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ON ANTI-AUTOMORPHISMS OF VON
NEUMANN ALGEBRAS

ERLING STORMER

Two types of x-anti-automorphisms of a ven Neumann
algebra ¥ acting on a Hilbert space 57 leaving the center
of U elementwise fixed are discussed, those of order two and
those of the form A — V7IA*V,V being a conjugate linear
isometry of 57 onto itself such that V2e, The latter anti-
automorphisms are called inner, and are the composition of
inner :x-automorphisms and x-anti-automorphisms of the form
A— JA*J, where J is a conjugation, i.e. a conjugate linear
isometry of 57 onto itself such that J2= 1. The former
anti-automorphisms are also closely related to conjugations;
they are almost, and in many cases exactly of the form A —»
JA*J. Moreover, the existence of s:-anti-automorphisms of
order two leaving the center fixed implies the existence of a
conjugation J such that JUJ =%, and such that JA*J=A4
for all A in the center of Y.

There are two main problems concerning x-anti-automorphisms of
von Neumann algebras, namely their existence and their description.
In the present paper we shall deal with the latter question. It turns
out that anti-automorphisms are closely associated with conjugations,
a conjugation being a conjugate linear isometry of a Hilbert space
onto itself whose square is the identity. This is not surprising, as
such maps induce most of the important anti-isomorphisms of von
Neumann algebras, cf. [1]. We shall characterize two classes of anti-
automorphisms, namely those of order two leaving the center of the
von Neumann algebra elementwise fixed, and the so-called inner anti-
automorphisms, both characterizations being in terms of conjugations.
In the process of doing so we shall make heavy use of Jordan and
real operator algebra theory, as developed in [8], [9], and [10]. The
second section is devoted to this theory; we shall generalize some of
the results in [8] and [9], and in particular classify all weakly closed
self-adjoint real abelian operator algebras.

We refer the reader to [1] for terminology and results concerning
von Neumann algebras. If <#Z is a family of operators on a Hilbert
space we denote by .“#;, the set of self-adjoint operators in .<# We
say % is self-adjoint if A*c <% whenever Aec. % H# is a self-
adjoint real operator algebra if 2 is a self-adjoint family of operators
which form an algebra over the real numbers. By a JW-algebra we
shall mean a weakly closed real linear family of self-adjoint operators
closed under squaring. By a real x-isomorphism of one self-adjoint
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real algebra into another we shall mean a one-to-one real linear map
¢ such that ¢(A*) = ¢(A)*, and ¢(AB) = ¢(A)¢(B) for all A, B in the
algebra. By a x-anti-automorphism (or just anti-automorphism) of a
von Neumann algebra 2 we shall mean a one-to-one (complex) linear map
¢ of A onto itself such that ¢(A*) = ¢(A)* and ¢(AB) = ¢(B)¢p(A) for
all A, Be%. We note that such a map is ultra-weakly continuous
[1, Corollaire 1, p. 57]. We shall identify projections and their ranges.
If 9 is a family of operators and ../ is a set of vectors we write
[2_] for the subspace generated by all vectors of the form Az with
AcU and ze . ~Z.

The x-anti-automorphisms ¢ studied in this paper will all turn out
to be spatial, i.e. there exists a conjugate linear isometry V of the
Hilbert space &7 such that ¢(A) = V7'A*V. That any such map ¢
is a x-anti-automorphism of <z (5#)—the bounded linear operators on
57 —is seen as follows. By polarization (Vz, Vy) = (x, y) for all
x,ye o7 Hence

(VZAV)*2, y) = (v, VT'AVY) = (Va, AVy) = (VA" Va, y)

for all =, y, and (V'AV)* = V7A*V for all Ae & (57). Clearly ¢
is linear and anti-isomorphic. If (e,).e; is an orthonormal basis for
57 then the map J: >\ \.e,— >, N.e. IS a conjugation of 57, hence
there exist *-anti-automorphisms of factors of type I. The problem
is open for general nontype I factors; however, it is known to the
affirmative in constructed examples, a few examples will show how.

Let G be a countable discrete group such that the set {gg,g~":
g € G} is infinite for every g, e¢. Let 2 be the usual Hilbert algebra
of complex functions z on G having finite support, where multiplication
is convolution, z*(g) = x(¢g™"), and

(x, y) = L:, 2(9)y(g) ,

[1, pp. 301-303]. For xe @) set Ja(g) = Z(¢9). Then J is a conju-
gation. Let A(G) be the II, factor of all left multiplications L, by
bounded dements of [*(G). Then simple calculations show

(i) « bounded implies Jx bounded.

(ii) JL,J = L;, for all bounded x.
Thus JUA(G)J = WG), and ¢(A) = JA*J is a x-anti-automorphism of
A(G) of order 2.

By specializing G, one can get (G) to be any one of the three
known II, factors on a separable 27, see [6].

In the notation of [7, p. 112] one can define a conjugation J by

JF(v, %) = F(v, ) .
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So J induces a x-anti-automorphism

Then JU,J = U,, and JL4J = L3.
of order 2 of the type III factor obtained in that construction.

2. Real operator algebras., We begin this section with four
lemmas all of which are practically known.
Lemma 2.1, Let U, and U, be C*-algebras with identities I; let
o be a real x-isomorphism of U, into A, such that o(I) = 1. Then there
exist two orthogonal central projections K and F in A, with K+ F =1,
such that Ep is complex linear and Fp is complex conjugate linear.

Then 4 = p(tI) = p((¢1)) = o(—1) = — L

Proof. Let A = p(iI).
Clearly Ep is linear and

Thus 4 =1E — +F with E and F as above.
Fo is conjugate linear.

The next lemma is a slight generalization of [9, Theorem 2.4].
The proof is practically the same as that in [9], and is omitted.

LEMMA 2.2, Let 2 be a self-adjoint weakly closed real operator

algebra. Then # + 1.7 1is a von Neumann algebra.

If A is a JW-algebra or a von Neumann algebra and E is a pro-
jection in U then its central carrier with respect to 2 is the smallest
central projection in U greater than or equal to K. It is denoted by
Cp(2). The next lemma is a modification of [8, Lemma 8.1].

LEMMA 2.3, Let &2 be a self-adjoint weakly closed real operator
algebra. Let E be a projection in . Then Cy(FHsy) = Cp( P + 1.2).

