FRACTIONAL POWERS OF OPERATORS, II INTERPOLATION SPACES

Hikosaburo Komatsu

Abstract

This is a continuation of an earlier paper 'Fractional Powers of Operators' published in this Journal concerning fractional powers $A^{\alpha}, \alpha \in C$, of closed linear operators A in Banach spaces X such that the resolvent $(\lambda+A)^{-1}$ exists for all $\lambda>0$ and $\lambda(\lambda+A)^{-1}$ is uniformly bounded. Various integral representations of fractional powers and relationship between fractional powers and interpolation spaces, due to Lions and others, of X and domain $D\left(A^{\alpha}\right)$ are investigated.

In $\S 1$ we define the space $D_{p}^{\sigma}(A), 0<\sigma<\infty, 1 \leqq p \leqq \infty$ or $p=$ $\infty-$, as the set of all $x \in X$ such that

$$
\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x \in L^{p}(X),
$$

where m is an integer greater than σ and $L^{p}(X)$ is the L^{p} space of X-valued functions with respect to the measure $d \lambda / \lambda$ over $(0, \infty)$.

In §2 we give a new definition of fractional power A^{α} for Re $\alpha>0$ and prove the coincidence with the definition given in [2]. Convexity of $\left\|A^{\alpha} x\right\|$ is shown to be an immediate consequence of the definition. The main result of the section is Theorem 2.6 which says that if $0<\operatorname{Re} \alpha<\sigma, x \in D_{p}^{\sigma}$ is equivalent to $A^{\alpha} x \in D_{p}^{\sigma-\mathrm{Re} \alpha}$. In particular, we have $D_{1}^{\text {Re }} \subset D\left(A^{\alpha}\right) \subset D_{\infty}^{\mathrm{Re} \mathrm{\alpha}}$. For the application of fractional powers it is important to know whether the domain $D\left(A^{\alpha}\right)$ coincides with $D_{p}^{\text {Rea }}$ for some p. We see, as a consequence of Theorem 2.6, that if we have $D\left(A^{\alpha}\right)=D_{p}^{\text {Re } \alpha}$ for an α, it holds for all $\operatorname{Re} \alpha>0$. An example and a counterexample are given. At the end of the section we prove an integral representation of fractional powers.

Section 3 is devoted to the proof of the coincidence of D_{p}^{σ} with the interpolation space $S\left(p, \sigma / m, X ; p, \sigma / m-1, D\left(A^{m}\right)\right)$ due to LionsPeetre [4]. We also give a direct proof of the fact that $D_{p}^{\sigma}\left(A^{\alpha}\right)=$ $D_{p}^{\alpha \sigma}(A)$.

In $\S 4$ we discuss the case in which $-A$ is the infinitesimal generator of a bounded strongly continuous semi-group T_{t}. A new space $C_{p, m}^{\sigma}$ is introduced in terms of $T_{t} x$ and its coincidence with D_{p}^{σ} is shown. Since $C_{\infty, m}^{\sigma}, \sigma \neq$ integer, coincides with C^{σ} of [2], this solves a question of [2] whether $C^{\sigma}=D^{\sigma}$ or not affirmatively. The coincidence of $C_{p, m}^{\sigma}$ with $S\left(p, \sigma / m, X ; p, \sigma / m-1, D\left(A^{m}\right)\right)$ has been shown by Lions-Peetre [4]. Further, another integral representation of fractional powers is obtained.

Finally, $\S 5$ deals with the case in which $-A$ is the infinitesimal generator of a bounded analytic semi-group T_{t}. Analogous results to $\S 4$ are obtained in terms of $A^{\beta} T_{t} x$.

1. Spaces D_{p}^{σ}. Throughout this paper we assume that A is a closed linear operator with a dense domain $D(A)$ in a Banach space X and satisfies

$$
\begin{equation*}
\left\|\lambda(\lambda+A)^{-1}\right\| \leqq M, \quad 0<\lambda<\infty \tag{1.1}
\end{equation*}
$$

We defined fractional powers in [2] for operators A which may not have dense domains. It was shown, however, that if $\operatorname{Re} \alpha>0, A^{\alpha}$ is an operator in $\overline{D(A)}$ and it is determined by a restriction A_{p} which has a dense domain in $\overline{D(A)}$. Thus our requirement on domain $D(A)$ is not restrictive as far as we consider exponent α with positive real part. As a consequence we have

$$
\begin{equation*}
\left(\lambda(\lambda+A)^{-1}\right)^{m} x \rightarrow x, \quad \lambda \rightarrow \infty, m=1,2, \cdots \tag{1.2}
\end{equation*}
$$

for all $x \in X$. As in [2] L stands for a bound of $A(\lambda+A)^{-1}=I-$ $\lambda(\lambda+A)^{-1}$:

$$
\begin{equation*}
\left\|A(\lambda+A)^{-1}\right\| \leqq L, \quad 0<\lambda<\infty \tag{1.3}
\end{equation*}
$$

We will frequently make use of spaces of X-valued functions $f(\lambda)$ defined on $(0, \infty)$. By $L^{p}(X)$ we denote the space of all X-valued measurable functions $f(\lambda)$ such that

$$
\begin{align*}
& \left.\|f\|_{L^{p}}=\left(\int_{0}^{\infty}\|f(\lambda)\|^{p} d \lambda / \lambda\right)\right)^{1 / p}<\infty \text { if } 1 \leqq p<\infty \tag{1.4}\\
& \|f\|_{L^{\infty}}=\sup _{0<\lambda<\infty}\|f(\lambda)\|<\infty \text { if } p=\infty
\end{align*}
$$

We admit as an index $p=\infty-. \quad L^{\infty-}(X)$ represents the subspace of all functions $f(\lambda) \in L^{\infty}(X)$ which converge to zero as $\lambda \rightarrow 0$ and as $\lambda \rightarrow \infty$. Since $d \lambda / \lambda$ is a Haar measure of the multiplicative group $(0, \infty)$, an integral kernel $K(\lambda / \mu)$ with $\int_{0}^{\infty}|K(\lambda)| d \lambda / \lambda<\infty$ defines a bounded integral operator in $L^{p}(X), 1 \leqq p \leqq \infty$.

Definition 1.1. Let $0<\sigma<m$, where σ is a real number and m an integer, and p be as above. We denote by $D_{p}^{\sigma}{ }_{m}=D_{p, m}^{\sigma}(A)$ the space of all $x \in X$ such that $\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x \in L^{p}(X)$ with the norm

$$
\begin{equation*}
\|x\|_{D_{p, m}^{\sigma}}=\|x\|_{X}+\left\|\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x\right\|_{L^{p}(X)} \tag{1.5}
\end{equation*}
$$

$D_{\infty, 1}^{\sigma}$ and $D_{\infty-, 1}^{\sigma}$ coincide with D^{σ} and D_{*}^{σ} of [2], respectively.
It is easy to see that $D_{p, m}^{\sigma}$ is a Banach space. Since $\left(A(\lambda+A)^{-1}\right)^{m}$ is uniformly bounded, only the behavior near infinity of $\left(A(\lambda+A)^{-1}\right)^{m} x$
decides whether x belongs to $D_{p, m}^{\sigma}$ or not.
Proposition 1.2. If integers m and n are greater than σ, the spaces $D_{p, m}^{\sigma}$ and $D_{p, n}^{\sigma}$ are identical and have equivalent norms.

Proof. It is enough to show that $D_{p, m}^{\sigma}=D_{p, m+1}^{\sigma}$ when $m>\sigma$. Because of (1.3) every $x \in D_{p, m}^{\sigma}$ belongs to $D_{p, m+1}^{\sigma}$. Since

$$
\frac{d}{d \lambda}\left(\lambda^{m}\left(A(\lambda+A)^{-1}\right)^{m}\right)=m \lambda^{m-1}\left(A(\lambda+A)^{-1}\right)^{m+1}
$$

we have

$$
\begin{equation*}
\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x=m \lambda^{\sigma-m} \int_{0}^{\lambda} \mu^{m-\sigma} \mu^{\sigma}\left(A(\mu+A)^{-1}\right)^{m+1} x d \mu / \mu . \tag{1.6}
\end{equation*}
$$

This shows

$$
\left\|\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x\right\|_{L^{p}(X)} \leqq \frac{m}{m-\sigma}\left\|\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m+1} x\right\|_{L^{p}(X)}
$$

Definition 1.3. We define $D_{p}^{\sigma}, \sigma>0,1 \leqq p \leqq \infty$, as the space $D_{p, m}^{\sigma}$ with the least integer m greater than σ. We use $q_{p}^{\sigma}(x)$ to denote the second term of (1.5), so that D_{p}^{σ} is a Banach space with the norm $\|x\|+q_{p}^{\sigma}(x)$.

Proposition 1.4. If $\mu>0, \mu(\mu+A)^{-1}$ maps D_{p}^{σ} continuously into $D_{p}^{\sigma+1}$. Futhermore, if $p \leqq \infty-$, we have for every $x \in D_{p}^{\sigma}$

$$
\begin{equation*}
\mu(\mu+A)^{-1} x \rightarrow x\left(D_{p}^{\sigma}\right) \quad \text { as } \quad \mu \rightarrow \infty \tag{1.7}
\end{equation*}
$$

Proof. Let $x \in D_{p}^{\sigma}$. Since

$$
\begin{aligned}
& \left\|\lambda^{\sigma+1}\left(A(\lambda+A)^{-1}\right)^{m+1} \mu(\mu+A)^{-1} x\right\| \\
& \quad \leqq \mu\left\|\lambda(\lambda+A)^{-1}\right\|\left\|A(\mu+A)^{-1}\right\|\left\|\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x\right\| \\
& \quad \leqq \mu M L\left\|\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x\right\|
\end{aligned}
$$

$\mu(\mu+A)^{-1} x$ belongs to $D_{p}^{\sigma+1}$.
Let $p \leqq \infty$-. If $x \in D(A)$, then

$$
\begin{aligned}
& \left(A(\lambda+A)^{-1}\right)^{m} \mu(\mu+A)^{-1} x \\
& \quad=\left(A(\lambda+A)^{-1}\right)^{m} x-\left(A(\lambda+A)^{-1}\right)^{m}(\mu+A)^{-1} A x
\end{aligned}
$$

converges to $\left(A(\lambda+A)^{-1}\right)^{m} x$ uniformly in λ. On the other hand, $\left(A(\lambda+A)^{-1}\right)^{m} \mu(\mu+A)^{-1}$ is uniformly bounded. Thus it follows that $\left(A(\lambda+A)^{-1}\right)^{m} \mu(\mu+A)^{-1} x$ converges to $\left(A(\lambda+A)^{-1}\right)^{m} x$ uniformly in λ for every $x \in X$. Since $\left\|\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} \mu(\mu+A)^{-1} x\right\| \leqq M\left\|\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x\right\|$, this implies (1.7).

