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PROJECTIVE AND INJECTIVE DISTRIBUTIVE LATTICES

RAYMOND BALBES

This paper is concerned with the properties of projective
and injective distributive lattices.

By considering the minimal Boolean extension of a dis-
tributive lattice L, the question of the injectivity of L is
transferred to the category of Boolean algebras, where a
characterization is known. The result is that L is injective-
in the category of distributive lattices-if and only if it is a
complete Boolean algebra.

The first section deals with a method of defining E-fΐβe sequences
of elements in a distributive lattice. Roughly speaking, these are
elements which satisfy a given set E of inequalities and no others
except consequences of E.

We prove that a finite distributive lattice is projective if and only
if the sum of any two meet irreducible elements is meed irreducible.
For the general case we show that a distributive lattice is projective
if and only if it is generated by an E-fΐee sequence, where E is a
certain set of one-sided inequalities.

The last section concerns the projectivity of Boolean algebras,
chains, and direct products.

1. E-free distributive lattices* Throughout this paper {αj, i e /,
will denote a sequence of distinct variables.

DEFINITION 1.1. An inequality in {xt}9 ie I, is a formula of the
form

( 1 )

DEFINITION 1.2. Suppose {α̂ }, i e J, is a sequence of elements of a
distributive lattice and IQJ. Then {at}9ieJ9 satisfies the inequality
(1) if aiχ ain S dj1

Jr + αj m. If E is a set of inequalities in
{Xi}, ie I, then {αj, ieJ, satisfies E if it satisfies all members of E.

THEOREM 1.3. // {αj, ieJ, is a sequence of elements of a dis-
tributive lattice L,IξΞ:J, and f:L—+M is a homomorphism into
a distributive lattice M, then if {αj, ieJ, satisfies a set E of
inequalities in {#J, ί e /, then {/(«»)}> i^J, satisfies E.

Proof. This follows from the fact that homomorphisms preserve
order.
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DEFINITION 1.4. Let E be a set of inequalities in (»<), iel, and
e an inequality in (Xi),ieJ, where / g J. Then β is said to be a
consequence of I? if and only if whenever {α<}, i e J, is a sequence in
a distributive lattice L which satisfies E, then it satisfies e.

DEFINITION 1.5. If E is a set of inequalities in {$<}, i e /, then a
sequence {a{}, ieJ, IξΞ= J, is said to be E-free if and only if:

( i ) {αj, i e /, satisfies J?.
(ii) If {ai},ieJ, satisfies an inequality e in (#*), i e J , then e is

a consequence of i?.

It is clear that if {α̂ }, i e J, is E-ΐree and β is a consequence of
E, then {αj, i e J, satisfies e.

THEOREM 1.6. Let {α*}, ie Ibe a sequence in a distributive lattice.
Then there exists a set E of inequalities in {αjj , ie I, such that
i e /, is an E-free sequence.

Proof. Let

Now {α̂ }, iel, is E-ίτee for it satisfies i£ and if it satisfies an
inequality e in {α?,-}, ΐ e i , then eGί/. It is trivial that e e S , implies
that e is a consequence of E.

LEMMA 1.7. A mapping f of a set G of generators of a dis-
tributive lattice L into a distributive lattice M can be extended to
a homomorphism f: L-* M if and only if for any finite nonempty
subsets Sj T of G, whenever

(2) π(S)^Σ(T)

then

( 3 ) π(f(S)) £ Σ(f(T)) where f(S) = {f(s) \seS}.

Proof. The necessity follows immediately. Now if α e i , then
a = Σΐ=iπ(Si) where St is a finite nonempty subset of G for 1 <̂  i <̂  n.
Define / ' : L->Mby f(a) = Σ?βlττ(/(S4)). Since Σ t i ^ S , ) = ΣΓ-i^Γy)
is equivalent to a collection of relations of the form (2), which by
hypothesis are preserved by /, the function / ' is well defined. It is
now easy to show that / ' is a homomorphism and an extension of /.

