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ON COMPACT UNITHETIC SEMIGROUPS

JOHN A. HILDEBRANT

A topological semigroup is a Hausdorff space S together
with a continuous, associative multiplication. If each element
of S has unique roots in S of each positive integral order,
then S is said to be uniquely divisible. The closure of the set
of positive rational powers of an element x in a compact
uniquely divisible semigroup S is a commutative clan (compact
connected semigroup with identity) called the unithetic semi-
group generated by x.

The purpose of this paper is to discuss the structure of
compact unithetic semigroups. It is established that if the
cartesian product of two semigroups is unithetic, then both
factors are unithetic, and at least one factor is a group.

A partial converse is presented. If $ is a compact first
countable unithetic semigroup, and G is a finite dimensional
compact unithetic group, then G x S is a unithetic semigroup.
These results are used to give the precise of a unithetic semi-
group with zero whose maximal group containing the identity
is finite dimensional. A complete converse to the first result
is not known. In particular, the question as to whether one
or both of the conditions that S be first countable and G be
finite dimensional can be omitted is open.

Throughout this paper R denotes the set of all positive rational
numbers, and N denotes the set of all positive integers.

A semigroup S is said to be uniquely divisible if each element
of S has a unique root of each positive integral order. If S is
uniquely divisible, xeS, and neN, then xlln denotes the unique nth.
root of x in S. If reR, r = m/n, m,neN, define xr = (xlln)m. It
is not difficult to show that xr is unique and independent of the choice
of m and n. Define [x] = {xr: r e R}* (closure in S). If S = [y] for
some y e S, then S is said to be unithetic and y a unithetic generator
of S.

EXAMPLE. Let I = [0,1] be the unit interval under usual real
multiplication. Then I is unithetic and is generated by any xe I such
that 0 < x < 1. A semigroup which is iseomorphic (topologically iso-
morphic) to I is called a U-semigrowp.

Note that although I is unithetic, I x / is not unithetic. How-
ever, / x I is uniquely divisible. Indeed, the cartesian product of two
uniquely divisible semigroups is uniquely divisible. One might ask
"Under what conditions is the cartesian product of two unithetic semi-
groups unithetic?" This question is partially answered in §4.
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266 JOHN A. HILDEBRANT

The study of unithetic semigroups is partially motivated by the
fact that each clan determines an irreducible uniquely divisible clan.
This is established in the following theorem sequence:

LEMMA 1.1 Let A be a commutative divisible clan. For each
neN, let Sn = A. For m > n in N, define fmn : Sm -»Sn by fmn{z) =
z*[m>n\ where Φ{m, n) = ml/nl. Let S = lim (Sn, fmn, N). Then S is a

commutative uniquely divisible clan. Moreover, if A is uniquely
divisible, then S is iseomorphic to A.

The proof of Lemma 1.1 is straight forward and will not be pres-
ented here. Although it is stated for clans, it holds for compact
semigroups.

The definition of an irreducible clan (semigroup) is given in [5].,
Note that any irreducible clan is commutative [6].

LEMMA 1.2. An irreducible clan A is divisible.

Proof. Let neN. Define gn:A-+A by gn(z) = zn, ze A. Then,,
since A is a commutative semigroup, gn is a continuous homomorphism.
Thus gn(A) is a subclan of A which contains the identity of A and.
meets the kernel (minimal ideal) of A. Since A is irreducible, gn(A) =
A. Thus A is divisible.

LEMMA 1.3. Let S be a clan and T an irreducible subclan.
(which contains the identity and meets the kernel of S). If S is-,
iseomorphic to T, then T — S.

Proof. Let g : S —> T be an iseomorphism. Suppose T Φ S. Then,
since g is one-to-one, g(T) is a proper subset of T. But g(T) is a.
subclan of T. This contradicts the fact that T is irreducible. Hence
T=S.

THEOREM 1.4. Each clan S determines an irreducible uniquely
divisible clan So.

