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ON THE CONVERGENCE OF RESOLVENTS
OF OPERATORS

MINORU HASEGAWA

Let a family of linear operators {An}(n = 1, 2, •) in a
Banach space X have the resolvents {R(λ; An)} which is equi-
continuous in n. Suppose that {An} is a Cauchy sequence on
a dense set. Then the question of convergence arises; when
will {R(λ; An)x} be a Cauchy sequence for all x e X ?

This problem is treated in some special cases and an
application to the following theorem is presented.

Let A be the generator of a positive contraction semi-
group ^ and let B be a linear operator with domain &(B)
~D 3?(A) in a weakly complete Banach lattice X.

Then A + B or its closed extension generates a positive
contraction semi-group ^/ which dominates ^ if a n d only if
A + B is dissipative and B is positive.

In this section we consider the above convergence problem in a

Banach space X (cf. [9], [1], [11]).

Let a family of linear operators {An}(n = 1, 2, •) satisfy the

following conditions:

(1) for some fixed number λ, the resolvent R(X; An) — (X — AJ- 1

of An exists which acts on X to the domain £&(An) of An and satisfies

the norm condition || R(λ; An) \\ S Kλ, where Kλ is a positive number

independent of n,

(2) there is a dense subspace ^/f on which A = lim An exists.

PROPOSITION 1. The limit operator R0(X; A) = lim R(X; An) exists

on JK ana satisfies the norm condition || R0(λ; A) \\jp ^ Kλ where

(X — A)^ and ^Y* is its closure.

Proof. For any x e ^f we have

\\(X-An)x\\ ^K^\\x\\

and thus obtain

\\(X-A)x\\^K^\\x\\- \\Anx-Ax\\.

Let t ing n —> oo f we have

II ( λ -

It also follows that we can extend (λ — A)"1 to the bounded linear

operator R0(X; A) on *yy~ which satisfies

35
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| | j B 0 ( λ ; A ) \ \ - = s u p { | | J ? 0 ( λ ; A ) x \ \ ; \\x\\ = l , ί c e

Further, it is easy to see that, for any x e ^f,

\\R(X;An)(X -A)x -x\\£ Kλ\\Anx - Ax\\

which implies that R0(X; A) = lim R(X; An) on JFΪ,

REMARK 1. This proof shows that if (λ — A)^ is dense in X
then the convergence problem is solved.

We next remark some modification of the basic lemma in [l].

PROPOSITION 2. The following conditions are equivalent.

( 1 ) lim || R(X; An)x - R(X; An,)x || =0 (xeX),

( 2 ) * Hm~ 11 R(X; An)R(X; An)x - R(X; An,)R(X; An)x 11 = 0

(xe(x -

Proof. For any x e ^//, n and nf, we have

R(X; An)x - R(X; An)x

= R(X; An)R(X; An,)(X - An>)x - R(X; An/)R(X; An)(X - An)x

= R(X; An)R(X; An,)(\ - A)x - R(X; An,)R(X; An)(X - A)x

+ R(X; An)R(X; An,)(A - An,)x

+ R(X; An,)R{X) An)(An ~ A)x .

From this relation and ^Z = X, the assertion is readily verified.

PROPOSITION 3. If, for some positive integer m,

lim || {(An - A)R(X; An)}mx || = 0 (x e ΛQ

is satisfied, where ^ x is dense in X, then (λ — A)^/S is dense in X

Proof. By virtue of the Hahn-Banach extension theorem, if there
exists x0 e ^fλ — ̂ F\ then so does a bounded linear functional Fo

acting on X which satisfies the following conditions:

Φ 0 , Fix) = 0 (x e ̂  = (λ -

For this x0 and any n, we have

x0 - (λ - An)R(X; An)xQ

= (X- A)R(X; An)x0 - (An - A)R(X; An)xQ

= (X- A)R(X; An)x0 - (λ - A)R(X; An)(An - A)R(X; An)x0

+ - •••

n - A)R(X; An)rx0.
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This relation implies that

F0(xQ) = (~irFQ({(An - A)R(X; Anψ x0)

and for any n

0 < I F0(x0) I ^ !| Fo\\ || {(An - A)R(X; Anψ xo\\

which is a contradiction. Consequently we have κ^1 c ^V and the
assertion is proved.

We now concern with a theorem on the perturbation of operators
which will be required in the sequel.