Proof. Let <7 denote the von Neumann algebra <2 + 1.2 (Lemma
2.2). In view of [8, Lemma 8.1] it suffices to show C,(FHs,) = | Fs. ]

belongs to <#’. Let xc K, Ac %%, Be . 22. Then
BAx = (BAE + EAB*)x — EAB*ve|Fgx| V E < | FZ,E] .

Thus B leaves |.%%,FE| invariant, hence <7 leaves |77,/ | invariant,

hence [, Ele <7’ .
The proof of the next lemma is a modification of that of a similar

result in the proof of [9, Theorem 6.4].

LEeMMA 2.4, Let 22 be a self-adjoint weakly closed real operator

algebra. Let & denote the center of the von Neumann algebra <& =
B + 1B Assume gy #+ F N FBsy. Then there exists a projection

E =+ 0 tn & such that E<# N % = {0}.
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Proof. Let E, be a nonzero projection in & which is not in .&7;,.
Let F, be the smallest central projection in <%y, such that F, = E..
Then F, + E,. E.Z is an ideal in <2, hence E, <% N ., is a weakly
closed Jordan ideal in the JW-algebra <Z;,. Hence there exists a
central projection F, in Hg, such that K% = FH, N F,FHs, [10].
Then F,< E,, hence F,< E,. Let F,=F,— F,. Then F, =0 and belongs
to & N.H, (Lemma 2.3). Let E=EF,=E, — F,. Then E+ 0 and
belongs to 2. Moreover E<Z is an ideal in < As before there exists
a central projection F, in A, such that E<z N s, = F,.“Hs,. Then
F,<E<F, Since E<E,Ez N F,F2, hence F, < F,. But
F,F,=0, so F,=0. Thus EZ N Hs, ={0}. Let Ac EcZ N A.
Then A*Ae E# N g, = {0}, s0o A =0, EZ N . = {0}.

LEMMA 2.5. Let 22 be a self-adjoint weakly closed real operator
algebra. Let & = B + 1% and & be the center of <& Then
there ewxist three orthogonal projections P, Q, R in & such that
P+ Q + R =1 and such that,

(i) P&ss= P& N FHs,.

(il) QFNFH = Rz N.F = {0}.

(iiy Ry = R% N RAs,.

Moreover, the map RZ — QF by RA— QA with Ac ZZ is a real
*-180Mmorphism omnto.

Proof. We may assume #Z N 1% = {0}. Let P be the largest
projection in & such that P&y, = P& N “Hsy. Assume P # I, so
Cys #+ F N FHsy. From Lemma 2.4 we can choose a projection @ <
I — P in &, maximal with respect to the property Q<% N “#,, = {0}.
Let R=I1— P — Q. Then Rz N FHyy = {0}, for if not, let £ be a
projection in &2 with E < R. By Lemma 2.3 Cy(Hs,) e, and
Cp(Hs) < R since E < R. We may assume Eec <. By maximality
of P EZs, + Ez N Hg,. By Lemma 2.4 there exists F %= 0 in
&, F'< E, such that F<zZ N<Z = {0}. Then (Q + F)<#Z N FHs, = {0}, for
if Ae(@ + F)#Z N “Hy, then A = AQ + AF. Then AF = AEe¢ Hy,,
hence AF = 0. Therefore

A=AQeQF N FHsu={0}, A=0,Q + F)z N Fss = {0},

contradicting the maximality of Q. Thus F = 0, hence E = 0, hence
Rz N . FHs, = {0}. As in the proof of Lemma 2.4

Q#NAB =Rz NAB ={0}.

Assume Rz N RHy, + R&s,. Then Lemma 2.4 yields the ex-
istence of a projection F'# 0 in R such that F.eZ N R&Z = {0}.
Then (FF+Q)z N & ={0}, for if Ae(F + Q)% N.# then A=
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AF + AQe 2. Hence RA=FAecFZz NRZ#F ={0}, so FA=0.
Thus A =A4QeQz N FZ = {0}, A=0. Thus (F + Q<% N Z = {0},
contradiction the maximality of Q. Thus Rz N Ry, = R&%..

Finally let o denote the map RZ — Q<% defined by RA— QA,
Aec 2. Then p is a real x-isomorphism onto. In fact, QA = 0 with
Ae(I— P)= if and only if A= RAe Rz N & = {0} if and only if
A =0, and by the same argument, if and only if RA =0. Thus p
is well defined. It is then clear that o is a real x-isomorphism onto.
The proof is complete.

We are now in the position to classify all self-adjoint weakly
closed abelian real operator algebras. If X is a compact Hausdorff
space we denote by C(X) (resp. Cr(X)) the complex (resp. real)
continuous function on X.

THEOREM 2.6. Let & be a self-adjoint weakly closed abelian
real operator algebra. Let <% denote the (abelian) von Neumann
algebra B + 1.%. Then there exist three orthogonal projections E,
F and G in # such that E+ F + G = I, and such that

(i) E# = ExZs,

(ii) F# = F=Z

(ili) G ={AR + p(A)Q : E and @ are projections in <& such
that R+ Q = G, Ae R<Z, o is a real x-isomorphism of R<Z onto Q. Z}.

Proof. Let P, @, and R be the projections found in Lemma 2.5.
We first consider P<#. Since P#y, = P N FHsy, P F and
P%SA'*_ iP%SA: P%j .

Let o = P NiP<?. Then 7 is a weakly closed ideal in <Z,
hence there exists a projection F' in <& such that F.egd = 9 = F.&2,
so Fe?. Let E=P — F. Then EFe ., E# N1EZ% = {0}. By
spectral theory we may assume E<# = C(X). Since

E%SA + ’I:E%SA =FKEz = C(X) ’

an application of the Stone-Weierstrass Theorem shows E<Z, = Cr(X).
Since EZ N1EZ = {0}, E#? = Cx(X) = E<Z,,, (i) and (ii) are taken
care of.

Let G=I— P. Then Ge &#,G =Q + R. By Lemma 2.5

R%SA _l_ iR%gA = R.@ .

By the argument in the preceding paragraph there exist two pro-
jections E, and F, in R<Z such that

El_’_Fl:R,El% :El'@SAYFB@ :Flg@-
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Let o be the real x-isomorphism of R<Z onto Q<7 defined in Lemma
2.5, Let H=E, + o(F). Since E, = RE’ with E’ a projection in
G, and p(E)) = QE’', H = E'(R + Q) = E' e &#. Since

E# =FE. %, = By, HZ = {EA + o(E)A:Ac g} = HAg, .
Thus
H{(ZP54 + EZNE H(Z +12) = HZD = H(Fgq + 1Fsa) -

As in the preceding paragraph we conclude H<z = H<Fy,. By the
maximality of P, H =0, hence F, =0, and R = R<#. Another
application of Lemma 2,5 completes the proof.