Proof. The clan S contains an irreducible subclan A which is
commutative [6]. By Lemma 1.2, A is divisible. Let An = A for each
neN and apply Lemma 1.1 to obtain So = lim AM. Then So is a com-
mutative uniquely divisible clan.

Now So contains an irreducible subclan T (which contains the
identity and meets the kernel af So) [6]. Let πn,neN, denote
the projection of So onto An. If πn(T) Φ An for some neN, then
τ j f ) is a proper subclan of An which contains the identity of
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An and meets the kernel of An. This contradicts the fact that An is

irreducible. Hence πn(T) = An for each neN. Now T is iseomorphic

to lim7ΓΛ(Γ) = lim An = So. Thus, So and T are iseomorphic. By

Lemma 1.3, So = T, and hence So is irreducible.

COROLLARY 1.5. Let S be a clan containing exactly two idempo-
tents. Then S determines a compact unithetic semigroup So.

2* Unithetic groups*

THEOREM 2.1. Let G he a compact uniquely divisible abelian
group. These are equivalent:

( i ) G is monothetic;
(ii) G is unithetic;
(in) G is separable.

Proof. Since G is divisible and compact, G is connected [3, p. 385].
( i ) implies (ii). Suppose G is monothetic. Then there exists

geG such that G = {g, g\ •••}*. Thus G = {g, g2,-- •}* c [g] c G, and
hence G = [g],

(ii) implies (iii). Suppose G is unithetic. Then G = [#] for some
geG. Hence {gr:reR} is dense in G, and thus G is separable.

(iii) implies (i). Suppose G is separable. Then, since G is con-
nected, G is monothetic [2].

Notation. Let J? denote the α-adic solenoid with a = (2, 3, 4, •)

[3, P. 114].

Let 2Γ = Π Σa, where 21. - ^ for each aeΓ.

THEOREM 2.2 Let G be a nondegenerate compact uniquely divisi-
ble abelian group. Then G = I P for some ^β

Proof. Since G is uniquely divisible, it is both divisible and tor-
sion-free. The result now follows from [3, p. 406].

THEOREM 2.3. Let G be a compact group. Then G is unithetic
if and only if G = Σ~ and card ^ ^ c.

Proof. Suppose G is unithetic. Then G is a uniquely divisible
abelian group. Hence, by Theorem 2.2, G = Σ~ for some " . By Theo-
rem 2.1, G is separable. Thus card"" ^ c [10].

Suppose G = Σ~ and card" ^ c. Then G is separable [10]. Hence,
by Theorem 2.1, G is unithetic.
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COROLLARY 2.4. Any element of Σ which is not the identity is
a unithetic generator of Σ.

LEMMA 2.5. Let {rn} be a sequence in R which converges to 0.
Then there exist g, gQeΣ, gQ Φ 1, such that {gTn} clusters to g0.

Proof. Let N denote the set of all positive integers and C the
circle group (the boundary of the complex unit disk under multiplica-
tion). For each ne N, let Cn = C. Define fmn : Cm—> Cn for m > nf

by fmn(z) = s*(m n>, where φ(m, n) = mϊ/nϊ. Then Σ = 1ίm (Cn, fmn, N).

Let L denote the closed left half of C, i.e., L =*{eiθ: cos# ^ 0}.
We will construct, by induction, an element g = (gu g2, •) in Σ such
that {rn} has a subsequence {rnj\ such that each first coordinate of gr»$
lies in L. This will be sufficient to insure that {gr»j} does not converge
to the identity (1,1, 1, •) of Σ. Thus {g**,} (hence {gr»}) will have
a subsequence converging to some g0 Φ 1 in Σ.

Note that if r = a/b, where a and b are relatively prime positive
integers, and (xu x2ί •••) is an element of 2, then (xu x2, ) r —

For each rn in {rn} let mn be the least positive integer such that
Mn = mj rn is an integer. We may assume that {r J is such that
mi > 2 and that mn^± < mn for each n, since {rn} will have a sub-
sequence satisfying these conditions.