THEOREM 1.8. / / {αj, ie J, generates a distributive lattice L
and E is a set of inequalities in {#*}, ΐ e J, IξΞ:J, then {α̂ }, i e J, is
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E-free if and only if
( i ) {&;}, i e J, satisfies E.
(ii) whenever {bi},ieJ, is a sequence of elements of a distribu-

tive lattice M such that {δj, ieJ, satisfies E, then there exists a
homomorphism f:L—*M such that /(α*) — δ$.

Proof. For the necessity of (ii), let M be such a distributive
lattice. By Lemma 1.7, we need only show that

( 4) ah ain ^ah+ + ajm implies

(5) bh bin£bh+ . . . +bjm.

But if (4) holds then {α̂ }, ieJ, satisfies

Since {α4}, i e J is £7-free, β is a consequence of .£*. But Λf satisfies
£7 so (5) holds. Conversely, suppose {αj, i e J satisfies an inequality
e in {#*}, i e /. To show e is a consequence of E, let {δj, i e J , be a
sequence in a distributive lattice M which satisfies E. By hypothesis
there is a homomorphism f\L—>M such that /(α<) — 6<. Thus, by
Theorem 1.3, {δj, i e /, satisfies E. So e is a consequence of E.

THEOREM 1.9. (Existence) If E is a set of inequalities {&J,
iel, and J 2 / , then there exists an E-free sequence {A^ieJ.

Proof. For each inequality e — xiχ xin ^ xh + + x3 m in
{Xi}, iel, let

8(β) - {s e 2JI βίiO - . . . - β(in) - 1, β(Λ) - . . . - s(jm) = 0}

and if J? is a set of such inequalities, let 8(2?) = \JeeE S(e). Let
A* = {s G 2JI s(i) = 1, s 0 2(E)}. Finally, for each ieJ, set Aitl = A<
and il<t0 = 2J — Ait

We first show that
( i ) If Πi Ai>8{i) - 0 then s e 2(E).
(ii) Let {αj, i € / , be a sequence of members of a ring of subsets

of a set X and let e — xiχ xi% ?£xdl+ + xjm.
Then {α̂ }, ieJ, satisfies e if and only if Π* Λίfi(β) = 0 for all s e 2(e),
where aitl — α̂  and aif0 = X — α .̂

For (i) if s<£2(E) then if s(i) = 1, s e i ^ and if s(i) = 0, seAis0.
Hence s e Π i 4 S ( i ) . For (ii) first suppose {α<}, i e J , satisfies e. Then

αίχ Π Π α<Λ n α^ ΓΊ Π α ί w

 = 0 a n d h e n c e Πί «*,•(*) = 0 whenever
s e 8(e). Conversely, suppose there exists
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Define se2J by s(i) — 1 if and only if peait Then s e S(e) but

peΓ\iai,sa).

Suppose

Then Πί=iA i 4 S U w ^ v f o r i f s(£&(E) and s(^) = . . . = s(in) = 1
then s(iz) = 1 for some le{l, « ,m}. Hence {AJ, i e J, satisfies E.
Now suppose {AJ, i e J, satisfies an inequality e in {$;}, ieJ and
{αj, i e J , is a sequence in a distributive lattice M which satisfies Έ.
We can assume that M is a ring of sets. Note that if we apply (ii)
to {Ai}, i eJ, then (i) shows that every member s of 2(e) is in 2(E).
Again by (ii), {αj, ΐ e J, will satisfy e provided every member of S(β) is
a member of S(β') for some e! e E. But this follows since 8(e) £

DEFINITION 1.10. A distributive lattice is said to be E-free if it
is generated by an E-free sequence.

By Theorem 1.6 every distributive lattice is i?-free for some set
E, and any 0-free distributive lattice is free.

THEOREM 1.11. (Uniqueness) Let E be a set of inequalities in
{Xi}, i e I. If L and M are distributive lattices generated by E-free
sequences {α̂ }, ieJ, and {6J, ieJ, where I £ J, then L ~ M.

Proof. Follows immediately from Theorem 1.8.

The following type of theorem is easily proved: Suppose L is
generated by the E-free sequence {α̂ }, ie I, where the inequalities of
E are of the form x{ <£ xβ. If P and Q are finite nonempty subsets
of {αj, i e I, and π(P) ^ Σ(Q), then there exist ape P and aqeQ and a
finite sequence ap fg α ίχ :g ^ αί% g αg such that all of the inequalities
xp -^ x{i, , xί% ^ ^ are in E. Also it can be shown that if e is a
consequence of E then it is a consequence of a finite subset of E.