We note that the real x-isomorphism o in Theorem 2.6 is charac-
terized by Lemma 2.1, Let U be a unitary operator. Let % denote
the (abelian) von Neumann algebra generated by U. Then U has a
square root V in Z; cf, [2, proof of Lemma 2.6]. Whenever we
write UY* we shall mean a unitary operator V in % such that V* = U.
Thus U'* is not necessarily unique. The following application of
Theorem 2.6 will be of technical value. The second half of it was
pointed out to us by the referee, together with a purely analytic
proof not using Theorem 2.6, However, our proof is more in the
spirit of our treatment.

COROLLARY 2.7, Let U be a unitary operator, and let & denote
the self-adjoint weakly closed (abelian) real operator algebra gener-
ated by U. Let G be as tn Theorem 2.6. The U'® can be chosen so
that GU'"" e . Moreover, if —1 is not an eigenvalue of U({x: Ux =
—x} = {0}), then U e .22,

Proof. GU = VR + p(V)Q with V a unitary operator in the von
Neumann algebra Rz = R + iR<?. V has a square root V'*e R<Z.
Let GU"* = V'R + p(V'*)Q. Then GU'*e 72, and

(GU™ = VR + o(V)Q = GU .

The first assertion follows. If —1 is not an eigenvalue of U then in
the notation of Theorem 2.6, £ = EFU = EU'* since KU is self-adjoint.
Since F'.<? is a von Neumann algebra, FUY e F.2Z, by the above
remarks. Thus U'*e ..

We shall need information on real algebras .2 such that <%, is
abelian. The simplest such algebras were characterized in [8, Theorem
2.1]. The general ones are characterized by means of Theorem 2.6 and
the next result.

THEOREM 2.8. Let Z be a self-adjoint weakly closed real oper-
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ator algebra such that Fg, is abelian. Let <7 denote the won
Neumann algebra # + 1.52. Then there exist two central pro-
jections P and Q im <% such that P+ Q = I, P<% 1is abelian, Q%
is of type I,

Proof. Let P be the central projection on the type I, portion of
. Let @ =1 — P. Assume there exist three orthogonal equivalent
nonzero projections E,, E,, and E, in Q<#. Let @ be an irreducible
representation of @ not annihilating the E;. Then ¢(<2) is irreducible,
and p(F)g, = p(Hs,) is abelian, By [8, Corollary 2.3] ¢ is a repre-
sentation on a Hilbert space of dimension 2 or 1, contradicting the
existence of the E;. Thus Q<% is of type L.

LeMMA 2.9. Let Z be a self-adjoint weakly closed real operator
algebra. Let &% = B + 1.2, and let & denote the center of 7.
Then

(1) = NF +1i¥ N ..

(ii) If @ #0 is a projection in & such that Q& N(F NF) =
{0}, then Q== N <2 = {0}.

Proof. We may assume % N1# = {0}. By Lemma 2.2 every
operator in & is of the form S + 77T with S and T in <&. Let Ae #;
then AS + AT = SA + iTA since S +1Te%. By the uniqueness
of the sum, A4S = SA, TA = AT, so S, Te &z N .. (i) follows.

In order to show (ii) Let G be a projection in Q< N .<#. Then
G =< @, hence Ci(7) < Q and belongs to &# by Lemma 2.3. Hence,
CoZ)eQz N (w NF)={0}, G =0, (ii) follows.

We next improve Lemma 2.5,

LevMmA 2,10, Let &# be a self-adjoint weakly closed vreal oper-
ator algebra. Let &7 = % + 1.9, and let & denote the center of
Z. Then there exist three projections HE, F, and G in & N gy
such that B+ F + G = I and

(i) Bz NR)=ECs,.

(i) F(z N F)=F%, hence FZ = I'Z.

(iii) There exist two projections @ and R in < such that
Q+R=G,QzNF =RzNH =1{0}, Rez? = R, and there exists
a real x-isomorphism of R<Z onto Q7.

Proof. By Lemma 2.9 and Theorem 2.6 there exist three pro-
jections E, F',G in & N “Hs, such that £ - F+G =1 E(& N PZ) =
EGs, FleZ N #)=Fz, G NF)={AR + p(4)Q : Q, R projections
in €, Q+ R =G, p is a real x-isomorphism of Rz onto Q(z N #)}.
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Moreover, Q= N (z N ) = {0}. By Lemma 2.9 Q<% N = {0}, and
similarly R N & = {0}. By Theorem 2.6 Rz = R(# N ). In
particular, tRe R<?. Hence R is a von Neumann algebra, since
1R belongs to the ideal R<Z NiR<#Z in R<Z. Thus R#Z = R,
The same argument shows F.<Z = F <. As in Lemma 2.5 there
exists a real x-isomorphism of R<# = R onto Q..

If A is a JW-algebra a projection £ in U is said to be abelian if
EAE is abelian. U is of type [ if there exists an abelian projection
in ¥ with central carrier I. The next result is a generalization of
[8, Theorem 8.2].

LEMMA 2.11. Let Z be a self-adjoint weakly closed real algebra.
Let # = F +1.2. If Fgy 18 a JW-algebra of type I then <& is
a von Neumann algebra of type I.

Proof. Clearly By, FFg,, QFAss, RHAs, are all of type I,
E, F,Q, R being as in Lemma 2,10, Thus by Lemmas 2.10 and 2.1 we
may assume & . FHgy = o4, and # Nt1# = {0}. By [8, Theorem 8.2]
the von Neumann algebra <25, is of type I. Since & N FHyy = Cua
we may, cutting down by central projections in <% if necessary, assume
Py, is homogeneous [1, p. 262]. We assume 2y, = & Q Z(5F), &
being an abelian von Neumann algebra acting on a Hilbert space .97~
and <#(5#°) denoting all bounded operators on the Hilbert space S~
Since #Yy,C P, B C Fyy=%"QC,C denoting the operators of
the form NI, »e C, I being the identity operator on 2. Thus &%’ =
QC, =< being a von Neumann algebra acting on 9%, & Cc &’ .
Since the center of <# equals that of <27, the center of <7’ equals
ZRC. Thus  c o cz’. Hence ¥ Cc 2’'c¥%’. By |1, p.26],

Hence

FNFEss=(2'QZ ()N N(ET'RC)
=2'C.