Let rn = ajbn, where an and bn are relatively prime positive integers
for each n.

Let gx = g2 = =gmi = l. We want to define g = (gug2, ) so that:
( i ) gl = Qn-i for each n, i.e., geΣ, and
(ii) g^i^L for each n ^ 2.
Note that having defined gn-λ we can always find zeC such that

zn = gn_1 by selecting z to be one of the nth. roots of gn-λ. However,
the manner in which z is chosen when n = mn — 1 will be more specific,,
so that (ii) can be satisfied.

Having defined gm%, define gnn+1, •• ,0TOn+1-i just to satisfy condi-
tion (i).

We now define gmn by induction. Suppose that gmn-i = eiθ, where
0 ^ θ < 2π. Let β =nMJmn. Then βeR\N, by the way in which mn

is defined.
Suppose 2pβ e N for some pe N. Let p0 = min. {p e N: 2p/3 e JV}*

Then 2^/3 is odd and hence cos (2p°βπ) + sin (2po/3τr) = - 1 ^ 0 .
Suppose 2*73g iV for all pe N. Then, using the dyadic expansion

of β, one can show that there exists poe N such that

cos (2poβπ) + sin (2poβπ) ^ 0 .

Thus, in either case, we have
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cos (θβ + 2p°/3τr) = cos (θβ) cos (2*φπ) - sin (θβ) sin (2^βπ)

<S cos (2Poβπ) + sin (2̂ 0/37:) <; 0 .

Let gm^ = e<[(β/«n)+(^)/»Λ]. Then

Moreover, g%% — e

i{θβ+2P°βπ), which is in L. Thus the required conditions
are satisfied.

Let g = (gu g2i . . . ) . Then βf» = (g\^\ . . . ) = fe •) and g ^ e L
for each %. This completes the proof of the lemma.

3* Preliminary results* Throughout this section S = [x] denotes

a compact unithetic semigroup which is not a group. The results in

Theorem 3.1 can be obtained as a consequence of [4, p. 275] or by

using the techniques and results in [7], [8], and [9].

For a net {xa} in S, we use xa • x to denote the fact that {xa}

converges to x, and xa > x to denote the fact that {xa} clusters to x.

THEOREM 3.1. The semigroup S is a commutative clan containing
exactly tτvo idempotents such that:

( i ) The kernel K(x) of S is a unithetic group generated by ex,
where e is the identity of K(x).

(ii) The maximal subgroup H(x) containing the identity 1 of S
is a unithetic group.

(iii) There is a continuous one-to-one homomorphism σ from the
additive nonnegative real numbers R into S such that S = H(x)(σ(R)*).
The kernel of σ(R)* is σ(R)*\σ(R) and is contained in K(x). If
a(μ) = σ(β)g, for a, β e R and g e H(x), then a = β and g = 1. More-
over, if aeR\{0}, then σ(R)* = [σ{a)]m

LEMMA 3.2. Let {ra} be a net in R.

( i ) If ra -^-> 0 and xra -^-> z, then z e H(x).
e f

(ii) If xr<x > z and z e H(x), then ra > 0.

Proof. For seR, let H(x, s) = {xr :reR,r < s}*. Then H(x) =
Π{H(x,s):seR} (See [8]).

( i ) Let se R. Then there exists a0 such that ra < s for all
a > a0. Thus xr« e H(x, s) for all a > a0. Since H(x, s) is closed and

xr« > z, ze H(x, s). Hence z e H(x).
(ii) Suppose there exists r eR such that ra > r eventually. Then

f
{xr«-r} clusters to some w e S. Hence xTa > wxr. Thus wxr = z.
Therefore, wllrx = zllr, and zllr e H(x). Since S\H(x) is an ideal, x e H(x).
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This implies that S is a group, which contradicts the assumption that

S is not a group. Hence ra > 0.