Again suppose J? is a set of inequalities in {xj, ie I and {AJ, i e I,
is the E-ΐree sequence as in the proof of Theorem 1.9. Let L be the ring
of sets generated by {AJ, iel. Setting X' = {s e 211 s ί S(J5?)}, the
following theorem can be proved by direct computation.

THEOREM 1.12. F is a prime filter in L if and only if F is
the filter generated by {Ai | s(i) = 1} for some s e X\

Thus we obtain the following characterization of the Stone space
of the E-ίτee distributive lattice L.
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THEOREM 1.13. The Stone space of L is X' with {A^ie I}, as
a subbasis for its topology.

2* Definitions* The definitions in this section are of a universal
nature, so we consider an arbitrary category of algebras.

DEFINITION 2.1. An algebra A is a retract of an algebra A1 if
there exist homomorphisms / : A1—+ A and g: A—>A1 such that fg — IΛ,
the identity function on A.

DEFINITION 2.2. An algebra A is injective if for every pair of
algebras A1 and A2, every homomorphism h:A2—»A, and every mono-
morphism g:A2—*Al9 there exists a homomorphism f:A1-^A such
that fg — h.

DEFINITION 2.3. An algebra A is protective if for every pair of
algebras Ax and A21 every homomorphism h:A—> A2, and every
epimorphism f:Aι—+A2, there exists a homomorphism g:A—*A1 such
that fg = h.

The terms retract, injective, and projective, when prefixed by
(0,1)-, will be taken in the category of distributive lattices with a
smallest and a greatest element, and homomorphisms which preserve
0 and 1. Otherwise, the category will be distributive lattices. It is
immediate that retracts of injective (projective) distributive lattices
are injective (projective).

3* Injective distributive lattices. We make use of the following
theorem, proved by Halmos [3; p. 141] in the category of Boolean
algebras: A Boolean algebra is injective if and only if it is complete.

LEMMA 3.1. A complete Boolean algebra L is (0, l)-injective.

Proof. Let M be a distributive lattice with 0 and 1. Nerode has
shown that there exists a Boolean algebra A, and a (0, l)-monomorphism
φ: M—>A such that φ{M) Boolean generates A. A is unique to within
isomorphism, and is called the minimal Boolean extension of M [4].

Now let Lx and L2 be distributive lattices with 0 and 1, h: LZ~-*L
a (0, l)-homomorphism, and g:L2—>I/X a (0, l)-monomorphism. Let
JB, Bλ and B2 be the minimal Boolean extensions of L, Lu L2 and
φ, φlf φ2 the corresponding (0, l)-monomorphisms. By a theorem of
Nerode [4, p. 399] there exists Boolean homomorphisms h':B2—*B and
gf:B2—+ Bx such that hrφ2 = φh and g'φ2 — φλg.
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Ψl

B9 B

Furthermore since g is one-to-one, so is g'. By hypothesis, L is a
Boolean algebra, so φ: L-+B is an isomorphism. Now since B is
complete, it is injective in the category of Boolean algebras. Therefore,
there is a Boolean homomorphism /' : Bλ~-*B such that f'g' = hr. Since
φ is an isomorphism, we can define f\Lx-^L by / = φ^f'φ^ Then
fg = φ-^fφ^ = φ~ιf'grφ2 = φ~1h'φ2 = φ~ιφh = /&. Clearly / preserves
0 and 1.

THEOREM 3.2. A distributive lattice is injective if and only if
it is a complete Boolean algebra.