Theorem 1.5. $D_{p}^{\sigma} \subset D_{q}^{\tau}$ if $\sigma>\tau$ or if $\sigma=\tau$ and $p \leqq q$. The injection is continuous. If $q \leqq \infty-, D_{p}^{\sigma}$ is dense in D_{q}^{τ}.

Proof. First we prove that $D_{p}^{\sigma}, p<\infty$, is continuously contained in D_{∞}^{σ}.

Let $x \in D_{p}^{\sigma}$. Applying Hölder's inequality to (1.6), we obtain

$$
\left\|\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x\right\| \leqq \frac{m}{\left((m-\sigma) p^{\prime}\right)^{1 / p^{\prime}}}\left\|\mu^{\sigma}\left(A(\mu+A)^{-1}\right)^{m+1} x\right\|_{L^{p}(X)}
$$

where $p^{\prime}=p /(p-1)$. Hence $x \in D_{\infty}^{\sigma}$. Considering the integral over the interval (μ, λ), we have similarly

$$
\begin{aligned}
& \left\|\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x\right\| \leqq \frac{\mu^{m-\sigma}}{\lambda^{m-\sigma}}\left\|\mu^{\sigma}\left(A(\mu+A)^{-1}\right)^{m} x\right\| \\
& \left.+\frac{m}{\left((m-\sigma) p^{\prime}\right)^{1 / p^{\prime}}}\left(1-\frac{\mu^{m-\sigma}}{\lambda^{m-\sigma}}\right)\left(\int_{\mu}^{\lambda}\left\|\tau^{\sigma}\left(A(\tau+A)^{-1}\right)^{m+1} x\right\|^{p} d \tau / \tau\right)^{1 / p}\right)
\end{aligned}
$$

The second term tends to zero as $\mu \rightarrow \infty$ uniformly in $\lambda>\mu$ and so does the first term as $\lambda \rightarrow \infty$. Therefore, $x \in D_{\infty-}^{\sigma}$.

Since $\lambda^{o}\left(A(\lambda+A)^{-1}\right)^{m} x \in L^{p}(X) \cap L^{\infty-}(X)$, it is in any $L^{q}(X)$ with $p \leqq q<\infty$.

If $\tau<\sigma, D_{\infty}^{\sigma}$ is contained in D_{q}^{τ} for any q. Hence every D_{q}^{σ} is contained in D_{q}^{τ}.

Let $q \leqq \infty$-. Repeated application of Proposition 1.4 shows that $D_{q}^{\tau+m}$ is dense in D_{q}^{τ} for positive integer m. Since D_{p}^{o} contains some $D_{q}^{\tau+m}$, it is dense in D_{q}^{τ}.
2. Fractional powers. If $x \in D_{1}^{\sigma}$, the integral

$$
\begin{equation*}
A_{\sigma}^{\alpha} x=\frac{\Gamma(m)}{\Gamma(\alpha) \Gamma(m-\alpha)} \int_{0}^{\infty} \lambda^{\alpha-1}\left(A(\lambda+A)^{-1}\right)^{m} x d \lambda \tag{2.1}
\end{equation*}
$$

converges absolutely for $0<\operatorname{Re} \alpha \leqq \sigma$ and represents a continuous operator from D_{1}^{σ} into X. Moreover, $A_{\alpha}^{\sigma} x$ is analytic in α for $0<\operatorname{Re} \alpha<\sigma$.
$A_{\sigma}^{\alpha} x$ does not depend on m. In fact, substitution of (1.6) into (2.1) gives

$$
\begin{aligned}
A_{\sigma}^{\alpha} x & =\frac{\Gamma(m) m}{\Gamma(\alpha) \Gamma(m-\alpha)} \int_{0}^{\infty} \mu^{m-1}\left(A(\mu+A)^{-1}\right)^{m+1} x d \mu \int_{\mu}^{\infty} \lambda^{\alpha-m-1} d \lambda \\
& =\frac{\Gamma(m+1)}{\Gamma(\alpha) \Gamma(m+1-\alpha)} \int_{0}^{\infty} \mu^{\alpha-1}\left(A(\mu+A)^{-1}\right)^{m+1} x d \mu
\end{aligned}
$$

This shows that $A_{\sigma}^{\alpha} x$ depends only on x and not on D_{1}^{σ} to which x belongs.

Obviously we have

$$
\begin{equation*}
A_{\sigma}^{\alpha}\left(\mu(\mu+A)^{-1}\right)^{m+1} x=\left(\mu(\mu+A)^{-1}\right)^{m+1} A_{\sigma}^{\alpha} x, x \in D_{1}^{\alpha} . \tag{2.2}
\end{equation*}
$$

Since the left-hand side and $\left(\mu(\mu+A)^{-1}\right)^{m+1}$ are continuous in X, and $\left(\mu(\mu+A)^{-1}\right)^{m+1}$ is one-to-one, it follows that A_{σ}^{α} is closable in X. In view of Theorem 1.5 the smallest closed extension does not depend on σ.

Definition 2.1. The fractional power A^{α} for $\operatorname{Re} \alpha>0$ is the smallest closed extension of A_{σ}^{α} for a $\sigma \geqq \operatorname{Re} \alpha$.

Proposition 2.2. If α is an integer $m>0, A^{\alpha}$ coincides with the power A^{m}.

To prove the proposition we prepare a lemma.
Lemma 2.3. If m is an integer $m>0$,

$$
\begin{equation*}
A^{m} x=\mathrm{s}-\lim _{N \rightarrow \infty} m \int_{0}^{N} \lambda^{m-1}\left(A(\lambda+A)^{-1}\right)^{m+1} \rightsquigarrow d \lambda \tag{2.3}
\end{equation*}
$$

Proof. By (1.6) we have

$$
m \int_{0}^{N} \lambda^{m-1}\left(A(\lambda+A)^{-1}\right)^{m+1} x=N^{m}\left(A(N+A)^{-1}\right)^{m} x
$$

If $x \in D\left(A^{m}\right), N^{m}\left(A(N+A)^{-1}\right)^{m} x=\left(N(N+A)^{-1}\right)^{m} A^{m} x$ tends to $A^{m} x$ as $N \rightarrow \infty$ by (1.2). Conversely if $N^{m}\left(A(N+A)^{-1}\right)^{m} x=A^{m}\left(N(N+A)^{-1}\right)^{m} x$ converges to an element $y, x \in D\left(A^{m}\right)$ and $y=A^{m} x$. For A^{m} is closed (see Taylor [5]) and $\left(N(N+A)^{-1}\right)^{m} x$ converges to x.

Proof of Proposition 2.2. If $x \in D_{1}^{\sigma}, \sigma>m$, integral (2.3) converges absolutely. Therefore it follows from Lemma 2.3 that $x \in D\left(A^{m}\right)$ and $A^{\alpha} x=A^{m} x$. Thus A^{m} is an extension of A^{α}. Conversely if $x \in D\left(A^{m}\right)$, then $\mu(\mu+A)^{-1} x \in D\left(A^{m+1}\right) \subset D_{\infty-1}^{m+1}$ and we have

$$
\begin{aligned}
A^{\alpha}\left(\mu(\mu+A)^{-1}\right) x & =\left(\mu(\mu+A)^{-1}\right) A^{m} x \\
& \rightarrow A^{m} x \text { as } \mu \rightarrow \infty
\end{aligned}
$$

Since $\mu(\mu+A)^{-1} x \rightarrow x$, it follows that $x \in D\left(A^{\alpha}\right)$ and $A^{\alpha} x=A^{m} x$.
The fractional power A^{α} defined above coincides with A_{+}^{α} defined in [2]. In fact, if $m=1$, integeral (2.1) is the same as integral (4.2) of [2] for $n=0$. Thus

$$
\begin{equation*}
A^{\alpha} x=A_{+}^{\alpha} x \tag{2.4}
\end{equation*}
$$

holds for $0<\operatorname{Re}<1$ if $x \in D(A)$. If $x \in D\left(A^{m}\right), m \geqq 1$, both sides of
(2.4) are analytic for $0<\operatorname{Re} \alpha<m$, so that (2.4) holds there. Since $D_{1}^{m} \subset D\left(A^{m}\right) \subset D_{\infty-}^{m}$ by Lemma 2.3 and (1.2), both A^{a} and A_{+}^{α} are the smallest closed extension of their restrictions to $D\left(A^{m}\right), m>\operatorname{Re} \alpha$. Thus we have $A^{\alpha}=A_{+}^{\alpha}$ for all $\operatorname{Re} \alpha>0$.

Consequently we may employ all results of [2]. In particular, fractional powers satisfy additivity

$$
\begin{equation*}
A^{\alpha+\beta}=A^{\alpha} A^{\beta}, \quad \operatorname{Re} \alpha>0, \operatorname{Re} \beta>0 \tag{2.5}
\end{equation*}
$$

in the sense of product of operators and multiplicativity

$$
\begin{equation*}
\left(A^{\alpha}\right)^{\beta}=A^{\alpha \beta}, \quad 0<\alpha<\pi / \omega, \operatorname{Re} \beta>0, \tag{2.6}
\end{equation*}
$$

where ω is the minimum number such that the resolvent set of $-A$ contains the sector

$$
|\arg \lambda|<\pi-\omega
$$

Such an operator is said to be of type ($\omega, M(\theta)$) if

$$
\sup _{|\arg \lambda|=\theta}\left\|\lambda(\lambda+A)^{-1}\right\| \leqq M(\theta) .
$$

Any operator with a dense domain which satisfies (1.1) is of type $(\omega, M(\theta))$ with $0 \leqq \omega<\pi$.

Some properties of fractional powers, however, are derived more easily through definition (2.1).