In fact, by [1, p.26], if C'e¥’ and C'RQIc o' R FH(5#), the
matrix representation of C'® I is (T,,) with T,, = 4,,C’, 6,, being the
Kronecker symbol, and as an operator in 2’ Q Z(5#) its matrix
representation is (S,,) with S,,e¢ &2’. Thus S,, =T, so S,, = d,, C'.
Thus C'e 2’,C'RIc 2’ C.

In order to show <7 is of type I it thus suffices to show <z N .F#%,
is of type I. Let Be &% N #;,. By Lemma 22 B= S + 4T with
S, Te Z. As # Ni1# = {0}, the argument of Lemma 2.9 (i) shows
S, Te & N Ay, In particular
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BN RByy=RB N RBss+ 1B NPy .

Now (2 N FAi4)sa is abelian. By Theorem 2.8 <7 N 2%, is of type
I; the proof is complete.

LEMMA 2,12, Let # be a self-adjoint weakly closed real algebra.
Let &8 = A + 1.8, Assume <& has no type I portion. Then there
exists a unitary operator U in B such that U* = — U.

Proof. s, has no type I portion, for if P is a central projection
in &g, such that &, P is of type I, then by Lemma 2.3 P is central
in &. Since ZP + 1.#P = FP, FP is of type I by Lemma 2.11.
Thus P = 0. By the “halving lemma” then, [10, Theorem 17] there
exist two orthogonal projections F and F' in &, such that £ + F = I,
and a self-adjoint unitary operator S in ., such that £ = SF'S. Let
U= (E— F)S. Then U, being the product of two unitary operators
in &2, is a unitary operator in .22, and

U*=(E—F)S)*=SE—~SF=FS—ES=—(E—F)S=-U.

3. Anti-automorphisms of order 2. We classify all anti-
automorphisms of order 2 of von Neumann algebras leaving the centers
elementwise fixed. Our first lemma is of general nature.

LEMMA 3.1. Let V be a conjugate linear isometry of a Hilbert
space 7 onto itself. Then V* is a unitary operator. If Z denotes
the self-adjoint weakly closed (abelian) real operator algebra generated
by V*, then VA = AV for all A in A.

Proof. Since V is a conjugate linear isometry of 57 onto itself
V* is a (complex) linear isometry of =57 onto itself, hence is a unitary
operator. Clearly VV? = V2V and VV—* = V*V. Since V~* is unitary
and V2Vt =1,V = (V?»*. Since operators in Z# are weak limits
of real polynomials in V* and (V?)*, V commutes with every operator
in 2.

It was noted in [9, Lemma 3.2] that if 2 is a von Neumann
algebra, <27 a self-adjoint weakly closed real subalgebra of A such
that & + 1.2 = A, F N1# = {0}, then the map A + iB— A* + 1B*,
A, Be &2, is an anti-automorphism of order 2 of 2. The next lemma
shows that all anti-automorphisms of order 2 are of this form.

LEMMA 3.2. Let U be a von Neumann algebra, and let ¢ be a
s-anti-automorphism of order 2 of . Let B = {AcU:¢(A*) = A}.
Then # is a self-adjoint ultra-weakly closed real operator algebra,
B +1B =N, B Ni# ={0}, and $(A+ iB) = A* +1B*, A, Be Z.
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Proof. By [1, Théoréme 2, p. 56] ¢ is ultra-weakly continuous.
Clearly <% is a self-adjoint real algebra, and is ultra-weakly closed.
Since every operator A in A is of the form

A= %(A +g(A) + i[’%i”(A — ¢(A*>)]
with
LA+ A e
and
-%(A — s(A*)eP, A= + i .

The rest of the proof is equally simple.
From now on the anti-automorphisms will leave the center element-
wise fixed. This is because of the next lemma.

LemMA 3.3, Let A be a von Neumann algebra acting on a
Hilbert space 27, and let ¢ be a x-anti-automorphism of A of order
2 leaving the center of U elementwise fixed. Then

(i) If E s a projection in U then E ~ ¢(E).

(ii) If E' 1s a projection in ' then the map AR’ — ¢(A)E’ is
a x-anti-automorphism of UK’ of order 2 leaving the center of UE'
elementwise fived. It is denoted by ¢g.

Proof. Let E be a projection in %, Let F = ¢(&). Then K =
#(F'). By the Comparison Theorem [1, Théoréme 1. p. 228] there exist
central projections P and @ in 2 such that P+ Q = I, PF < PE,
QF = QE. There exists a projection E, < E in U such that PF ~ PE, <
PE. Hence there exists a partial isometry V in 2 such that V*V =
PF, VV* = PE,. As P = ¢(P),

PE = ¢(PF) = g(V*V) = ¢(V)g(V)* ~ 6(V)*3(V)
= ¢(VV*) = ¢(PE) = ¢(PE) = PF .

Thus PE < PF <5 PE, so PE ~ PF [1, Proposition 1, p. 226]. Similarly
QE ~QF. E~ F, and (i) is proved.

Let E’ be a projection in 2'. Let Ac 2. Following [5] we define
C, to be the intersection of all central projections @ with the property
QA =A. C(Clearly C,=C,,. By [5, Lemma 3.1,1] AE’' =0 if and
only if C,,Cy = C,Cy = 0 if and only if ¢(4)E’ = 0, (ii) follows.

LEMMA 3.4, Let %N and ¢ be as in Lemma 3.3. Let w, be a
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vector state on A. Then there exists a unit vector y such that
w6 = w, on A,

Proof. Let w = w,¢. Then @ is a normal state of A. Let F
be the support of w, in A [1, p. 61]. Let F = ¢(&). By Lemma 3.3
E ~ F. Hence there exists a partial isometry ¥ in 92 such that
E=V*V, F=VV*. Consider the state w;,, on 2.

wy,(F) = (VV* Ve, Vo) = (Bx,2) =1,

so Ve e F. Moreover, if w,,(S*S) =0 for Se¥l, then SVx = 0. Since
E is the support of w, in A, SVE =0=SFV. Hence SF=0. Thus
F is the support of w,, in 2, hence Vx is a separating vector for the
von Neumann algebra FUAF. Since w is a normal state of FF, there
exists by [1, Théoréme 4, p. 233] a vector ¥ in F such that o = w,.