THEOREM 3.3. The function Ψ :R-^S defined by Ψ(r) = xr, reR,
is continuous if and only if H(x) = {1}.

Proof. If H(x) = {1}, then the fact that Ψ is continuous follows
from Lemma 3.2 (i).

Suppose H(x) Φ {1}. Let pe H(x), p Φ 1. Let {sa} be a net in R
e f

such that xSa > p. Then, by Lemma 3.2 (ii), sa > 0. Let seR.
Then there exists a subnet {saβ} of {sa} such that saβ > 0 and saβ < s

for all β. Thus s — sa > s. If ¥ were continuous, we would have

χs-saβ >χs<j a n ( j ^ u s χs _ p^ s o r ^ __ pi/^g This would imply that

p = 1. Since p =£ 1, ?Γ is not continuous.

THEOREM 3.4. T%β quotient semigroup S/K(x) is a compact
unithetic semigroup which is iseomorphic to (H(x) x I)/(H(x) x {0}),
where I = [0, 1] is a U-semigroup. A generator of S/K(x) is φ(x),
where Φ : S —• S/K(x) is the natural map.

Proof. It is not difficult to show that S/K(x) is a uniquely divisible
commutative clan with zero z — φ(K(x)).

Let φ(y)eS/K(x), yeS. Then there exists a net {ra} in R such

that xΊ'a >y. Since φ is continuous, φ(xra) >Φ(y). Since Φ is a
homomorphism ^(.τr«) = ^(a;)rα for each a. Thus (̂2/) e [Φ(x)], and hence
S/iΓ(x) - [φ(x)]m

Let σ be the map of Theorem 3.1. Then S = H(x)(σ(R)*), and
hence S/K(x) = Φ{H{x))Φ{σ{R)*). Since the kernel of σ(R)* is contained
in K(x), z is a zero for Φ(σ(R)*)m

Define f:φ(H(x)) x φ(σ(R)*)-+S/K(x) by /((α, &)) - αδ. Then /
is a continuous homomorphism onto S/K(x). Define a relation ζ>
on φ(H(x)) x ^(σ(5)* by Q = {{a, 5), (c, d) : /((α, 6)) - /((c, d))}. Then
(Φ(H(x)) x φ(σ(R)))/Q is iseomorphic to

It will be established that

x Φ(σ{RY)IQ = (ώ(H(x)) x ψ(σ(B)*))/(φ(H(x)) x {«}).

This is done by showing that / is one-to-one on φ(H(x)) x (φ(σ(R)*)\{z\)
(\ denotes complement).

Suppose f((af, 6')) = /((cr, d')), where α', c' e φ(H(x)) and

6', d' e Φ(σ(R)*)\{z}.

T h e n α ' δ ' = c'd'. T h e r e e x i s t α , c e i ϊ ( a j ) a n d b,de σ(R)* s u c h t h a t α ' =
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V = φ(b), cf = φ(c), and df = ψ(d). Since 6' Φ Z Φ d', bf and d are

not in the kernel of σ(R)*. Thus, by Theorem 3.1, b,deσ(R). Now
φ(ab) = Φ(a)φ(b) = afbr = c'd' = Φ(c)φ(d) = φ(cd).

Suppose ab e K(x). Let a"1 denote the inverse of a in H(x). Then
.6 = 1-6 = (α~1α)6 = a~1(ab) is in if(a;). Thus φ(b) = £. This contradicts
6' ^ 2. Hence ab e S\K(x). Similarly, cd e S\K(x).

Since φ is one-to-one on S\K(x) and ^(αδ) = φ(cd), ab = cd. Let
α e 12 and β e R such that 6 = σ(a) and d = <x(/3). Then aσ(a) = cσ(β).
Thus σ(a) = (a"1c)σ{β) and cr^c e H(x). Hence, by Theorem 3.1, a = β
and a~γc = 1. Therefore, α = c and b = d, and hence / is one-to-one
φ(H(x)) x (0(cr(.β)*)\{3}). This establishes the fact S/K(x) is iseomorphic
to (φ(H(x)) x φ(σ(R)*)/(φ(H(x)) x {«}).