PROPOSITION 4. Suppose that linear operators A and B satisfy
the following conditions:

(1) for some number λ, the equation

(λ - A)y = x (xe X)

has a unique solution y = R(X; A)x,
( 2 ) there is a dense subspace ^ such that BR(X) A)^/f c ^/έ and

lim || {BR(X; A)}kx || = 0 (x e Λ) . (*)
]c—>oo

Then (λ - A - B)R(X; A)^/f is dense in X.

The proof of this proposition is similar as that of Proposition 3
and is omitted.

REMARK 2. Suppose that for some positive integer k

(**) \\{BR(X;A)}k\U<l

is satisfied, then the condition (*) in Proposition 4 is satisfied.

REMARK 3. Suppose that i?(λ; A) satisfies the norm condition
II R(X; A) || ^ Kλ in Proposition 4 and that there exist positive constants
a and 6 such that for any x e ^£[ = R(X; A)^//

\\Bx\\1ka\\Ax\\-rb\\x\\

and

a \ X I Kλ + a + bKλ < 1 .

Then the condition (**) in Remark 2 is satisfied.

Proof. For any a e ̂ /f, we have
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|| BR(X; A)x \\^a\\ AR(X; A)x \\ + b\\ R(X; A)x \\

^ a || XR(X; A)x - x || + bKλ \\ x \\

and

\\BR(X;A)x\\ ^ ( α | λ | i Γ λ + α + δiΓ λ ) | |α>|l < | | α | | .

T h u s t h e asser t ion is proved.

THEOREM 1. Suppose that a family of linear operators {As}(e > 0)
and a closed linear operator A from a Banach space X to X satisfy
the following conditions:

( 1 ) for some fixed number λ, the equation

(X - As)y = x (x 6 X)

has a unique solution y = R(X; Aζ)x e &(A2) and \\ R(X; Az) \\ ̂  Kλy

where Kλ is a positive number independent of ε,

( 2 ) Ϊ
( 3 ) Aεx = Ax + sBεx (x e

\\B2x\\ SK{x)

where K(x) is a positive number independent of ε.
Then we have &{X - A) = (X - A)^(A) = X.

Proof. It follows from Proposition 1 that the limit operator

R0(X; A) exists and bounded on ^?(λ — A).
Let (λ — A)xn —>y as n —* oo. Then it follows from the bound-

edness of R0(X; A) that xn —> R0(X; A)y and so that

Axn -> λi?0(λ; A)y - y

a s ^ - ^ c o . Since A is closed, R0(X; A)y e &{A) and ye&(\ — A).

Thus we have ^ ( λ — A) = &(X — A). It is easy to see that X — As

is closed and

(λ -AS)RO(X; A)x = (X - A)RQ(X; A)x

- εBsRQ(X; A)x (x e^(X - A)) .

Hence, from the closed graph theorem it follows that BSRQ(X; A) is a
bounded linear operator on &(x — A). Moreover we have, for any

| | BSRO(X; A)(X -A)x \\ = \\ Bεx \\ ^ K(x) < oo .

Using the resonance theorem it follows that there exists a positive
number L λ which is independent of ε such that
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Consequently we obtain the basic relation, for any a e ^ ( A ) ,

|| ε B ε x || = || εBεRQ(X; A)(X - A ) x \\

S e L λ || ( λ - A ) x \ \ ^ ε L κ \ \ A x \ \ + ε\X\ L x \\x\\ .

Thus the assertion follows from Remark 3.

REMARK 4. Let A be a closed linear operator with dense domain
£&{A). Suppose that Az = A + sB generates a strongly continuous
semi-group of linear contraction operators for every small ε(0 < ε < ε0)
and &r(Ae)z)&(A).

Then A generates a strongly continuous semi-group of linear
contraction operators.

Proof. Using Theorem 1 and Proposition 1, it follows from the
Hille-Yosida theorem, (cf. [3], [11]).

2* The object of this section is to show that some special family
of linear operators {An}(n = 1, 2, •) from a weakly complete Banach
lattice X to X satisfies the convergence condition and to solve the
problem on the perturbation theory for semi-groups of operators which
is sited in the introductory part.

Let X be a Banach lattice with a semi-order ^ and [x, y](x, y e X)
denote a complex-valued (real-valued) function defined on X x X called
a semi-inner product having the following properties (cf. [4], [6], [7]):

(1) [x + y,z] = [x,z] + [y,z],

(2) [\x,y] = X[x,y],

(3) [x,x] = \\x\\\

( 4 ) \[x,y]\£ \\x\\\\y\\,

( 5 ) if y ^ 0, then [x, y] ^ 0 for all x ^ 0,

( 6 ) fos+] = ||s+ir,

where x+ = sup (x, 0), x~ = sup ( — x, 0), and | x \ = sup (x, —x).
The following theorem is essentially due to Reuter [8].

