m-\beta-1} d\tau$$

is absolutely convergent and $(\varepsilon\sigma)^m A^m T_{\varepsilon\sigma} x$ tends to zero as $\varepsilon \to 0$.

The proof in the general case is obtained from the absolutely convergent integral representation:

110

$$egin{aligned} &(A^lpha-(\mu+A)^lpha)(\mu+A)^{-lpha}x\ &=rac{1}{\varGamma(eta-lpha)}\int_0^\infty t^{eta-lpha-1}(A^eta-e^{-\mu t}(\mu+A)^eta)T_t(\mu+A)^{-lpha}xdt \;. \end{aligned}$$

The absolute convergence follows from [2], Propositions 6.2 and 6.3.

References

1. T. Kato, A generalization of the Heinz inequality, Proc. Japan Acad. 37 (1961), 305-308.

2. H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285-346.

3. J.-L. Lions, Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs, J. Math. Soc. Japan 14 (1962), 233-248.

4. J.-L. Lions et J. Peetre, Sur une classe d'espaces d'interpolation, Publications Math. Inst. Hautes Etudes Sci. 19 (1964), 5-68.

5. A. E. Taylor, Spectral theory of closed distributive operators, Acta Math. 84 (1950), 189-224.

Received November 19, 1965.

STANFORD UNIVERSITY AND

UNIVERSITY OF TOKYO