LEMMA 8.5, Let U and ¢ be as in Lemma 3.3. Let x be a
unit vector in 7. Assume [x] = 1. Let y be the unit vector
constructed in Lemma 3.4, Then the mapping

(S +iThe— (S —1T)y

where S, T € Z ={AcW:4(A*%) = A}, is isomeiric, and extends to a
conjugate linear isometry V of 27 onto [Nyl, such that for Ae,

6(4) = VAV .

Moreover, of W is finite then V maps 57 onto oF

Proof. By Lemma 3.2 U = .2 +i%. Let S, Te<s?. Then
S + 1T) = S* + +T*, hence

(S + iT | = (S + iT)*(S + iT)z, )
= ((S*S + T*T)x, &) + i(S*T — T*S)zx, )
= ((S*S + T*T)y, y) + i(S*T — T*S)y, v)
=((S*S +T*T)y,y) — «(S*T — T*S)y, y)
=[S —iTy|F.

Since vectors of the form (S 4 ¢T)x are dense in 57, the mapping
(S + 1Tz — (S — 1T)y extends by continuity to an isometry V of 5#
onto [Ay]. Clearly V is real linear, and

VS +iTHe =V(@ES —T)e = (=T —iS)yy = —i V(S + ¢T)z
so V is conjugate linear. If Ae 7, S, Te &#, then
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VAAV(S + ¢T)x = VA — iT)y

=VAS — tAT)y

= (AS + 1AT)x

=AW + 1Tz .
By continuity and density, V-'AV = A for all Ae.&Z, ie. ¢(A) =
A* = V7A*V for all Ae 2. Thus ¢(4) = V'A*V for all Ae?.

Since ¢ is of order 2, A = VAV* for all Ac ¥, hence V2 A=AV?

and V2eA’. Moreover, V* is an isometry of 5# onto E, the range
of V2. Thus E, being a projection in ', is equivalent to I. Clearly
E < V(7)) = [Ay]. Since [Ay]e, [Ay] ~ I, as projections in A,
Consequently, if %’ is finite [Ay] = I. The proof is complete.

LEMMA 3.6. Let A and ¢ be as in Lemma 3.3. Suppose A has
no portion of type III. Then there exists a conjugate linear tsometry
V of 57 onto ttself such that

#(A) = VIA*V
for all AeQl.

Proof. Since 2 has no portion of type III, neither does U [1,
Corollaire 3, p. 102]. Since every projection in 2’ is a sum of finite
projections, [1, Corollaire 1, p. 244] and every projection is a sum of
cyclic projections, we may choose a family {®,}.e; of unit vectors in
&# such that 3, [¥UAx,] = I, and [Ax,|A'[Ax,] is finite. Let ¢[Ax,]
be the anti-automorphism of [z, ]2 constructed in Lemma 3.3. Since
([Ax,JA)Y = [Nz, ]2 [Ax,], [1, Proposition 1, p. 18] is finite, there exists
by Lemma 3.5 a conjugate linear isometry V, of [x,] onto itself
such that

g Ax,J(4) = VrA*V,

for each Ae[Ax,JA. Let V= 3>,V.. Then V is a conjugate linear
isometry of S# onto itself, and

#(4) = 3% o[z, J( Al
= Vi A¥ Az, V,
= (2ve)ar v,
=V3A*V .,

The proof is complete.

THEOREM 3.7. Let A be a von Neuwmann algebra acting on a
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Hilbert space 57, Let ¢ be a s-anti-automorphism of order 2 of A
leaving the center elementwise fixed. Then there exist two orthogonal
projections P’ and Q" in W with P’ + Q' = I, a conjugation J of the
Hilbert space P’, a conjugate linear isometry J' of the Hilbert space
Q' such that J* = —Q', such that

#(A) = JA*T — J'A*J" .
for all A in A, Moreover, if U is of type III we may assume Q@ = 0.

Proof. The two cases when 2 is of type III and 2 has no type
IIT portion, may be treated separately. First assume 9 has no type
IIT portion. By Lemma 3.6 there exists a conjugate linear isometry
V of &7 onto itself such that ¢(A) = V'A*V for AcA. Since ¢ is
of order 2, V* is a unitary operator in . Let <2 denote the weakly
closed self-adjoint real algebra generated by V:. Let

Q={xesF :Vx=—u}.

Then Q' is a spectral projection of V?, and by routine calculations
V@' = Q'V, a fact which also follows from Theorem 2.6 and Lemma
3.1. Let J'=VQ'. Then J’ is a conjugate linear isometry of @’ onto
itself such that J” =VQ = —Q'. Let P" =1 — Q'. Then P’ e,
By Corollary 2.7 V—*P’ has a square root W in <#P’. Put J = WVP'.
Then since W, V, and P’ all commute, simple calculations give

J2 — Pl ,
V=JQ + WP = J'Q + JW*P',

and
V= —-JQ + JWP’.

Hence, VIA*V = —J'A*J' 4 JA*J. This completes the proof when
9l has no portion of type III.

Assume U is of type III, hence A’ is of type III [1, Corollaire 3,
p. 102]. Thus for every projection E’ in ', E'A and E'WA'E’ are of
type III. Let E’ be a maximal projection in 2’ such that ¢, is
induced by a conjugation. If E’ == I there exists a unit vector
vel — E'. By Lemma 3.4 there exists a unit vector y in [2x] such
that w, + o, : & — R, <2 denoting the real algebra {4 ¢ A : ¢(4*) = A}.
Since ®, + ®, is normal, and every normal state of (I — E") is a
vector state [1, Corollaire 9, p. 322], there exists a vector ze[2Ax]
such that @, + @, = w,. Thus w,: &2 — R. Define J by J(S + ¢T)z =
(S —1iT)z. As in Lemma 3.5 J is a conjugation of [2z] such that

JA*[Az]J = ¢(A)[Az] .
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Since z = 0, [2z] # 0, and the maximality of E’ is contradicted. Thus
E’ = I, the proof is complete.

We are indebted to the referee for the proof of the nontype IIT part
of Theorem 3.7. Together with the remarks preceding Corollary 2.7 this
proof shows that the theorem can be proved without the use of the
structure theory in §2. In addition to the type III algebras a great
many finite von Neumann algebras have every anti-automorphism like
¢ in Theorem 3.7 induced by a conjugation.