Proof. Suppose first t h a t L is a complete Boolean algebra. Let
Lx and L2 be distributive lattices, h:L2—*L a homomorphism and
g\L2-+Lλ a monomorphism. Let L[ = Lx U {0', 1'} where 0' < x < Γ
for all a? e A , and L'2 = L2 U {0*, 1*} where 0* < x < 1* for all x e L2.
Define h':U2-+L by Λ'| L2 - λ, Λ'(0*) = 0 x and Λ'(l*) = 1L . Define
g':Π2-»L[ by 0' | L2 = flr, g'(0*) = 0' and flr'(l*) = 1'. Since L i s a
complete Boolean algebra, it is (0, l)-injective so there is a (0,1)-
homomorphism f: L[—*L such tha t f'g' = /&'. Define f\Lx—+L by
/ - / 'I L1# Then if x e L2, fg(x) = f'g\x) = h'(x) - h(x).

Conversely, suppose L is injective and B is the complete Boolean
algebra of all subsets of the collection of prime filters of L. Then
there exists a monomorphism g;L—+B. Since L is injective there
exists a homomorphism f:B—>L such that fg = IL. Thus L is the
homomorphic image of a Boolean algebra and is therefore a Boolean
algebra. For completeness, let SQL. Then ΣB{g(s) \se S} = p exists
in B. It is easily verified that ΣL(S) =

4* Basic properties of protective distr ibutive lattices*

LEMMA 4.1. A distributive lattice is protective if and only if
it is a retract of a free distributive lattice.
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Proof. Essentially as in [3, p. 137],
Shanin [5, p. 91] has shown the topological dual of the statement

that free Boolean algebras contain no uncountable chains. This implies
the same condition of free distributive lattices, so we have:

THEOREM 4.2. There are no uncountable chains in a projective
distributive lattice L.

Proof. Since L is projective, there is a free distributive lattice
F and a monomorphism g: L —»F. If C was an uncountable chain
in L, {G(c)\ceC} would be an uncountable chain in F.

In the category of Boolean algebras, every projective Boolean
algebra satisfies the ω-chain condition. For distributive lattices there
is an even stronger condition.

DEFINITION 4.3. A subset S of a distributive lattice L is said
to be α-disjointed (α e L) if xy = a whenever x and y are distinct
elements of S.

LEMMA 4.4. Let {Zi}, i = 1, , m and {TJ, i = 1, 2, be

sequences of finite sets such that

T2, , Zm ξg JΓ2 .

Then there exists i, j such that i Φ j , and Z1'^Ti\J Tj, •• ,Zm£Ti\J Tjm

Proof. The sequence {Zx — T€}, i = 1,2, contains only finitely
many distinct sets since Zx is finite. So there exists a subsequence
{Γ2f<}, i = l , 2 , . . . of {Γi}, i = l , 2 , . . . such that Z1-T2Λ = Z1~
T2f2 = . Hence Z1 g T2)1 U ϊ^^ U . Proceeding by induction,
suppose {ΓWfί}, i = 1, 2, is a sequence such that Zn — Tntl — Zn —
Tn}2 — . Now the sequence {Zn+1 — Tn}i}, i = 1,2, contains only
finitely many distinct sets, so there is a subsequence {Γn+ifί}, i —

Hence Zn+1 g TU+1Λ U Tn+1Λ U . In particular, Zm g TW)1 U Tm,2 U .
Now for each we{l, , m}, ϋΓΛ g Tw>1 U Tw,2 U and since {Tmti}, i =
1, 2, is a subsequence of {Γw><}, i = 1, 2, . we have Zn g Γm>1 U Γw,2

for all ne{l, , m}.

LEMMA 4.5. Let F be a free distributive lattice generated by an
independent set G. Then πiSJ + + π(Sn) ^ π(T2) + + π(Tm),
where Si and T3 are finite nonempty subsets of G if and only if for
each i e {1, , n} there exists j e {1, , m} such that T3 £Ξ Si.
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Proof. The sufficiency follows immediately. On the other hand
if there exists pe{l, •• ,n] such that for each je{l, « ,m} there
is an element t5 e Tά — Sp, then π(Sp) <£ tx + + tmy contradicting
independence.

THEOREM 4.6. In a free distributive lattice L, every a-disjointed
subset is finite.