Proposition 2.4. If $0<\operatorname{Re} \alpha<\sigma$, there is a constant $C(\alpha, \sigma, p)$ such that

$$
\begin{equation*}
\left\|A^{\alpha} x\right\| \leqq C(\alpha, \sigma, p) q_{p}^{\sigma}(x)^{\mathrm{Re} \alpha / \sigma}\|x\|^{(\sigma-\mathrm{Re} \alpha) / \sigma}, x \in D_{p}^{\sigma} \tag{2.7}
\end{equation*}
$$

Proof. Hölder's inequality gives

$$
\begin{aligned}
&\left\|A^{\alpha} x\right\| \leqq\left|\frac{\Gamma(m)}{\Gamma(\alpha) \Gamma(m-\alpha)}\right|\left[\int_{0}^{N}\left|\lambda^{\alpha-1}\right|\left\|\left(A(\lambda+A)^{-1}\right)^{m} x\right\| d \lambda\right. \\
&\left.\quad+\int_{N}^{\infty}\left|\lambda^{\alpha-\sigma}\right|\left\|\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x\right\| d \lambda / \lambda\right] \\
& \leqq\left|\frac{\Gamma(m)}{\Gamma(\alpha) \Gamma(m-\alpha)}\right|\left[\frac{L^{m} N^{\mathrm{Re} \alpha}}{\operatorname{Re} \alpha}\|x\|+\frac{N^{\mathrm{R} c \alpha-\sigma}}{\left((\sigma-\operatorname{Re} \alpha) p^{\prime}\right)^{1 / p^{\prime}}} q_{p}^{\sigma}(x)\right] .
\end{aligned}
$$

Taking the minimum of the right-hand side when N varies $0<N<\infty$, we obtain (2.7).

Proposition 2.5. If $\mu>0$, then

$$
\begin{equation*}
D_{p}^{\sigma}(A)=D_{p}^{\sigma}(\mu+A) \tag{2.8}
\end{equation*}
$$

with equivalent norms.

Proof. Let $x \in D_{p, m}^{\sigma}(A)$ with $m>\sigma$. Since

$$
\begin{aligned}
& \left\|A^{k}(\lambda+\mu+A)^{-m} x\right\| \leqq C\left\|A^{m}(\lambda+\mu+A)^{-m} x\right\|^{k / m} . \\
& \quad\left\|(\lambda+\mu+A)^{-m} x\right\|^{(m-k) / m}, \quad k=1,2, \cdots, m-1, \\
& \lambda^{\sigma}\left((\mu+A)(\lambda+\mu+A)^{-1}\right)^{m} x \\
& \quad=\lambda^{\sigma}\left(\mu^{m}+m \mu^{m-1} A+\cdots+A^{m}\right)(\lambda+\mu+A)^{-m} x
\end{aligned}
$$

belongs to $L^{p}(X)$. The converse is proved in the same way.
Theorem 2.6. Let $0<\operatorname{Re} \alpha<\sigma$. Then $x \in D_{p}^{\sigma}$ if and only if $x \in D\left(A^{\alpha}\right)$ and $A^{\alpha} x \in D_{p}^{\sigma-\mathrm{Re} \alpha}$.

Proof. Let $x \in D_{p}^{\sigma}$ and $m>\sigma$. Clearly $x \in D\left(A^{\alpha}\right)$. To estimate the integral

$$
\begin{aligned}
& \lambda^{\sigma-\operatorname{Re} \alpha}\left(A(\lambda+A)^{-1}\right)^{m} A^{\alpha} x \\
& \quad=\frac{\Gamma(m) \lambda^{\sigma \sim \operatorname{Re\alpha }}}{\Gamma(\alpha) \Gamma(m-\alpha)} \int_{0}^{\infty} \mu^{\alpha-1}\left(A(\lambda+A)^{-1}\right)^{m}\left(A(\mu+A)^{-1}\right)^{m} x d \mu
\end{aligned}
$$

we split it into two parts. First,

$$
\begin{aligned}
& \left\|\lambda^{\sigma-\mathrm{Re} \alpha} \int_{0}^{\lambda} \mu^{\alpha-1}\left(A(\lambda+A)^{-1}\right)^{m}\left(A(\mu+A)^{-1}\right)^{m} x d \mu\right\| \\
& \quad \leqq \lambda^{\sigma-\mathrm{Re} \alpha} \int_{0}^{\lambda} \mu^{\mathrm{Re} \alpha-1} d \mu L^{m}\left\|\left(A(\lambda+A)^{-1}\right)^{m} x\right\| \\
& \quad=L^{m}(\operatorname{Re} \alpha)^{-1} \lambda^{\sigma}\left\|\left(A(\lambda+A)^{-1}\right)^{m} x\right\| \in L^{p} \\
& \left\|\lambda^{\sigma-\mathrm{Re} \alpha} \int_{\lambda}^{\infty} \mu^{\alpha-1}\left(A(\lambda+A)^{-1}\right)^{m}\left(A(\mu+A)^{-1}\right)^{m} x d \mu\right\| \\
& \quad \leqq L^{m} \lambda^{\sigma-\mathrm{Re} \alpha} \int_{\lambda}^{\infty} \mu^{\mathrm{Re} \alpha-\sigma}\left\|\mu^{\sigma}\left(A(\mu+A)^{-1}\right)^{m} x\right\| d \mu / \mu
\end{aligned}
$$

also belongs to L^{p} because $\operatorname{Re} \alpha-\sigma<0$.
Conversely, let $A^{\alpha} x \in D_{p}^{\sigma-\operatorname{Re} \alpha}$. If n is an integer greater than $\operatorname{Re} \alpha$, we have

$$
\begin{aligned}
\left\|A^{n-\alpha}(\lambda+A)^{-n}\right\| & \leqq C\left\|A^{n}(\lambda+A)^{-n}\right\|^{(n-\operatorname{Re} \alpha) / n}\left\|(\lambda+A)^{-n}\right\|^{\mathrm{Re} \alpha / n} \\
& \leqq C^{\prime} \lambda^{-\mathrm{Re} \alpha}
\end{aligned}
$$

Thus it follows from (2.5) that

$$
\begin{aligned}
\lambda^{\sigma}\left\|\left(A(\lambda+A)^{-1}\right)^{m+n} x\right\| & \leqq \lambda^{\sigma}\left\|A^{n-\alpha}(\lambda+A)^{-n}\right\|\left\|\left(A(\lambda+A)^{-1}\right)^{m} A^{\alpha} x\right\| \\
& \leqq C^{\prime} \lambda^{\sigma-\operatorname{Re\alpha }}\left\|\left(A(\lambda+A)^{-1}\right)^{m} A^{\alpha} x\right\| \in L^{p} .
\end{aligned}
$$

This completes the proof.

As a corollary we see that if σ is not an integer, D_{∞}^{σ} and D_{∞}^{σ} coincide with D^{σ} and D_{*}^{σ} of [2], respectively.

Theorem 2.7. If the domain $D\left(A^{\alpha}\right)$ contains (is contained in) $D_{p}^{\text {Rea }}$ for an $\operatorname{Re} \alpha>0$, then $D\left(A^{\alpha}\right)$ contains (is contained in) $D_{p}^{\text {Rea }}$ for all $\operatorname{Re} \alpha>0$.

Proof. By virtue of Theorem 6.4 of [2] and Proposition 2.5 we have $D\left(A^{\alpha}\right)=D\left((\mu+A)^{\alpha}\right)$ and $D_{p}^{\text {Re }}(A)=D_{p}^{\text {Rea }}(\mu+A), \mu>0, \operatorname{Re} \alpha>0$, so that we may assume that A has a bounded inverse without loss of generality. The theorem is obvious if we show that $A^{\beta},-\infty<$ $\operatorname{Re} \beta<\operatorname{Re} \alpha$, is a one-to-one mapping from $D\left(A^{\alpha}\right)$ and $D_{p}^{\text {Re } \alpha}$ onto $D\left(A^{\alpha-\beta}\right)$ and $D_{p}^{\text {Re } \alpha-\text { Re } \beta}$, respectively.

Since $D\left(A^{\alpha}\right)=R\left(A^{-\alpha}\right), \operatorname{Re} \alpha>0 \quad$ ([2], Theorem 6.4), and since $A^{\beta-\alpha}=A^{\beta} A^{-\alpha}$ ([2], Theorem 7.3), the statemant concerning $D\left(A^{\alpha}\right)$ is immediate.

Let $\operatorname{Re} \beta<0$. Then $x \in D_{p}^{\mathrm{Re} \alpha-\operatorname{Re\beta }}$ if and only if $x \in D\left(A^{-\beta}\right)$ and $A^{-\beta} x \in D_{p}^{\mathrm{Re} \alpha}$. Since A^{β} is a bounded inverse of $A^{-\beta}$, we have $x \in D_{p}^{\mathrm{Re} \alpha-\mathrm{Re} \beta}$ if and only if x is in the image of $D_{p}^{\text {Rea }}$ by A^{β}. If $\operatorname{Re} \beta \geqq 0$, choose a number γ so that $\operatorname{Re} \beta<\gamma<\operatorname{Re} \alpha$. If $x \in D_{p}^{\mathrm{Re} \alpha-\operatorname{Re} \beta}, x$ belongs to $D\left(A^{-\beta}\right)$. Thus there is an element y such that $x=A^{\beta} y$. By the former part we have $A^{-\gamma} x=A^{\beta-\gamma} y \in D_{p}^{\text {Re } \alpha-\text { Re } \beta+\gamma}$. Thus y belongs to $D_{p}^{\mathrm{Re} \alpha}$. On the other hand, if $y \in D_{p}^{\mathrm{Re} \alpha}$, then $y \in D\left(A^{\beta}\right)$ and we have $A^{-\gamma} x=A^{\beta-\gamma} y \in D_{p}^{\text {Re } \alpha-\text { Re } \beta+\gamma}$, where $x=A^{\beta} y$. Then it follows from the former part that x belongs to $D_{p}^{\text {Re } \alpha-\text { Re } \beta}$.

Theorem 6.5 of [2] is obtained as a corollary.
Proposition 2.8. For every $\operatorname{Re} \alpha>0$

$$
\begin{equation*}
D_{1}^{\mathrm{Re} \alpha} \subset D\left(A^{\alpha}\right) \subset D_{\infty}^{\mathrm{Re} \alpha} \tag{2.9}
\end{equation*}
$$

Proof. It is enough to prove it only in the case $\alpha=1$. The former inclusion is clear from Lemma 2.3. The latter follows from (1.2), for

$$
\lambda\left(A(\lambda+A)^{-1}\right)^{2} x=\lambda(\lambda+A)^{-1}\left(1-\lambda(\lambda+A)^{-1}\right) A x \rightarrow 0
$$

for $x \in D(A)$ as $\lambda \rightarrow \infty$.
Proposition 2.9. If there is a complex number $\operatorname{Re} \alpha>0$ such that $D\left(A^{\alpha}\right)=D_{p}^{\text {Rea }}$, then $D\left(A^{\beta}\right)=D_{p}^{\text {Re }}$ for all $\operatorname{Re} \beta>0$. In particular, $D\left(A^{\alpha}\right)$ coinsides with $D\left(A^{\beta}\right)$ if $\operatorname{Re} \alpha=\operatorname{Re} \beta$. Furthermore, if A has a bounded inverse, $A^{i t}$ is bounded for all real t, where $A^{i t}$ is defined in [2].