THEOREM 3.8. Let U be a finite von Neumann algebra acting
on a Hilbert space 57 and having o separating and cyclic vector wx.
If ¢ is a x-anti-automorphism of 2 of order 2 leaving the center
of W elementwise fixed, then there exists a conjugation J of Z#
such that

o(A) = JA*J
Jor all Ae?,
Proof. As in Lemma 3.4 there exists a vector  in &7 such that
w, +0,: % — R, 7 denoting the real algebra {AecA:g4(4%) = A}.

Since « is separating there exists a vector z = 0 such that o, + w, =
w, on A [1, Théoréme 4, p. 233]. If AcUA and Az = 0 then

0=0w,(4%4) > w,(A*4) > 0,

so Az =0, hence 4 = 0. Thus z is separating for A. By [1, Corollaire,
p. 235] z is cyclic for A. Define J by J(S + iT)z = (S —1T)z, S, T e A.
As in Lemma 3.5 J is a conjugation such that ¢(A) = JA*J for all
A in A,

We next show that not every =x-anti-automorphism of order 2
leaving the center elementwise fixed is induced by a conjugation.
For this purpose the next lemma is helpful.

LEmMMA 3.9. If J’' is a conjugate linear isometry of a Hilbert
space 57 such that J'* = —1, then there exists nmo conjugation J of
&7 such that —J'AJ’ = JAJ for all operators A.

Proof. Assume J exists. Then —J'AJ’ = JAJ, hence
A= —JJAJJ = (tJ'J)A@EJIT) .
Note that ¢JJ’ is a unitary operator with inverse ¢J’J. Thus
WJ'J =e®l,0< 60 < 2,

and
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J =e*], 0 < p < 2.
Thus
J"? = e JerJ = ete"J: =T,

contrary to assumption.

ExXAMPLE 3.10. Let M, denote the 2 x 2 complex matrices con-
sidered as all bounded operators on C*. Let

(e b\ [ d —bJ
e dl) | —¢ al’
Then ¢ is a x-anti-automorphism of M, of order 2 leaving the center

fixed. Note that #Z = {4de M,: $(A*) = A} is the quaternions. Let
J’ be the conjugate linear isometry of C* defined by

(2)-(2)
s a
Then J” = —1I, and ¢(4) = —J'A*J’" for all Ae M,. By Lemma 3.9
¢ is not induced by a conjugation.

We are interested in knowing whether there exists a conjugation
J such that JUJ = A for a von Neumann algebra A. An affirmative
solution of this problem would reduce the study of x-anti-automorphisms
of A to that of x-automorphisms, since then a x-anti-automorphism can
be written in the form ¢(A) = o(JA*J), where p is the x-automorphism
O(B) = ¢(JB*J). For type I algebras the solution is a simple conse-
quence of the structure theory for such algebras.

Lemma 3.11. Let A be a von Neumann algebra of type I acting
on a Hilbert space 57, Then there exists a conjugation J of S#
such that JUAJ = WA and such that JA*J = A for all A in the center
of .

Proof. We first assume 9 is a maximal abelian von Neumann
algebra, i.e. A =W, If EF is a projection in A then (EA) = EA =
EA when considered as acting on the Hilbert space F, hence E is
maximal abelian. By [1, Proposition 9, p. 98] there exists an orthogonal
family E, of projections in 2 such that > E, = I and E, is countably
decomposable. If we can find a conjugation J, of E, such that
JEA], = EA, and J,E,A*J, = FE,A, then J = >\ J, has all the
required properties. We assume therefore that 2 is countably decom-
posable. By [1, Corollaire, p. 233] 2 has a separating, and hence cyclic,
vector . The identity map of 2 onto itself is a x-anti-automorphism
of order 2 leaving the center elementwise fixed. Hence an application
of Theorem 3.8 completes the proof when 9 is a maximal abelian von
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Neumann algebra.

We next assume U is an abelian von Neumann algebra. Then o’
is of type I. Hence by [1, Proposition 2, p. 252] there exist central
orthogonal projections P, in 9’ for each cardinal =, so P,ec ¥, such
that P, is homogeneous of type I, or P, =0, and >,,., P, = I. As
remarked above we can restrict our attention to the case when U’ is
homogeneous. We assume therefore W' = & & & (57.), where & is
an abelian von Neumann algebra acting on a Hilbert space 577, <7 (57)
denoting all bounded operators on the Hilbert space 5#7. Since A =
N = &’ QR C is abelian, A W, hence &’ < &. Thus & is maximal
abelian, and % = 2 ® C. By the above paragraph there exists a
conjugation J, of 57 such that A = JA*J, for all Ae&. Let J,
be any conjugation of 57;. Then J =J,®J, is a conjugation of
& = 57, Q 57, such that JB*J = B for all B in A,

In the general case we may by the same argument as above
assume U is homogeneous, so of the form A =F R Z(5%;) with F
an abelian von Neumann algebra acting on the Hilbert space 577,
By the above paragraph there exists a conjugation J, of .5, such
that J.A*J, = A for all Ae®. Let J, be any conjugation of .57,
Since the center of 2 equals § @ C the conjugation J = J, R J. has
all the required properties. The proof is complete.

The truth of the above lemma without the type I assumption is a
deep open problem. We can show that the existence of an anti-automor-
phism as in Theorem 3.7 implies an affirmative solution.

THEOREM 3.12. Let U be a wvon Neumann algedbra acting on a
Hilbert space 7. Suppose there exists a s-anti-automorphism ¢ of
A of order 2 leaving the center elementwise fixed. Then there exists
a conjugation J of 2 such that JUJ =W and such that JA*J = A
for all A in the center of . Moreover, 1f A has no type I portion,
and B = {AcWU: ¢(A*) = A} then JRBJ = 2.

Proof. By Theorem 3.7 we may assume there exists a conjugate
linear isometry J’ of 57 such that ¢(4) = —J'A*J’, and J? = —1,
By Lemma 3.11 we may assume 20 has no portion of type I. By
Lemma 2.12 there exists a unitary operator U in <Z such that U* =
—U. Let J =UJ’. Then J is a conjugate linear isometry of S5#

onto itself, and since
J'U =J'9U%) = =J'¢(U) = =J(=J'UJ)=UJ",J =1,
hence J is a conjugation. If Ae .<Z then
JAJ = UJ'AJ'U = U*¢(A*)U = U*AU ¢ &2,
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so J leaves .&Z invariant, hence 2 invariant. Finally, if A belongs
to the center of A, then JA*J = U*AU = A.