PROPOSITION 5. Suppose that linear operators Ao and Aι on a
Banach lattice X satisfy the following conditions:

(1) for n = 0,1 and some X > 0, the equation

(λ - An)y = x (xeX)

has a unique solution y = R(X; An)x e 2$(An) and
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R(X; An)x ^ 0 (x ^ 0) ,

( 2 ) there exist dense subspaces ^/έ and ^ 1 such that

A& ^ Λ># (x ^ 0, α? e ^ C ) ,

Λ(λ; ΛO^Ti c ΛT .

Then the following inequality holds:

R(X; A , ) x ^ R(X; A 0 ) x (x^0,xe ^ )

Proof. If x ^ 0 and α? e ^ ί , then i2(λ; A,) x ^ 0 and i?(λ;
..^f and thus we have

A±)x ^ A0R(X; A,)x ,

(λ - A0)R(X; Aλ)x ^ (λ - AOΛίλ; Ax)x = x .

Operating R(X; AQ), we obtain

R(X; Ax)x ^ R(X; A0)x .

Let X = {Tέ; ί ^ 0} be a one-parameter semi-group of linear
operators from a Banach lattice X to X satisfying the following
conditions:

( 1 ) Tox = x, Tt+Sx = TtTsx (xeX,t,8 2z0),
( 2 ) | | 2 V B | i ^ | | & | | (xeX,t^0),
( 3 ) \imTtx = x (xeX),

(4) Ttx^0 (x^O,t^O). ,
Such a semi-group is called a strongly continuous semi-group of posi-
tive contraction operators.

The following theorem is due to Phillips and is a variant of the
Hille-Yosida theorem which will be convenient for purpose, (cf. [7]).

THEOREM. (Phillips). A necessary and sufficient condition for a
linear operator A with dense domain to generate a strongly continuous
semi-group of positive contraction operators is that &(I — A) = X
and that A is dispersive, that is,

[Ax, x+\ ^ 0 (xe £&{A)) .

THEOREM 2. Suppose that a family of linear operators {An}
(n = 1,2, •••) which generate strongly continuous semi-groups Έ J
of positive contraction operators on a weakly complete Banach lattice
X satisfies the following conditions: there exist dense subspaces ^/f,
^//^ and {^CJ such that
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(1) lim \\Anx - An,x\\ = 0 (xe
n,nf—><»

(2) An+1x^Anx

( 3 ) jB(λ; An)ΛΌ

£/&e ϊimiί operator A = lim Aw ow ^ C /ms a closed exten-
sion A which generates a strongly continuous semi-group 2 of posi-
tive contraction operators.

Moreover we have

Ttx = lim Tt

in)x (xeX,t^0),

where Σn = {Tt

in); t ^ 0} and X ={Γ«; ί ^ 0}.

Proof. By the Hille-Yosida theorem (cf. [3], [11]) we find that
the conditions (1) and (2) in Proposition 5 and the following norm
condition are satisfied for any pair {An, An+1}.

\\R(X;An)\\ ^λ- 1 (*)

Thus we have, for any n,

R(X; A n + 1 ) x ^ R(\; A n ) x (x^0,xe ^ # 0 ) .

Since X is weakly complete, the norm condition and this inequality
imply that there exists y ^ 0 such that

lim \\ R(X; An)x - y || = 0 .
n—>o°

From a representation of x: x = x+ — x~, we have, for any x e ^/f0,
using the condition (4),

(**) lim || R(X; An)x - R(X; An,)x || = 0

and we have this convergence relation for all x e X by the condition
^Jf0 = X. We denote R(X; A) = lim R(X; An). Then R(X; A) is positive
and satisfies the norm condition (*). The assertion is now proved by
Theorem 2 in [l]. We sketch the proof of this theorem.

Since R(X; An) satisfies the resolvent equation

R(X; An) - R(\'; An) = - (X - X')R(\; An)R(\'; An)

R(X; A) also does. Then we find that R(X; A) is a one-to-one
transformation from X to &(R(\;A)) and Άλ = X - R(X; A)-1 is
independent of λ, that is,

Άx = Aλx = Aλ,x (x e



42 MINORU HASEGAWA

where & = ̂ (R(X; A)) = &(&(%'; A)).

Then, by the Hille-Yosida theorem, we find that A generates a strongly
continuous semi-group of contraction operators. The positivity and
the convergence of semi-groups are verified by the condition (**). It
is readily verified that A is a closed extension of A.