Proof. We need to prove only the last statement. Because of [2], Corollary 7.4 we have

$$
A^{i t}=A^{1+i t} A^{-1}
$$

Since $D\left(A^{1+i t}\right)=D(A)=R\left(A^{-1}\right), A^{i t}$ is defined everywhere and closed, so that it is bounded.

We proved in [2] that the operator A of §14, Example 6 has unbounded purely imaginary powers $A^{i t}$. The above proposition shows that $D\left(A^{\alpha}\right)$ cannot be the same as $D_{p}^{\text {Re } \alpha}$ for any p.

However, there are also operators A for which $D\left(A^{\alpha}\right)$ coincides with $D_{p}^{\text {Rea }}$.

Let X be $L^{p}(S, B, m)$, where B is a Borel field over a set S and m a measure on B, and let $A(s)$ be a measurable function on S such that

$$
|\arg A(s)| \leqq \omega \text {, a.e.s }
$$

for an $0 \leqq \omega<\pi$. Define

$$
A x(s)=A(s) x(s)
$$

for all $x(s) \in X$ such that $A(s) x(s) \in X$. Then it is easy to see that A is an operator of type $\left(\omega, M(\theta)\right.$) if $p \leqq \infty-$, where $L^{\infty-}$ denotes the closure of $D(A)$ in L^{∞}. For this operator A we have $D(A)=D_{p}^{1}$, so that $D\left(A^{\alpha}\right)=D_{p}^{\text {Re } \alpha}$ for all $\operatorname{Re} \alpha>0$.

In fact, we have

$$
\left(A(\lambda+A)^{-1}\right)^{2} x(s)=A(s)^{2} x(s) /(\lambda+A(s))^{2} .
$$

Therefore,

$$
\begin{aligned}
& \int_{0}^{\infty}\left\|\lambda\left(A(\lambda+A)^{-1}\right)^{2} x(s)\right\|^{p} d \lambda / \lambda \\
&=\int_{0}^{\infty} \lambda^{p-1} d \lambda \int_{S}\left|\frac{A(s)^{2}}{(\lambda+A(s))^{2}} x(s)\right|^{p} d m(s) \\
&=\int_{S}|x(s)|^{p} d m(s) \int_{0}^{\infty} \lambda^{p-1}\left|\frac{A(s)}{\lambda+A(s)}\right|^{2 p} d \lambda \\
& \sim\|A x\|^{p} .
\end{aligned}
$$

Any normal operator A of type ($\omega, M(\theta)$) can be represented as an operator of the above type. Therefore, it satisfies $D\left(A^{\alpha}\right)=D_{2}^{\text {Re } \alpha}$ for $\operatorname{Re} \alpha>0$. T. Kato [1] proved that this holds also for any maximal accretive operator A (see J.-L. Lions [3]).

Now let us complete the definition of fractional powers.
Theorem 2.10. Let $0<\operatorname{Re} \alpha<m$. If there is a sequence $N_{j} \rightarrow \infty$
such that

$$
y=w-\lim _{j \rightarrow \infty} \frac{\Gamma(m)}{\Gamma(\alpha) \Gamma(m-\alpha)} \int_{0}^{N_{j}} \lambda^{\alpha-1}\left(A(\lambda+A)^{-1}\right)^{m} x d \lambda
$$

exists, then $x \in D\left(A^{\alpha}\right)$ and $y=A^{\alpha} x$.
Conversely, if $x \in D\left(A^{\alpha}\right)$, then

$$
\begin{equation*}
A^{\alpha} x=s-\lim _{N \rightarrow \infty} \frac{\Gamma(m)}{\Gamma(\alpha) \Gamma(m-\alpha)} \int_{0}^{N} \lambda^{\alpha-1}\left(A(\lambda+A)^{-1}\right)^{m} x d \lambda, \tag{2.10}
\end{equation*}
$$

possibly except for the case in which $\operatorname{Im} \alpha \neq 0$ and $\operatorname{Re} \alpha$ is an integer.

Proof. The former statement is obtained by modifying the proof of [2], Proposition 4.6. Since $\left(\mu(\mu+A)^{-1}\right)^{m} x \in D_{1}^{\mathrm{Re} \alpha}$, we have

$$
\begin{aligned}
A^{\alpha}\left(\mu(\mu+A)^{-1}\right)^{m} x & =c \int_{0}^{\infty} \lambda^{\alpha-1}\left(A(\lambda+A)^{-1}\right)^{m}\left(\mu(\mu+A)^{-1}\right)^{m} x d \lambda \\
& =\left(\mu(\mu+A)^{-1}\right)^{m} w-\lim _{j \rightarrow \infty} c \int_{0}^{N_{j}} \lambda^{\alpha-1}\left(A(\lambda+A)^{-1}\right)^{m} x d \lambda \\
& =\left(\mu(\mu+A)^{-1}\right)^{m} y
\end{aligned}
$$

By virtue of $(1,2)$, it follows that $x \in D\left(A^{\alpha}\right)$ and $y=A^{\alpha} x$.
The proof of the latter statement may be reduced to the case in which $0<\operatorname{Re} \alpha<1$ and $m=1$. Suppose that $x \in D\left(A^{\alpha}\right)$ and an integer $m>\operatorname{Re} \alpha$. Substituting (1.6), we have

$$
\begin{aligned}
& \int_{0}^{N} \lambda^{\alpha-1}\left(A(\lambda+A)^{-1}\right)^{m} x d \lambda \\
& \quad=m \int_{0}^{N} \lambda^{\alpha-m-1} d \lambda \int_{0}^{\lambda} \mu^{m-1}\left(A(\mu+A)^{-1}\right)^{m+1} x d \mu \\
& \quad=\frac{m}{m-\alpha} \int_{0}^{N}\left(1-\frac{\mu^{m-\alpha}}{N^{m-\alpha}}\right) \mu^{\alpha-1}\left(A(\mu+A)^{-1}\right)^{m+1} x d \mu
\end{aligned}
$$

Since $x \in D\left(A^{\alpha}\right) \subset D_{\infty-a}^{\text {Rea }}$, it follows that

$$
\left\|\int_{0}^{N} \frac{\mu^{m-\alpha}}{N^{m-\alpha}} \mu^{\alpha-1}\left(A(\mu+A)^{-1}\right)^{m+1} x d \mu\right\| \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty .
$$

Thus the limit (2.10), if it exists, does not depend on $m>\operatorname{Re} \alpha$.
Next, let $\operatorname{Re} \alpha>1$ and $m \geqq 2$. Since $x \in D\left(A^{\alpha}\right)$ belongs to $D(A)$, integration by parts yields

$$
\begin{aligned}
& \int_{0}^{N} \lambda^{\alpha-1}\left(A(\lambda+A)^{-1}\right)^{m} x d \lambda \\
& \quad=\frac{\alpha-1}{m-1} \int_{0}^{N} \lambda^{\alpha-2}\left(A(\lambda+A)^{-1}\right)^{m-1} A x d \lambda-\frac{N^{\alpha-1}}{m-1}\left(A(N+A)^{-1}\right)^{m-1} A x
\end{aligned}
$$

The second term tends to zero as $N \rightarrow \infty$ because $A x \in D\left(A^{\alpha-1}\right) \subset D_{\infty}^{\mathrm{Re} \alpha-1}$. Therefore, we obtain (2.10) if we can prove it when both α and m are reduced by one.

To prove (2.10) in the case $0<\operatorname{Re} \alpha<1$ and $m=1$ we assume for a moment that A has a bounded inverse. Then $D\left(A^{\alpha}\right)$ is identical with the range of $A^{-\alpha}$, which may be represented by the absolulely convergent integral:

$$
A^{-\alpha} x=\frac{\sin \pi x}{\pi} \int_{0}^{\infty} \lambda^{-\alpha}(\lambda+A)^{-1} x d \lambda
$$

([2], Proposition 5.1). Employing the resolvent equation and (1.6), we get

$$
\begin{aligned}
& \frac{\Gamma(1)}{\Gamma(\alpha) \Gamma(1-\alpha)} \int_{0}^{N} \lambda^{\alpha-1} A(\lambda+A)^{-1} A^{-\alpha} x d \lambda \\
& \quad=\left(\frac{\sin \pi \alpha}{\pi}\right)^{2} \int_{0}^{N} \lambda^{\alpha-1} d \lambda \int_{0}^{\infty} \mu^{-\alpha} \frac{\lambda(\lambda+A)^{-1}-\mu(\mu+A)^{-1}}{\lambda-\mu} x d \mu \\
& \quad=\left(\frac{\sin \pi \alpha}{\pi}\right)^{2} \int_{0}^{N} \lambda^{\alpha-1} d \lambda \int_{0}^{\infty} \mu^{-\alpha}(\lambda-\mu)^{-1} d \mu \int_{\mu}^{\lambda} A(\nu+A)^{-2} x d \nu
\end{aligned}
$$

It is enough to show that this converges strongly to the identity, or more weakly that it simply converges, because if it converges, the limit must be $A^{\alpha} A^{-\alpha} x=x$.