4. Inner anti-automorphisms. In the last section anti-automor-
phisms of order 2 leaving the center elementwise fixed were analysed.
One obviously wants to delete the assumption that anti-automorphisms
be of order 2. In the present section we shall do this for the anti-
automorphisms which are the analogue of inner automorphisms, and
show these anti-automorphisms are compositions of inner automorphisms
and anti-automorphisms induced by conjugations.

LeEMMmaA 4.1. Let U be a von Newmann algebra acting on a Hilbert
space =7, Suppose V is a conjugate linear isometry of S# onto
itself such that VUV = A, Let U = V?, and assume X UAX = A
for all square roots X of U in the wvon Neumann algebra <&
generated by U. Then there exists a square root UV of U in <&
such that if W = VU then W* =1 and WAW = A.

Proof. Let <Z denote the self-adjoint weakly closed real algebra
generated by U. By Lemma 3.1 AV = VA for all A in <. By
Theorem 2.6 there exist three orthogonal projections E, F', and G in
“Z such that B<# = Ey,, F# = F<#, note &% = & + 1<%, and
G# ={AR + p(A)Q : Aec &, p being a real *-isomorphism of <ZR
onto <Z@Q, R and @ are orthogonal projections in <& such that
R + Q@ =G}. Now iFe F<Z, hence

GF)V =V@F)= —iVF = —iFV,

so F'=0. By Corollary 2.7 we can choose a square root UY* of U in
<% such that GU'*e G=Z, so commutes with V. EU is self-adjoint
so equal to P, — Q,, where P, and Q, are orthogonal projections in
# with sum E. Since we may assume

EU" = E(P, + 1Q,), EVU"* =EP, — 1Q)V = EU"V .,
Let W = VU, Then by hypothesis W—UAW = 9, and
W:=VU-"ryvu-
= WREUV + GU VYU
— V( VEU': + VGU—-I/?) U-i2
=V¥E + GU™)
=UKE+G.

Therefore, W* = (UE + G’ = (P, — Q)Y + G=P, +Q, + G =1 The
proof is complete.
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LEmMMmA 4.2, Let A be a von Neumann algebra with no type I
portion acting on a Hilbert space 5. Let V be a conjugate linear
isometry of SZ onto itself such that VUV = A and Ve, Then
there exists a unitary operator U in A and a conjugation J of =F
such that V = JU and such that JAJ = .

Proof. V satisfies the conditions of Lemma 4.1, hence. V = WU?
where U, = V2e A, Wt=1 and W—UAW = A. Let S denote the self-
adjoint unitary operator W2, From the proof of Lemma 4.1 Secl.
Let E and F be projections in A such that # + F =1, E — F = S.
Let &% = {AeW:SAS = A}. Then =% = EALE + FUAF. Moreover, the

"anti-automorphism ¢ defined by ¢(4) = W—A*W leaves < invariant.
In fact, if Ac < then S(WAW)S = W WAWHW = WAW,
hence W—AWe <&, Since W*AW* = SAS = A for Ae &Z, ¢ induces
an anti-automorphism of order 2 of &#. By Lemma 3.2 <7 = &2 + 1.2,
where Z ={AeF :WAW = A}l ={Acz : AW = WA} is a self-
adjoint weakly closed real algebra satisfying 2 N i< = {0}. Since
% = EAE + FUAF with E and F' in A, <% has no type I portion.
Hence by Lemma 2.12 there exists a unitary operator U, in <2 such
that U} = — U,. Then U}? = 2-Y¥I + U,) € &%, and both U, and U}"?
commute with W, Let W, = WU;*. Then W2 =WU,2WU,;* = SU,c ¥,
and W2 = SUy = —SU, = — W2 As for U,, (W)Y belongs to the
self-adjoint real algebra generated by W3 Moreover, % = W AW,.
Let J = W (W3~2, Then U = JAJ, and

Tt = (W(W)™ = WaWi= =1,

since W, commutes with (W2~%*, Thus J is a conjugation, J = J,
and JUAJ = 2.

Finally, if U, = JW then a straightforward computation shows
U;=T+U)NS—-Uy)eUA. Let U= U,U*. Then Uec¥, and V =
WU = JU,UY* = JU. The proof is complete.

Let 2 be a von Neumann algebra acting on a Hilbert space 5#
Then an inner x-automorphism of 2 is one of the form A— U—AU,
where U is a unitary operator in . Clearly such an automorphism
leaves the center elementwise fixed. If ¢ is a s-anti-automorphism of
A we say ¢ is immer if ¢ leaves the center of U elementwise fixed
and if there exists a conjugate linear isometry V of © onto itself
such that V2e U and ¢(4) = V*A*V for all Ae., If U is a unitary
operator in 2, and J is a conjugation of 5 such that JA*J = A
for all A in the center of A and JUAJ = 2, then clearly the x-anti-
automorphism 4 — U~'JA*JU of A is inner. We shall see that every
inner x-anti-automorphism is of this form. In the type I case every
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x-automorphism of U leaving the center elementwise fixed is inner.
The analogous result holds for *-anti-automorphisms.

LEMMA 4.3. Let U be a von Neumann algebra of type I acting
on a Hilbert space 57 Let ¢ be a x-anti-automorphism of A leaving
the center elementwise fixed. Then there exist a conjugation J of
7 such that JUJ = A and such that JA*J = A for all A in the
center of A, and a wnitary operator U in A, such that

5(A) = U-JA*JU

for all A wn A. In particular, ¢ is inner.

Proof. By Lemma 3.11 there exists a conjugation J of 57 with
the stated properties. The map A — ¢(JA*J) is a *x-automorphism of
A leaving the center elementwise fixed, hence is inner [1, Corollaire,
p. 256]. Let U be a unitary operator in 2 such that ¢(JA*J) = UTAU
for Ae. Then ¢(A) = ¢(J(JAJ)J) = U (JAJ)*U = U'JA*JU.

THEOREM 4.4, Let U be a wvon Neuwmann algebra acting on a
Hilbert space 57 Let ¢ be an imner =x-anti-automorphism of A.
Then there exist a conjugation J of =7 such that JAJ = A and
such that JA*J = A for all A in the center of A, and a unitary
operator U in A, such that

#(A) = UJA*JU
for all A in 2.

Proof. The type I portion is taken care of by Lemma 4.3, We
may thus assume U has no type I portion. By assumption ¢(A4) =
V-A*V for all A in A, where V is a conjugate linear isometry of
&7 such that V2e 2. By Lemma 4.2 there exists a unitary operator
U in %A and a conjugation J of 7 such that JUJ =2, and V = JU.
Thus ¢(A) = U-'JA*JU. If A is in the center of A then A =
UAU = Ug(A)U* = JA*J. The proof is complete.