REMARK 5. Suppose that a family of linear operators {An}
(n = l,2, •••) which generate strongly continuous semi-groups of
positive contraction operators on a weakly complete Banach lattice X
satisfies the following conditions:

( 1 ) lim \\Anx - An,x || = 0 (xe
n,n'—>oe

where ^Z is a dense subspace in X,

( 2 ) An+1x ^ Anx

( 3 ) ^ ( 4 + 1 )

Then the assertion in Theorem 2 is true.

REMARK 6. In Theorem 2, the condition (1) can be replaced by
the following condition:

(Γ) \\Alx\\^K(x) (xeΛΪ),

where K(x) is a positive number independent of n and ^f2 is dense
in X.

Proof. We remark that the convergence of the family of re-
solvents in Theorem 2 does not depend on (1). Then we have, for
any x e ^ 2 ,

|| Anx - An,x || :£ λ || R(X; An)Anx - R(X; An)An,x \\

+ 114,0? - λjβ(λ;4.)4.&ll
+ \\An,x- xR(X;An,)An,x\\

^X*\\R(X;An)x - R(X;An,)x\\

+ \\R(X;An)Aix\\ + \\R(X;An,)Al,x\\

^ λ2 || R(X; An)x - R(X; An)x \\ + 2X~1K(x) .

Letting λ—* c>o? we have, for any ε > 0,

|| Anx - 4 , 3 || ^ λ21| R(X; An)x - R(X; An,)x || + e

and the assertion is proved by (**).
From Remark 4 in [l] it follows that

REMARK 7. Suppose that there exists a dense subspace ^/^ such
that R(X; A)^f2 c ^ f in Theorem 2, then A is the closure of A.
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We next concern with the generation of contraction semi-groups
which dominate a given semi-group and give an alternative form of
a theorem of Reuter, Miyadera and Olubummo (cf. [8], [5], [6], [7]).

Given a one-parameter semi-group X = {Tt; t ^ 0} of positive
contraction operators, if jy = {27; t ^ 0} is another one, we say that
X ' dominates X, if

τ;x ^ τtx (x ̂  o, t ^ o).

In applications, it is important to know whether a given semi-
group 2 is dominated by any other semi-group ]Γ/.

The following lemmas in a Banach space will be required.

LEMMA. (Lumer and Phillips). If A with dense domain is a
dissipative operator, that is,

Re [Ax, x] ^ 0 (xe &(A)) ,

then A has a closed extension.

PROPOSITION 6. Suppose that a linear operator A which generates
a strongly continuous semi-group of contraction operators on a Banach
space X and a linear operator B with domain &(B) D &(A) satisfy
the following condition: A + B has a closed extension. Then

\\ BR(X; A) \\ ̂  K

where K is a positive number independent of λ > 1 and

\\m\\BR(X;A)x\\ = 0 (xeX) .
λ->oo

The proof of Proposition 6 is readily verified by using the re-
solvent equation and is omitted.

THEOREM 3. In a weakly complete Banach lattice X let A be the
generator of a positive contraction semi-group ^ an^ let B be a
lenear operator with domain 3f(B) 3 ^(A). Then A1~ A + B or its
closed extension generates a positive contraction semi-group 2 ' which
dominates 2 if and only if

(1) R e [A,x, x]^0 (xe

( 2 ) Bx^O (x^0,x

Proof. To prove the sufficiency of the conditions (1) and (2), we
approximate Ax by a sequence of linear operators {An>λ} in the follow-
ing way. Define a sequence of linear operators {An,λ} by
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Antλ = A + (n- X)BR(n; A) (n ^ λ)

and {Bn,λ} by

- A)R(n; A) (n^X).

Then it follows from Lemma (Lumer and Phillips) and Proposition 6
that there is a positive integer L independent of n and λ such that
\\Bn,x\\^L.

If we assume that the resolvent R(X; An,x) exists which acts on
X and is positive for some λ and n (n^X), then we have, for any

X \\R(χ; An,x)x II2 = [xR(X; An,x)

^ [XR(X; An,λ)x, R(X; An,λ)x]

~ Re [ A ^ λ ; Anyλ)x, R(X; An,λ)x].

Using Theorem (Phillips), we remark that A is a dispersive operator.
Thus we have

Re [A±R(X; An,λ)x, R(X; An>λ)x]

- Re [AR(X; An,x)x, R(X; An,λ)x]

+ Re [BR(X; An,λ)x, R(X; An,λ)x]

- [ M ί λ ; An,λ)x, R(X; An,x)x\ .