First of all, we have

$$
\begin{aligned}
I_{1} & =\int_{0}^{N} \lambda^{\alpha-1} d \lambda \int_{0}^{\lambda} \mu^{-\alpha}(\lambda-\mu)^{-1} d \mu \int_{\mu}^{\lambda} A(\nu+A)^{-2} x d \nu \\
& =\int_{0}^{N} A(\nu+A)^{-2} x d \nu \int_{\nu}^{N} \lambda^{\alpha-1} d \lambda \int_{0}^{\nu} \mu^{-\alpha}(\lambda-\mu)^{-1} d \mu
\end{aligned}
$$

Changing variables by $\lambda=\nu l, \mu=\nu m$ and integrating by parts with respect to ν, we obtain

$$
\begin{aligned}
I_{1}= & \int_{1}^{\infty} l^{\alpha-1} d l \int_{0}^{1} m^{-\alpha}(l-m)^{-1} d m x \\
& -\int_{0}^{N} A(\nu+A)^{-1} x d \nu N^{\alpha} \nu^{-\alpha-1} \int_{0}^{1} m^{-\alpha}\left(N \nu^{-1}-m\right)^{-1} d m \\
= & c_{1} x-\int_{0}^{1} A(N n+A)^{-1} x n^{-\alpha-1} d n \int_{0}^{1} m^{-\alpha}\left(n^{-1}-m\right)^{-1} d m
\end{aligned}
$$

Since $n^{-\alpha-1} \int_{0}^{1} m^{-\alpha}\left(n^{-1}-m\right)^{-1} d m$ is absolutely integrable in n and since $A(N n+A)^{-1} x=x-N n(N n+A)^{-1} x$ tends to zero as $N \rightarrow \infty$, the second term converges to zero as $N \rightarrow \infty$.

Next we write

$$
\begin{aligned}
& \int_{0}^{N} \lambda^{\alpha-1} d \lambda \int_{\lambda}^{\infty} \mu^{-\alpha}(\lambda-\mu)^{-1} d \mu \int_{\mu}^{\lambda} A(\nu+A)^{-2} x d \nu \\
&= \int_{0}^{N} A(\nu+A)^{-2} x d \nu \int_{0}^{\nu} \lambda^{\alpha-1} d \lambda \int_{\nu}^{\infty} \mu^{-\alpha}(\mu-\lambda)^{-1} d \mu \\
&+\int_{N}^{\infty} A(\nu+A)^{-2} x d \nu \int_{0}^{N} \lambda^{\alpha-1} d \lambda \int_{\nu}^{\infty} \mu^{-\alpha}(\mu-\lambda)^{-1} d \mu \\
&= I_{2}+I_{3}
\end{aligned}
$$

Changing variables as above, we have

$$
\begin{aligned}
I_{2} & =\int_{0}^{N} A(\nu+A)^{-2} x d \nu \int_{0}^{1} l^{\alpha-1} d l \int_{1}^{\infty} m^{-\alpha}(m-l)^{-1} d m \\
& =c_{2} N(N+A)^{-1} x \rightarrow c_{2} x \quad \text { as } \quad N \rightarrow \infty
\end{aligned}
$$

Finally,

$$
I_{3}=\int_{1}^{\infty} m^{-\alpha} d m \int_{0}^{1} l^{\alpha-1}(m-l)^{-1} d l \int_{N}^{m N} A(\nu+A)^{-2} x d \nu
$$

tends to zero as $N \rightarrow \infty$ because $\int_{N}^{m N} A(\nu+A)^{-2} x d \nu=m N(m N+A)^{-1} x-$ $N(N+A)^{-1} x$ tends to zero and $m^{-\alpha} \int_{0}^{1} l^{\alpha-1}(m-l)^{-1} d l$ is absolutely integrable.

Next suppose that A has not necessarily a bounded inverse. We have, for $\mu>0$,

$$
\begin{aligned}
& \left(A^{\alpha}-(\mu+A)^{\alpha}\right)(\mu+A)^{-\alpha} x \\
& \quad=\frac{\sin \pi \alpha}{\pi}\left(\int_{0}^{\mu} \lambda^{\alpha-1} A+\int_{\mu}^{\infty}\left(\lambda^{\alpha-1} A-(\lambda-\mu)^{\alpha-1}(\mu+A)\right)(\lambda+A)^{-1}(\mu+A)^{-\alpha} x d \lambda\right.
\end{aligned}
$$

because the integral is absolutely convergent and the equality holds for all $x \in D(A)$ which is dense in X. This shows together with the above that

$$
\begin{aligned}
& A^{\alpha}(\mu+A)^{-\alpha} x=(\mu+A)^{\alpha}(\mu+A)^{-\alpha} x \\
& +\mathrm{s}-\lim _{N \rightarrow \infty} \frac{\sin \pi \alpha}{\pi}\left(\int_{0}^{\mu} \lambda^{\alpha-1} A+\int_{\mu}^{N}\left(\lambda^{\alpha-1} A-(\lambda-\mu)^{\alpha-1}(\mu+A)\right)\right. \\
& \cdot(\lambda+A)^{-1}(\mu+A)^{-\alpha} x d \lambda \\
& =\mathrm{s}-\lim _{N \rightarrow \infty} \frac{\Gamma(1)}{\Gamma(\alpha) \Gamma(1-\alpha)} \int_{0}^{N} \lambda^{\alpha-1} A(\lambda+A)^{-1}(\mu+A)^{-\alpha} x d \lambda .
\end{aligned}
$$

3. Interpolation spaces. Let X and Y be Banach spaces contained in a Hausdorff vector space Z. Lions and Peetre [4] defined
the mean space $S(p, \theta, X ; p, \theta-1, Y), 1 \leqq p \leqq \infty, 0<\theta<1$, of X and Y as the space of the means

$$
\begin{equation*}
x=\int_{0}^{\infty} u(\lambda) d \lambda / \lambda \tag{3.1}
\end{equation*}
$$

where $u(\lambda)$ is a Z-valued function such that

$$
\begin{equation*}
\lambda^{\theta} u(\lambda) \in L^{p}(X) \text { and } \lambda^{\theta-1} u(\lambda) \in L^{p}(Y) . \tag{3.2}
\end{equation*}
$$

$S(p, \theta, X ; p, \theta-1, Y)$ is a Banach space with the norm

$$
\begin{align*}
& \|x\|_{S(p, \theta, X, p, \theta-1, Y)} \tag{3.3}\\
& \quad=\inf \left\{\max \left(\left\|\lambda^{\theta} u(\lambda)\right\|_{L^{p}(X)},\left\|\lambda^{\theta-1} u(\lambda)\right\|_{L^{p}(Y)}\right) ; x=\int_{0}^{\infty} u(\lambda) d \lambda / \lambda\right\} .
\end{align*}
$$

Theorem 3.1. $S\left(p, \theta, X ; p, \theta-1, D\left(A^{m}\right)\right), 0<\theta<1,1 \leqq p \leqq \infty$, coincides with $D_{p}^{\theta m}(A)$.

Proof. By virtue of Proposition 2.5, we may assume that A has a bounded inverse without loss of generality. In particular, $D\left(A^{m}\right)$ is normed by $\left\|A^{m} x\right\|$. Further, if we change the variable by $\lambda^{\prime}=$ $\lambda^{1 / m}$, condition (3.2) becomes

$$
\begin{equation*}
\lambda^{m \theta} u(\lambda) \in L^{p}(X) \text { and } \lambda^{m(\theta-1)} A^{m} u(\lambda) \in L_{p}(X) \tag{3.4}
\end{equation*}
$$

Suppose $x \in D_{p}^{\sigma}$ and define

$$
u(\lambda)=c \lambda^{m} A^{m}(\lambda+A)^{-2 m} x
$$

where $c=\Gamma(2 m) /(\Gamma(m))^{2}$. Then

$$
\lambda^{\sigma} u(\lambda)=c\left(\lambda\left(\lambda+A^{-1}\right)^{m} \lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x \in L^{p}(X)\right.
$$

and

$$
\lambda^{\sigma-m} A^{m} u(\lambda)=c \lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{2 m} x \in L^{p}(X)
$$

Thus $u(\lambda)$ satisfies (3.4) with $\sigma=m \theta$. Moreover, it follows from Lemma 2.3 that

$$
\begin{aligned}
\int_{0}^{\infty} u(\lambda) d \lambda / \lambda & =\frac{\Gamma(2 m)}{(\Gamma(m))^{2}} \int_{0}^{\infty} \lambda^{m-1}\left(A(\lambda+A)^{-1}\right)^{2 m} A^{-m} x \\
& =x
\end{aligned}
$$

Therefore, x belongs to $S\left(p, \sigma / m, X ; p, \sigma / m-1, D\left(A^{m}\right)\right)$.

Conversely, let $x \in S\left(p, \sigma / m, X ; p, \sigma / m-1, D\left(A^{m}\right)\right)$ so that x is represented by integral (3.1) with an integrand satisfying (3.4). Then

$$
\begin{aligned}
\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x= & \left(A(\lambda+A)^{-1}\right)^{m} \lambda^{\sigma} \int_{\lambda}^{\infty} \mu^{-\sigma} \mu^{\sigma} u(\lambda) d \mu / \mu \\
& +\left(\lambda(\lambda+A)^{-1}\right)^{m} \lambda^{\sigma-m} \int_{0}^{\lambda} \mu^{m-\sigma} \mu^{\sigma-m} A^{m} u(\lambda) d \mu / \mu
\end{aligned}
$$

Since both $\left(A(\lambda+A)^{-1}\right)^{m}$ and $\left(\lambda(\lambda+A)^{-1}\right)^{m}$ are uniformly bounded, $\lambda^{\sigma}\left(A(\lambda+A)^{-1}\right)^{m} x$ belongs to $L^{p}(X)$, that is, $x \in D_{p}^{\sigma}$.

Theorem 3.2. Let A be an operator of type ($\omega, M(\theta)$). Then

$$
D_{p}^{\sigma}\left(A^{\alpha}\right)=D_{p}^{\sigma \alpha}(A), \quad 0<\alpha<\pi / \omega, \sigma>0
$$

Proof. It is sufficient to prove it in the case $0<\alpha<1$, because otherwise we have $A=\left(A^{\alpha}\right)^{1 / \alpha}$ with $0<1 / \alpha<1$ (see (2.6)). In view of Theorem 2.6 we may also assume that σ is sufficiently small.

By [2] Proposition 10.2 we have

$$
\lambda^{\sigma} A^{\alpha}\left(\lambda+A^{\alpha}\right)^{-1} x=\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \frac{\lambda^{\sigma+1} \tau^{\alpha-\alpha \sigma}}{\lambda^{2}+2 \lambda \tau^{\alpha} \cos \pi \alpha+\tau^{2 \alpha}} \tau^{\alpha \sigma} A(\tau+A)^{-1} x d \tau / \tau
$$

Since the kernel

$$
\frac{\left(\lambda^{-1} \tau^{\alpha}\right)^{1-\sigma}}{1+2\left(\lambda^{-1} \tau^{\alpha}\right) \cos \pi \alpha+\left(\lambda^{-1} \tau^{\alpha}\right)^{2}}, \quad 0<\sigma<1
$$

defines a bounded integral operator in $L^{p}(X), D_{p}^{\sigma \alpha}(A)$ is contained in $D_{p}^{\sigma}\left(A^{\alpha}\right)$.