An examination of the proof of Theorem 4.4 shows that in order
to find a conjugation J such that JAJ = A, we used the innerness
of ¢ mainly because we cannot in general conclude that if U is a
unitary operator such that U= AU = A, then U~ AU = A for some
square root of U in the von Neumann algebra generated by U. This
is a bit surprising, for if 7T is a positive invertible operator such
that 7—AT = A, then by a theorem of Gardner [3, Theorem 3.5]
T-2T = 9., 1In fact, let M, be the complex 2x2 matrices acting
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on C? and let C, be the scalar operators in M,. Let %A = M, R C..
Let E, E,, F,, and F, be 1-dimensional projections in M, such that
E+E=F+F,=1 Let S =E —FE,S,=F,— F, be self-adjoint
unitary operators in M,. Let S=S,®S,. Then S is a self-adjoint
unitary operator in M, ® M,, and the map

ARQI—SARIDS = SAS, QI

is an automorphism of order 2 of 2. We show S—/*S"* == 9, Indeed
S=FE—F, where E=EQF +EQF, F=EQF,+EQF. S
has two square roots, namely E =+ ¢F. A straightforward computation
yields S7*(AQ I)S"* = (K, AE, -+ E,AE,) @ I + i(E,AE, — E,AE)® S,.
Since the second term need not be in 2, S—/*AS > == U,

We conclude this section with a result which combines the results
in § 3 with Theorem 4.4. For simplicity we state the theorem for
factors.

THEOREM 4.5. Let U be a factor acting on a Hilbert space 57
Then the following four conditions are equivalent.

(i) There exists an inner x-anti-automorphism of A,

(ii) There exists a conjugation J of SZ such that JAJ = A.

(iii) There exists a self-adjoint weakly closed real algebra #
such that Z N1# = {0}, and A = F + 1A%

(iv) There exists a s-anti-automorphism of order 2 of U.

Proof. By Theorem 4.4 (i) and (ii) are equivalent. By Lemma 3.2
(ii) implies (iii). Assume (iii). Then the mapping A + ©B— A* 4 ¢{B*
with A4, Be? is a =x-anti-automorphism of 2 of order 2 [9, Lemma
3.2], By Theorem 3.12 (iv) implies (ii).

5. Automorphisms of order 2. One of the key points of the
proof of Theorem 4.4 was that <z had no type I portion if 2 had
none. In the proof we used that the self-adjoint unitary operator S,
for which <& was the fixed point set, belonged to 2. In general it
is unnecessary to assume Sec . As this result is closely related to
Lemma 2.11 we include a proof.

LEMmA 5.1. Let N be a C*-algebra. Let + be a x-automorphism
of order two of N. Let <& ={AeW:y(A) = A}. Then <Z 1is a
C*-algebra. If <& 1is abelian then every irreducible representation
of A is on a Hilbert space of dimension at most 2.

Proof. Clearly < is a C*-algebra., Let & ={AeW:—A = (4)}.
Then &z N & = {0}, and A = & + &. In fact, the latter equality
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follows since if A€ then
A= (A + 4(A) + S(A = $@),

where the first term is in <# and the second in &°. Note that if
B,Ce & then BCe Z since +(BC) = (B)y(C) = (—B)(—C) = BC.
By hypothesis <& is abelian. Let ¢ be an irreducible representation
of %A. Then p(<7) is an abelian C*-algebra, hence isomorphic to some
C(X). Assume X contains more than two points. Then there exist
three positive operators F,, F,, and F, in ¢(<#) and orthogonal unit
vectors x,, ,, and ; in 97"~ the Hilbert space on which ¢ represents
A- such that Fix, = d0;,2,. By [4, Theorem 1 and Lemma 5] there
exists a unitary operator U in U such that o(U)x, = x,, @(U)x, = z,.
By the above U = A + B with Ae &#, Be &. As

I =U*U = (A*A + B*B) + (A*B + B*4) ,

and the first term is in <% and the second in &, I = A*A + B*B.
In particular, || B|| <1, hence ||p(B)z,|| < 1. Now

(p(B)x,, ) = (p(U)x,, x,) — (p(A)xy, x,)
= (%, @) — ((P(A)lety ;)
=1 (Fo(d)x., v,)
=1,

Thus 1= (p(B)r,2) = [|9(B)e || @] =1, so that o(B)e, = 2.
Similarly @(B)x, = z;. Thus

P(BY)x, = p(B)p(B)x, = p(B)x, = @; .
But B*e <%, hence
p(BYe, = p(B)Fw, = Fip(BY)x, = Fos =0,

a contradiction. Thus X contains at most two points. Assume
dim 2" = 3. Let wx, @, x; be three orthogonal unit vectors in .2
If p(=#) = CI, we can find as above B in & such that ¢(B)z, =
%y, @(B)x, = x,, hence @(B%)x, = x,, But B* = al with aeC, hence
@(B%x, = ax,, a contradiction. If X is a two point space () =
{aFE + bF:a,beC, E and F orthogonal projections in ¢(<Z) with
E + F =1}, We may assume dim F' = 2, v, € F, x,2,€ F. Then
B can be chosen as above, hence @, = p(B¥z, = @(B*)Ex, = E ¢(B*)x, =
Ex, =0, a contradiction. Thus dim 27 < 2.

THEOREM 5.2. Let A be a wvon Neumann algebra acting on a
Hilbert space 57, Let + be a x-automorphism of order two of A
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Let 7 ={AecW:y(A) = A}. If <# is a von Neumann algebra of
type I then so 1is A,

Proof. Clearly <7 is a von Neumann algebra. Let P be the
central projection on the type I portion of 2. Then P is invariant
under +, hence Pc.<z. Assume P =+ I. Then (I — P) has no type
I portion while &#(I — P) is of type I. Let E be a nonzero abelian
projection in (I — P). Then A— E(A)E is an automorphism of
EUAE leaving operators in E<Z K elementwise fixed. Moreover K<z E
is abelian. By Lemma 5.1 every irreducible representation of EUAE
is on a Hilbert space of dimension at most 2. Thus EUE is of type
I (cf. argument in proof of Theorem 2.8), contradicting the fact that
A(I — P) has no type I portion. Thus P = I, A is of type I.

The author wants to thank E. Effros and R. Kadison for many
stimulating conversations on the subject, and to thank the referee for
many valuable suggestions.
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