Since ^ is one-to-one on S\K(x), φ(H(x)) is iseomorphic to H(x).
Let J = [0,1] under usual real multiplication. Then I is a compact

unithetic semigroup. Let σ0 be the map of Theorem 3.1 corresponding
to /. Since the maximal group of / containing 1 is trivial, / = σo(R)*.
Moreover, since the kernel of / is {0}, (0,1] = σo(R). Define u : φ(σ(R)*)-+
I by u(z) = 0 and u(b) = σo(a), where 6 = φ(σ(a)) for aeR if 6 Φ z.
Then u is an iseomorphism of φ(σ(R)*) onto I. This completes the
proof of the theorem.

4* Structure theorems*

THEOREM 4.1. Let each of S1 and S2 be compact semigroups such
that Si x S2 is unithetic. Then each of S1 and S3 is unithetic.
Moreover, either Sx or S2 is a group.

Proof. Let S1 x S2 = [(xu x2)]. Then S, = [x,] and S2 = [x2].
Suppose that neither S1 nor S2 is a group. Now (l,xλ)eS1 x S2.

P β

Hence there exists a net {ra} in R such that x[a > 1 and x\a > x2.
6 f 6

Since x{« > 1, ra • 0. Let {ra } be a subnet such t h a t r α > 0.

e f .
T h e n xr

2

aβ > x2. But this implies that ra > 1. This contradiction
implies that either Sx or S2 is a group.

THEOREM 4.2. Let S = [x] be a compact first countable unithetic
semigroup, and G a compact finite dimensional unithetic group. Then
G x S is a unithetic semigroup.

Proof. If S is a group, then the theorem follows from Theorem
2.3, since G = Σ~ for some finite " .

Suppose that S is not a group. We prove that Σ x S is unithetic.
The conclusion follows by induction.

Now Σ x S is a compact uniquely divisible semigroup with identity
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(1,1) and maximal group Σ x H(x).
6 P

Let {rn} be a sequence in R such that xrn > 1 and rn > 0.
Then, by Lemma 2.5, there exist geΣ and ^ o e ί , gQ Φ 1, such that

gTn — 0o. Thus (flr, α)r* — (flr0,1). Hence (g0,1) e #((#, a?)). There-
fore, jBΓ((gf, a;)) Π [^ χ {1}] i s a nondegenerate compact uniquely divisible
subgroup of Σ x {1}. Thus, by Corollary 2.4, #((<?, x)) f\ (Σ x {1}) =
£ x {1}, and hence Σ x {1} c [(#, a;)].

Let (w,y)eΣxS, and af; — -̂> #, s, e R . Then gsΐ -^—+ gQeΣ.

Hence (#0, #) e [(g, a;)]. Since 2 x {1} c [(g, x)], (wg^1) e [(g, x)]. Hence
(w,y) = (wgf1, ΐ)(g0, y) is in [(g, x)]. Thus Σ x S <z [(g, x)], and hence
Σ x S = [(g, x)]. This completes the proof of the theorem.

The following theorem is a consequence of Theorem 3.4.

THEOREM 4.3. Let Ŝ  = [a ]̂ and S2 = [x2] be compact unithetic
semigroups such that H(xx) is iseomorphic to H(x2). Then SJKfa)
is iseomorphic to S2/K(x2).

EXAMPLE. Let / = [0, 1] be a [/-semigroup and ^ a set of n ele-
ments. Then, by Theorem 4.2, Σ~ x I is unithetic. Moreover, Dn =
(Σ~ x I)/(Σ~ x {0}) is a unithetic semigroup with zero whose maximal
group containing the identity has dimension n.

COROLLARY 4.4. Let S = [x] be a compact unithetic semigroup
with zero such that H(x) has dimension n. Then S is iseomorphic
to Dn.
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