If $\alpha=1 / m$ with an odd integer m, we have conversely

$$
D_{p}^{\sigma}\left(A^{1 / m}\right) \subset D_{p}^{\sigma / m}(A)
$$

In fact, let $x \in D_{p}^{\sigma}\left(A^{1 / m}\right)$. Since

$$
\lambda^{\sigma} A\left(\lambda^{m}+A\right)^{-1}=\lambda^{\sigma} \prod_{i=1}^{m}\left(A^{1 / m}\left(\varepsilon_{i} \lambda+A^{1 / m}\right)^{-1}\right) x
$$

where ε_{i} are roots of $(-\varepsilon)^{m}=-1$ with $\varepsilon_{1}=1$, and since

$$
A^{1 / m}\left(\varepsilon_{i} \lambda+A^{1 / m}\right)^{-1}, \quad i=2, \cdots, m
$$

are uniformly bounded, $\lambda^{\sigma} A\left(\lambda^{m}+A\right)^{-1} x \in L^{p}(X)$. Changing the variable by $\lambda^{\prime}=\lambda^{m}$, we get $\lambda^{\sigma / m} A(\lambda+A)^{-1} x \in L^{p}(X)$.

In a general case choose an odd number m such that $0<1 / m_{-}<\alpha$. Since $A^{1 / m}=\left(A^{\alpha}\right)^{1 /(\alpha m)}$, we have

$$
D_{p}^{\alpha \sigma}(A) \subset D_{p}^{\sigma}\left(A^{\alpha}\right) \subset D_{p}^{\alpha \sigma m}\left(A^{1 / m}\right) \subset D_{p}^{\alpha \sigma}(A)
$$

Another less computational proof will be obtained from the LionsPeetre theory and Proposition 2.8.
4. Infinitesimal generators of bounded semi-groups. Throughout this section we assume that $T_{t}, t \geqq 0$, is a bounded strongly continuous semi-group of operators in X and $-A$ is its infinitesimal generator:

$$
\begin{equation*}
T_{t}=\exp (-t A), \quad\left\|T_{t}\right\| \leqq M \tag{4.1}
\end{equation*}
$$

A is an operator of type $(\pi / 2, M(\theta))$.
Definition 4.1. Let $0<\sigma<m$, where σ is a real number and m an integer, and let $1 \leqq p \leqq \infty$. We denote by $C_{p, m}^{\sigma}=C_{p, m}^{\sigma}(A)$ the set of all elements $x \in X$ such that

$$
\begin{equation*}
t^{-\sigma}\left(I-T_{t}\right)^{m} x \in L^{p}(X) \tag{4.2}
\end{equation*}
$$

As is easily seen, $C_{p, m}^{\sigma}$ is a Banach space with the norm

$$
\|x\|_{\sigma_{p, m}^{\sigma}}^{\sigma}=\|x\|+\left\|t^{-\sigma}\left(I-T_{t}\right)^{m} x\right\|_{L^{p}(X)} .
$$

Since $\left(I-T_{t}\right)^{m}$ is uniformly bounded, condition (4.2) is equivalent to that $t^{-\sigma}\left(I-T_{t}\right)^{m} x$ belongs to $L^{p}(X)$ near the origin. In particular, we have

$$
\begin{equation*}
C_{p, m}^{\sigma}(A)=C_{p, m}^{\sigma}(\mu+A), \mu>0 . \tag{4.3}
\end{equation*}
$$

$C_{\infty, 1}^{\sigma}$ and $C_{\infty-1}^{\sigma}$ coincide with C^{σ} and C_{*}^{σ} of [2], respectively, and $C_{\infty, 1}^{\sigma}$ consists of all elements x such that $T_{t} x$ is (weakly) uniformly Hölder continuous with exponent σ.

Proposition 4.2. If $x \in C_{p, m}^{\sigma}$, then x belongs to $D\left(A^{\alpha}\right)$ for all $0<\operatorname{Re} \alpha<\sigma$, and

$$
\begin{equation*}
A^{\alpha} x=\frac{1}{K_{\alpha, m}} \int_{0}^{\infty} t^{-\alpha-1}\left(I-T_{t}\right)^{m} x d t, \quad 0<\operatorname{Re} \alpha<\sigma \tag{4.4}
\end{equation*}
$$

where

$$
K_{\alpha, m}=\int_{0}^{\infty} t^{-\alpha-1}\left(1-e^{-t}\right)^{m} d t
$$

Proof. If $0<\operatorname{Re} \alpha<\sigma$, the right-hand side of (4.4) converges absolutely and represents an analytic function of α.

If $x \in D(A)$, then we have by [2] Proposition 11.4

$$
\int_{0}^{\infty} t^{-\alpha-1}\left(I-T_{t}\right)^{m} x d t
$$

$$
\begin{aligned}
& =\sum_{k=1}^{m}(-1)^{k+1}\binom{m}{k} \int_{0}^{\infty} t^{-\alpha-1}\left(I-T_{k t}\right) x d t \\
& =\Gamma(-\alpha) \sum_{k=1}^{m}(-1)^{k+1}\binom{m}{k} k^{\alpha} A^{\alpha} x, \quad 0<\operatorname{Re} \alpha<1 .
\end{aligned}
$$

The coefficient of $A^{\alpha} x$ does not depend on A. Taking $A=1$, we see that it is equal to $K_{\alpha, m}$.

Next let $0<\operatorname{Re} \alpha<\min (\sigma, 1)$ and $x \in C_{p, m}^{\sigma}$. Then integral (4.4) with x replaced by $\mu(\mu+A)^{-1} x, \mu>0$, exists and converges to the integral (4.4) as $\mu \rightarrow \infty$. Thus $A^{\alpha} \mu(\mu+A)^{-1} x$ converges to the integral (4.4). Since A^{α} is closed and $\mu(\mu+A)^{-1} x \rightarrow x$ as $\mu \rightarrow \infty$, it follows that $x \in D\left(A^{\alpha}\right)$ and (4.4) holds.

In the general case the assertion is obtained by [2], Proposition 8.4 or by repeating an argument as above.

Lions and Peetre [4] gave another proof when α is an integer.
Theorem 4.3. $C_{p, m}^{\sigma}$ coincides with D_{p}^{σ} with equivalent norms.
Proof. First we note that

$$
\begin{equation*}
\left(I-T_{t}\right) x=A I_{t} x, \quad x \in X \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{t} x=\int_{0}^{t} T_{s} x d s \tag{4.6}
\end{equation*}
$$

Obviously we have

$$
\begin{equation*}
\left\|I_{t}\right\| \leqq M_{t}, \quad t>0 \tag{4.7}
\end{equation*}
$$

Let $x \in C_{p m}^{\sigma}$. Then $(\lambda+A)^{-m} x, \lambda>0$, belongs to $C_{p, 2 m}^{\sigma+m}$ since

$$
\begin{aligned}
& t^{-\sigma-m}\left\|\left(I-T_{t}\right)^{2 m}(\lambda+A)^{-m} x\right\| \\
& \leqq t^{-m}\left\|I_{t}^{m}\right\|\left\|\left(A(\lambda+A)^{-1}\right)^{m}\right\| t^{-\sigma}\left\|\left(I-T_{t}\right)^{m} x\right\|
\end{aligned}
$$

Hence we have by Proposition 4.2

$$
\begin{aligned}
\left(A(\lambda+A)^{-1}\right)^{m} x= & c \int_{0}^{\infty} t^{-m-1}\left(I-T_{t}\right)^{2 m}(\lambda+A)^{-m} x \\
= & c \int_{0}^{1 / \lambda}\left(A(\lambda+A)^{-1}\right)^{m} t^{-m-1} I_{t}^{m}\left(I-T_{t}\right)^{m} x d t \\
& +c \int_{1 / \lambda}^{\infty}(\lambda+A)^{-m} t^{-m-1}\left(I-T_{t}\right)^{2 m} x d t
\end{aligned}
$$

where $c=K_{m, 2 m}^{-1}$. Therefore,

$$
\begin{aligned}
\lambda^{\sigma}\left\|\left(A(\lambda+A)^{-1}\right)^{m} x\right\| & \leqq c L^{m} M^{m} \lambda^{\sigma} \int_{0}^{1 / \lambda} t^{\sigma} t^{-\sigma}\left\|\left(I-T_{t}\right)^{m} x\right\| d t / t \\
& +c M^{m}(2 M)^{m} \lambda^{\sigma-m} \int_{1 / \lambda}^{\infty} t^{\sigma-m} t^{-\sigma}\left\|\left(I-T_{t}\right)^{m} x\right\| d t / t
\end{aligned}
$$

This shows that $x \in D_{p, m}^{\sigma}$.
Conversely, let $x \in D_{p, m}^{\sigma}$. Since

$$
\left(A(\lambda+A)^{-1}\right)^{2 m} I_{t}^{m} x=(\lambda+A)^{-m}\left(I-T_{t}\right)^{m}\left(A(\lambda+A)^{-1}\right)^{m} x,
$$

it follows that $I_{t}^{m} x \in D_{p, 2 m}^{\sigma+m}$. Thus by Proposition 2.2 we get

$$
\begin{aligned}
\left(I-T_{t}\right)^{m} x= & A^{m} I_{t}^{m} x=c \int_{0}^{\infty} \lambda^{m-1}\left(A(\lambda+A)^{-1}\right)^{2 m} I_{t}^{m} x \\
= & c \int_{0}^{1 / t} I_{t}^{m} \lambda^{m-1}\left(A(\lambda+A)^{-1}\right)^{2 m} x d \lambda \\
& +c \int_{1 / t}^{\infty}\left(I-T_{t}\right)^{m} \lambda^{m-1}(\lambda+A)^{-m}\left(A(\lambda+A)^{-1}\right)^{m} x d \lambda
\end{aligned}
$$

where $c=\Gamma(2 m) /(\Gamma(m))^{2}$. By the same computation as above we conclude that $x \in C_{p, m}^{\sigma}$.

In particular, $C_{p, m}^{\sigma}$ does not depend on m. We denote $C_{p, m}^{\sigma}$ with the least $m>\sigma$ by C_{p}^{σ}. Because of Theorem 2.6, C_{∞}^{σ} coincides with C^{σ} of [2] if σ is not an integer.