Hence we obtain

\\\R{\)An,λ)x\f

^ [XR[X; An,x)x, R(X; An,x)x\ - [A^X; An,x)x, R(X;An,λ)x]

= [x, R(X; An,x)x] - [BR(n; A)(X ~ A)R(X; An,x)x,R{\)An,x)x]

^ [a?, Λ(λ; An,x)x] ,

where the last inequality holds by virtue of the formula

(λ - A)R(X; An,x)x

= x + (n - X)BR(n; A)R(X; An,x)x .

Thus we obtain, for any x ^ 0 and then for any x e X,

; An,λ)x\\ ^ \\x\\ .

By induction on n we next show that the resolvent R(X; An>x)
exists which acts on X and is positive for any X > L and any n^λ. It
is clear that R(X; Ax>λ) = R(X; A) is a positive operator for any λ > L.
Suppose that R(X; An,x) is positive for any X > L and some n, then
we have || Bn,xR(X; An,x) || < 1. It follows from this norm condition
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that R(X; An+ltλ) exists which acts on X and is given by the follow-
ing formula (cf. [3], [11]):

R(X; An+U X) = Σ Λ(λ; An.λ)[5n,λi2(λ; An,λ)f .

Since Bn,λR(X; An,λ) is positive, it follows that

i2(λ; An+liλ)a? ^ Λ(λ; An.λ)a? ^ 0 (x ̂  0) .

Hence, using the weakly completeness of X, we have for any x ^ 0
and then x e l ,

lim I,1 i?(λ; An,λ)x - R(X; An,,κ)x \\ = 0 .

To show that {R(Xr; An,λ)x}(0 < λ' < λ) is also a Cauchy sequence
for any x e X, we make use of the relation

= Σ μ'-'R^; An,λf ,Σ
J f c = l

where, provided that | μ | < λ, the right hand side converges uniformly
in n (cf. [3], [11]). It also follows from this formula that X'R(X'; An,λ)
is positive and is a contraction operator for any λ'(0 < λ' < λ).

Let k be a positive integer such that k > L. We define, for any
λ ^ k,

R(X; Ak)x = lim i?(λ; A%,,).τ (a; e X) .

Then it is easy to see that {R(X; Ak); X ̂  k} satisfies the resolvent
equation and the norm condition λ ||-B(λ; Ak) \\ <Ξ 1.

Moreover {^(λ; Ak)}k is a consistent family of resolvents in the
following sense:

R(X; Ak,)x = R(X; Ak)x (x e X, X < k < k') .

In fact, we have the inequality

\\R(\\Ak,)x-R(\;Ak)x\\

< \\R(X;Ak,)x- R(X;An,k,)x\\

+ [1 + X~W - k)L] || R(X; An>k)x - R(X; Ak)x \\

+ λ~W - k)\\ BR(n; A)R(X; Ak)x ||

and letting n —• oo y we obtain the desired result.
Since {-B(λ; A )̂}̂  is consistent, we have a family of resolvents

; Λ) = Λ(λ; Ak) (λ ^ fc

which satisfies the norm condition X \\R{X\ Ax) \\ ^ 1.
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Then, using the same method as that in the proof of Theorem 2,
we find that Ά1 — λ — R(X; A^1 generates a strongly continuous semi-
group j y of positive contraction operators which dominates X, and
that Ά1 is a closed extension of Alm

We now prove the inverse part. Let X = {Tt;t Ξ> 0} and X ' =
{2Y; ί ^ 0}. Then the condition (1) follows from

Re [A&, x] = lim Re [^(Γ/a? - x), x]
ί->0+

= lim ί-1 Re {[7>, x] - [a?, a;]}
ί->0+

^ 0 (xe 3f(A)) ,

and (2) follows from

A1x = l i m r ^ T / α - a;) ̂  l im t~\Ttx - x) = Ax (x^0,xe &(A)) .

Thus the assertion is proved.

REMARK 8. In Theorem 3 any one of the following conditions
can take the place of the condition (1).

(Γ) [A&, x]^0 (x^0,

and A1 has a closed extension,

(1") [ A ± x , x ] ^ 0 ( x ^ 0 , x

and BR(X; A) is a bounded linear operator for any λ > 0.

The contents of this section will be discussed in [2] by virtue of
the notation of Gateaux differentials.

The author wishes to express his gratitude to Professor Isao
Miyadera for his valuable advice.
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