Theorem 4.4. Let $0<\operatorname{Re} \alpha<m$. If there is a sequence $\varepsilon_{j} \rightarrow 0$ such that

$$
\begin{equation*}
y=w-\lim _{j \rightarrow \infty} \frac{1}{K_{\alpha, m}} \int_{\varepsilon j}^{\infty} t^{-\alpha-1}\left(I-T_{t}\right)^{m} x d t \tag{4.8}
\end{equation*}
$$

exists, then $x \in D\left(A^{\alpha}\right)$ and $y=A^{\alpha} x$.
Conversely, if $x \in D\left(A^{\alpha}\right)$, then

$$
\begin{equation*}
A^{\alpha} x=s-\lim _{\varepsilon \rightarrow 0} \frac{1}{K_{\alpha, m}} \int_{\varepsilon}^{\infty} t^{-\alpha-1}\left(I-T_{t}\right)^{m} x d t \tag{4.9}
\end{equation*}
$$

Proof. The former part is proved in the same way as Theorem 2.10.

To prove the latter part, let us assume for a moment that T_{t} satisfies

$$
\left\|T_{t}\right\| \leqq M e^{-\mu t}, \quad t>0
$$

for a $\mu>0$. Then A^{α} is the inverse of $A^{-\alpha}$ which can be represented by the absolutely convergent integral

$$
\begin{equation*}
A^{-\alpha} x=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} s^{\alpha-1} T_{s} x d s \tag{4.10}
\end{equation*}
$$

([2], Theorem 7.3 and Proposition 11.1).
Now it is enough to prove that

$$
\frac{1}{K_{\alpha, m} \Gamma(\alpha)} \int_{\varepsilon}^{\infty} t^{-\alpha-1}\left(I-T_{t}\right)^{m} d t \int_{0}^{\infty} s^{\alpha-1} T_{s} x d s
$$

converges strongly as $\varepsilon \rightarrow 0$, because the limit must coincide with $A^{\alpha} A^{-\alpha} x=x$.

We have

$$
\begin{aligned}
I_{s} & =\int_{\varepsilon}^{\infty} t^{-\alpha-1}\left(I-T_{t}\right)^{m} d t \int_{0}^{\infty} s^{\alpha-1} T_{s} x d s \\
& =\sum_{k=1}^{m}(-1)^{k+1}\binom{m}{k} k^{\alpha} \int_{k \varepsilon}^{\infty} t^{-\alpha-1}\left(I-T_{t}\right) d t \int_{0}^{\infty} s^{\alpha-1} T_{s} x d s .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \int_{k \varepsilon}^{\infty} t^{-\alpha-1} T_{t} d t \int_{0}^{\infty} s^{\alpha-1} T_{s} x d s \\
& \quad=\int_{k \varepsilon}^{\infty} t^{-\alpha-1} d t \int_{t}^{\infty}(s-t)^{\alpha-1} T_{s} x d s \\
& \quad=\int_{k \varepsilon}^{\infty} T_{s} x d s \int_{k \varepsilon}^{s} t^{-\alpha-1}(s-t)^{\alpha-1} d t \\
& \quad=\frac{1}{\alpha(k \varepsilon)^{\alpha}} \int_{k \varepsilon}^{\infty}(s-k \varepsilon)^{\alpha} T_{s} x d s / s .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\sum_{k=1}^{m}(& -1)^{k+1}\binom{m}{k} \\
k^{\alpha} & \int_{k \varepsilon}^{\infty} t^{-\alpha-1} d t \int_{0}^{\infty} s^{\alpha-1} T_{s} x d s \\
& =\frac{1}{\alpha \varepsilon^{\alpha}} \int_{0}^{\infty} s^{\alpha-1} T_{s} x d s
\end{aligned}
$$

so that we obtain

$$
I_{\varepsilon}=\frac{1}{\alpha \varepsilon^{\alpha}} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k} \int_{k \varepsilon}^{\infty}(s-k \varepsilon)^{\alpha} T_{s} x d s / s
$$

Since $T_{s} x \rightarrow x$ as $s \rightarrow 0$, it follows that

$$
\begin{aligned}
& \frac{1}{\alpha \varepsilon^{\alpha}} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k} \int_{k \varepsilon}^{m \varepsilon}(s-k \varepsilon)^{\alpha} T_{s} x d s / s \\
& =\frac{1}{\alpha} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k} \int_{k}^{m}(s-k)^{\alpha} T_{\varepsilon s} x d s / s \\
& \quad \rightarrow \frac{1}{\alpha} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k} \int_{k}^{m}(s-k)^{\alpha} d s / s x \text { as } \varepsilon \rightarrow 0 .
\end{aligned}
$$

On the other hand, the Taylor expansion up to order m gives

$$
\begin{aligned}
& f_{\varepsilon}(s)=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(s-k \varepsilon)^{\alpha} \\
= & \sum_{k=0}^{m}(-1)^{k}\binom{m}{k} \frac{\alpha(\alpha-1) \cdots(\alpha-m+1)}{m!}\left(s-k^{\prime} \varepsilon\right)^{\alpha-m}(-k \varepsilon)^{m},
\end{aligned}
$$

where $0<k^{\prime}<k$. Hence we have

$$
\begin{aligned}
& \frac{1}{\alpha \varepsilon^{\alpha}} \int_{m \varepsilon}^{\infty} f_{\varepsilon}(s) T_{s} x d s / s \\
& \quad=\frac{(\alpha-1) \cdots(\alpha-m+1)}{m!} \sum_{k=0}^{m}(-1)^{k+m}\binom{m}{k} k^{m} \int_{m}^{\infty}\left(s-k^{\prime}\right)^{\alpha-m} T_{\varepsilon_{s}} x d s / s .
\end{aligned}
$$

Since $\left(s-k^{\prime}\right)^{\alpha-m} s^{-1}$ is absolutely integrable, this converges to a constant times x as $\varepsilon \rightarrow 0$.

To prove (4.9) in the general case, it is sufficient to show that

$$
\begin{align*}
&\left(A^{\alpha}-(\mu+A)^{\alpha}\right)(\mu+A)^{-\alpha} x \tag{4.11}\\
&=\frac{1}{K_{\alpha, m}} \int_{0}^{\infty} t^{-\alpha-1}\left\{\left(I-T_{t}\right)^{m}-\left(I-e^{-\mu t} T_{t}\right)^{m}\right\}(\mu+A)^{-\alpha} x d t \\
& \mu>0, x \in X
\end{align*}
$$

and that the integral converges absolutely.
By Theorem 2.6, (4.5) and a similar decomposition of $I-e^{-\mu t} T_{t}$ we have

$$
\left(I-T_{t}\right)^{m}\left(I-e^{-\mu t} T_{t}\right)^{n} x=O\left(t^{\sigma}\right), x \in C_{\infty}^{\sigma}, m+n>\sigma
$$

Since $(\mu+A)^{-\alpha} x \in D\left(A^{\alpha}\right) \subset C_{\infty}^{\text {Re }}$, it follows that

$$
\begin{aligned}
& \left\{\left(I-T_{t}\right)^{m}-\left(I-e^{-\mu t} T_{t}\right)^{m}\right\} x \\
& \quad=\left(e^{-\mu t}-1\right) T_{t}\left\{\left(I-T_{t}\right)^{m-1}+\cdots+\left(I-e^{-\mu t} T_{t}\right)^{m-1}\right\} x \\
& \quad=O\left(t^{\min (\operatorname{Rec}, m-1)+1}\right)
\end{aligned}
$$

This shows that integral (4.11) is absolutely convergent. (4.11) is valid for all $x \in D(A)$ which is dense in X. Therefore, (4.11) holds for all $x \in X$.
5. Infinitesimal generators of bounded analytic semi-groups. Let T_{t} be a semi-group of operators analytic in a sector $|\arg t|<$ $\pi / 2-\omega, 0 \leqq \omega<\pi / 2$, and uniformly bounded in each smaller sector $|\arg t| \leqq \pi / 2-\omega-\varepsilon, \varepsilon>0$. We call such a semi-group a bounded analytic semi-group.

It is known that the negative of an operator A generates a bounded analytic semi-group if and only if A is of type $(\omega, M(\theta)$) for some $0 \leqq<\pi / 2$. A bounded strongly continuous semi-group T_{t} has a bounded analytic extension if there is a complex number $\operatorname{Re} \alpha>0$ such that

$$
\begin{equation*}
\left\|A^{\alpha} T_{t}\right\| \leqq C t^{-\operatorname{Ro} \alpha}, t>0 \tag{5.1}
\end{equation*}
$$

with a constant C independent of t. Conversely, if T_{t} is bounded analytic,
(5.1) holds for all $\operatorname{Re} \alpha>0$ ([2], Theorems 12.1 and 12.2).

We assume throughout this section that $-A$ is the infinitesimal generator of a bounded analytic semi-group T_{t}.

Definition 5.1. Let $0<\sigma<\operatorname{Re} \beta$ and $1 \leqq p \leqq \infty$. We denote by $B_{p, \beta}^{\sigma}=B_{p, \beta}^{\sigma}(A)$ the set of all $x \in X$ such that

$$
\begin{equation*}
t^{\mathrm{R} c \beta-\sigma} A^{\beta} T_{t} x \in L^{p}(X) \tag{5.2}
\end{equation*}
$$

$B_{p, \beta}^{\sigma}$ is a Banach space with the norm

$$
\|x\|_{B_{p, \beta}^{\sigma}}^{\sigma}=\|x\|+\left\|t^{\mathrm{Re} \beta-\sigma} A^{\beta} T_{t} x\right\|_{L^{p}(X)} .
$$

Proposition 5.2. Let $0<\operatorname{Re} \alpha<\sigma$. Then every $x \in B_{p, \beta}^{\sigma}$ belongs to $D\left(A^{\alpha}\right)$ and

$$
\begin{equation*}
A^{\alpha} x=\frac{1}{\Gamma(\beta-\alpha)} \int_{0}^{\infty} t^{\beta-\alpha-1} A^{\beta} T_{t} x d t \tag{5.3}
\end{equation*}
$$

where the integral converges absolutely.
Proof. Since $A^{\beta} T_{t} x$ is of order $t^{\sigma-\text { Re } \beta}$ as $t \rightarrow 0$ and of order $t^{-\mathrm{Re} \beta+\varepsilon}$ as $t \rightarrow \infty$ in the sense of $L^{p}(X)$, the integral converges absolutely for $0<\operatorname{Re} \alpha<\sigma$.

To prove (5.3), first let $x \in D\left(A^{\beta}\right)$. Then it follows from [2], Proposition 11.1 and Theorem 7.3 that

$$
\begin{aligned}
& \frac{1}{\Gamma(\beta-\alpha)} \int_{0}^{\infty} t^{\beta-\alpha-1} A^{\beta} T_{t} x d t \\
& \quad=s-\lim _{\varepsilon \rightarrow 0} \frac{1}{\Gamma(\beta-\alpha)} \int_{0}^{\infty} t^{\beta-\alpha-1} e^{-\varepsilon t} T_{t} A^{\beta} x d t \\
& \quad=s-\lim _{\varepsilon \rightarrow 0}(\varepsilon+A)^{\alpha-\beta} A^{\beta} x \\
& \quad=s-\lim _{\varepsilon \rightarrow 0} A^{\beta-\alpha}(\varepsilon+A)^{\alpha-\beta} A^{\alpha} x .
\end{aligned}
$$

Because of [2], Propositions 6.2 and 6.3, $A^{\beta-\alpha}(\varepsilon+A)^{\alpha-\beta}$ converges strongly to the identity on $\overline{R(A)}$ as $\varepsilon \rightarrow 0$. Since $A^{\alpha} X$ is contained in $\overline{R(A)}$ ([2], Proposition 4.3), (5.3) holds for all $x \in D\left(A^{\beta}\right)$. In the general case (5.3) is proved by approximating $x \in B_{p, \beta}^{\sigma}$ by $\left(\mu(\mu+A)^{-1}\right)^{m} x$. $m>\operatorname{Re} \beta$, which belongs to $D\left(A^{\beta}\right)$.

Theorem 5.3. $\quad B_{p, \beta}^{\sigma}$ coincides with D_{p}^{σ}. In particular, $B_{p, \beta}^{\sigma}$ does not depend on β.

Proof. Let $x \in B_{p, \beta}^{\sigma}$. If m is an integer greater than $\operatorname{Re} \beta, x$ belongs to $B_{p, m}^{\sigma}$, for

$$
t^{m-\sigma} A^{m} T_{t} x=t^{m-\beta} A^{m-\beta} T_{t / 2} \cdot t^{\beta-\sigma} A^{\beta} T_{t / 2} x
$$

and $t^{m-\beta} A^{m-\beta} T_{t / 2}$ is uniformly bounded. Since

$$
t^{m-o} A^{2 m} T_{t}(\lambda+A)^{-m} x=\left(A(\lambda+A)^{-1}\right)^{m} t^{m-o} A^{m} T_{t} x,
$$

$(\lambda+A)^{-m} x$ belongs to $B_{p, 2 m}^{\sigma+m}$. Hence it follows from Proposition 5.2 that

$$
\begin{aligned}
A^{m}(\lambda+A)^{-m} x= & c \int_{0}^{\infty} t^{m} A^{2 m} T_{t}(\lambda+A)^{-m} x d t / t \\
= & c\left(A(\lambda+A)^{-1}\right)^{m} \int_{0}^{1 / \lambda} t^{m} A^{m} T_{t} x d t / t \\
& +c(\lambda+A)^{-m} \int_{1 / \lambda}^{\infty} t^{m} A^{2 m} T_{t} x d t / t
\end{aligned}
$$

where $c=\Gamma(m)^{-1}$. The rest of the proof is the same as that of Theorem 4.3.

Conversely, assume that $x \in D_{p, m}^{\sigma}=D_{p, 2 m}^{\sigma}$. Since $T_{t} x, t>0$, belongs to any $D_{p, m}^{\sigma}$, we have by (2.1)

$$
\begin{aligned}
A^{\beta} T_{t} x= & c \int_{0}^{\infty} \lambda^{\beta-1}\left(A(\lambda+A)^{-1}\right)^{2 m} T_{t} x d \lambda \\
= & c T_{t} \int_{0}^{1 / t} \lambda^{\beta-1}\left(A(\lambda+A)^{-1}\right)^{2 m} x d \lambda \\
& +c A^{m} T_{t} \int_{1 / t}^{\infty} \lambda^{\beta-1}(\lambda+A)^{-m}\left(A(\lambda+A)^{-1}\right)^{m} x d \lambda
\end{aligned}
$$

where $c=\Gamma(2 m) /(\Gamma(\beta) \Gamma(2 m-\beta))$. Arguing as before, we get $x \in B_{p, \beta}^{\sigma}$.
Theorem 5.4 Let $0<\operatorname{Re} \alpha<\operatorname{Re} \beta$. If

$$
\begin{equation*}
y=w-\lim _{\varepsilon_{j} \rightarrow 0} \frac{1}{\Gamma(\beta-\alpha)} \int_{\varepsilon_{j}}^{\infty} t^{\beta-\alpha-1} A^{\beta} T_{t} x d t \tag{5.4}
\end{equation*}
$$

exists, then $x \in D\left(A^{\alpha}\right)$ and $y=A^{\alpha} x$. If $x \in D\left(A^{\alpha}\right)$, then

$$
\begin{equation*}
A^{\alpha} x=s-\lim _{\varepsilon \rightarrow 0} \frac{1}{\Gamma(\beta-\alpha)} \int_{\varepsilon}^{\infty} t^{\beta-\alpha-1} A^{\beta} T_{t} x d t \tag{5.5}
\end{equation*}
$$

Proof. The former part is proved in the same way as Theorem 2.10. Let us prove the latter assuming that $\mu-A$ generates a bounded analytic semi-group for a $\mu>0 . \quad D\left(A^{\alpha}\right)$ is the same as the range $R\left(A^{-\alpha}\right)$ in this case, and we have $A^{\beta} T_{t} A^{-\alpha} x=A^{\beta-\alpha} T_{t} x$ by the additivity of fractional powers. So it is sufficient to prove the following:

$$
\begin{equation*}
x=s-\lim _{\varepsilon \rightarrow 0} \frac{1}{\Gamma(\beta)} \int_{\varepsilon}^{\infty} t^{\beta-1} A^{\beta} T_{t} x d t, \quad x \in X \tag{5.6}
\end{equation*}
$$

when $\operatorname{Re} \beta>0$.
First we note that if $\operatorname{Re} \alpha>0$, then

$$
\begin{equation*}
t^{\alpha} A^{\alpha} T_{t} x \rightarrow 0 \text { as } t \rightarrow 0 \text { or as } t \rightarrow \infty \tag{5.7}
\end{equation*}
$$

for each $x \in X$, because (5.7) holds for $x \in D(A)$ and $t^{\alpha} A^{\alpha} T_{t}$ is uniformly bounded.

Let β be equal to an integer m. Since $d / d t A^{\beta} T_{t} x=-A^{\beta+1} T_{t} x$, we have, by integrating by parts,

$$
\begin{aligned}
& \int_{\varepsilon}^{\infty} t^{m-1} A^{m} T_{t} x d t \\
& \quad=\varepsilon^{m-1} A^{m-1} T_{\varepsilon} x+(m-1) \int_{\varepsilon}^{\infty} t^{m-2} A^{m-1} T_{t} x d t
\end{aligned}
$$

(5.7) shows that the first term tends to zero as $\varepsilon \rightarrow 0$ if $m>1$. When $m=1$, we have

$$
\int_{\varepsilon}^{\infty} A T_{t} x d t=T_{\varepsilon} x \rightarrow x \text { as } \varepsilon \rightarrow 0
$$

Thus (5.6) holds if β is an integer.
If β is not an integer, take an integer $m>\operatorname{Re} \beta$. We have

$$
\begin{aligned}
A^{\beta} T_{t} x & =A^{\beta-m} A^{m} T_{t} x \\
& =\frac{1}{\Gamma(m-\beta)} \int_{t}^{\infty}(s-t)^{m-\beta-1} A^{m} T_{s} x d s, \quad t>0
\end{aligned}
$$

by [2], Proposition 11.1. Therefore,

$$
\begin{aligned}
& \frac{1}{\Gamma(\beta)} \int_{\varepsilon}^{\infty} t^{\beta-1} A^{\beta} T_{t} x d t \\
& =\frac{1}{\Gamma(\beta) \Gamma(m-\beta)} \int_{\varepsilon}^{\infty} A^{m} T_{s} x d s \int_{\varepsilon}^{s} t^{\beta-1}(s-t)^{m-\beta-1} d t \\
& =\frac{1}{\Gamma(m)} \int_{\varepsilon}^{\infty} s^{m-1} A^{m} T_{s} x d s \\
& \quad-\frac{\varepsilon^{m}}{\Gamma(\beta) \Gamma(m-\beta)} \int_{1}^{\infty} A^{m} T_{\varepsilon \sigma} x d \sigma \int_{0}^{1} \tau^{\beta-1}(\sigma-\tau)^{m-\beta-1} d \tau
\end{aligned}
$$

The first term tends to x as $\varepsilon \rightarrow 0$. The second term converges to zero, because

$$
\int_{1}^{\infty} \sigma^{-m} d \sigma \int_{0}^{1} \tau^{\beta-1}(\sigma-\tau)^{m-\beta-1} d \tau
$$

is absolutely convergent and $(\varepsilon \sigma)^{m} A^{m} T_{\varepsilon \sigma} x$ tends to zero as $\varepsilon \rightarrow 0$.
The proof in the general case is obtained from the absolutely convergent integral representation:

$$
\begin{aligned}
& \left(A^{\alpha}-(\mu+A)^{\alpha}\right)(\mu+A)^{-\alpha} x \\
& \quad=\frac{1}{\Gamma(\beta-\alpha)} \int_{0}^{\infty} t^{\beta-\alpha-1}\left(A^{\beta}-e^{-\mu t}(\mu+A)^{\beta}\right) T_{t}(\mu+A)^{-\alpha} x d t .
\end{aligned}
$$

The absolute convergence follows from [2], Propositions 6.2 and 6.3.

References

1. T. Kato, A generalization of the Heinz inequality, Proc. Japan Acad. 37 (1961), 305-308.
2. H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285-346.
3. J.-L. Lions, Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs, J. Math. Soc. Japan 14 (1962), 233-248.
4. J.-L. Lions et J. Peetre, Sur une classe d'espaces d'interpolation, Publications Math. Inst. Hautes Etudes Sci. 19 (1964), 5-68.
5. A. E. Taylor, Spectral theory of closed distributive operators, Acta Math. 84 (1950), 189-224.

Received November 19, 1965.
Stanford University
AND
University of Tokyo