Proof. Let L be generated by the independent set G and suppose
D — {di I i = 1, 2, •} is an infinite α-dis jointed subset. There are
finite nonempty subsets Sitί of G such that d4 = Σ5=ί π(Si,j). Let
a = Σf=i π(Zj) where Zά is a finite nonempty subset of G for 1 ^
j <̂  m. We can assume agD. Thus we have

(i ) a<d, (i = 1,2, . . . ) .
(ii) d̂ dly = α whenever i ^ j ' .
(iii) There exists a positive integer n such that for each

k 6 {1, , φ ) } , Z r £ Sn,fc for some r e { l , , m}.
If (iii) does not hold then for each i there is an Sitj such that

Zr^Si,j for all r e { l , --^m}. By Lemma 4.4 there exists S*,^ and
SkJk (i Φ k) such that Zr g= Si9J.\jSk,Jk for all r e { l , •••, m}. But
π(Si,j. U SA,iA) ^ rfiCΪy = α, so by Lemma 4.5 there is an r such that
Zr £Ξ Si,^ U SΛf<7 fc, a contradiction.

By (iii) we have dn ^ α, contradiction (ί).

COROLLARY 4.7. In a projective distributive lattice every α-
disjointed set is finite.

Proof. Similar to the proof of Theorem 4.2.

EXAMPLE 4.8. Neither the ring of all sets of integers nor the
ring of finite sets of integers is projective since the singletone form
an infinite disjointed set.

EXAMPLE 4.9. The field of all finite and co-finite sets of integers
is Boolean projective [3; p. 139, Corollary 2], but not projective.

5* Some characterizations of projective distributive lattices*

THEOREM 5.1. A distributive lattice L generated by an E-free
sequence {αj, i e /, is projective if and only if for each i there exist
finite nonempty subsets Sitl, , SitPii) of I such that

( i ) a, = ΣEϋl P(Si9k) where P(Si>k) = π{at \ I e Siik}.

(ϋ) If

then for each f€P(ii, ,in) there exist q, r such that 3q>r —
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\Jt=iSit,f{it) where P(iu , in) is the set of all function on {iu , in}
such that for each t,f(it) is a positive integer ^

Proof. Suppose L is protective and F is the free distributive
lattice generated by the independent sequence {6J, ίel. Let h: F—*L
be an epimorphism such that h(bi) — ait By hypothesis there exists a
homomorphism g: L-+F such that hg — IL. Let g(ai) = ΣSϋί Pp(S»i,fc)
where for each i and &, Sitk is a finite nonempty subset of I and
iVS, f 4) = { δ i | l e f i U . Then

Next suppose xh xin<> xh + + xjm e E. Since {αj, i e I is
jK-free, we have α ίχ α ίw ^ α i χ + + α i m, so g(ah) g(ain) ^
flr(αi]L) + + 9(a>jJ Thus for each fe P(ίl9 , in)

^ Σ ^(Sή,*) + + Σ PASJm,k).

By Lemma 4.5, we have that for each /, there exist q, r such that

Now suppose (i) and (ii) hold and again let F be the free
distributive lattice generated by the independent sequence {δ{}, iel,
and h: F—>L an epimorphism such that (̂6 )̂ — ai9 Define a sequence
{Ci},iel in F by c< = X J ί f i P ^ ^ ) for each ίel. We will show
that {cj, i G I satisfies E. If a?̂  xi% ^ xi]L + + a?im e E', then
by hypothesis, for each feP(il9 * , i Λ ), there exist g, r such that
Syβ>r C UU Sit,f{it). So P z (U?.i S<ί/(<ί)) ^ P^(S,α,r) ^ c iα ^ ch + + cjm.
Thus,

Since {cj, i e / satisifies E, by Theorem 1.8, there exists a homomorphism
g:L~-+F such that ^(αj - c< Hence %(α,) = λ(Ci) - Σ ^ i P ί S ί ^ ) - α,.
By Lemma 4.1, L is protective.

It may be remarked that for each ΐ, the sets Si,!, •••, Si>p{i) may
be chosen so that no one of them contains any other one.

COROLLARY 5.2. Suppose L is a distributive lattice generated by
a sequence {α<}, i e / . Then L is protective if and only if for each
i, there έxists finite nonempty subsets SitU •• , S i f P ( ί ) of the distinct
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elements of {αj, ie I, such that

(i) α^jUίSί,*).
fc = l

(i i) I / α ^ ••• ain g α i χ + - + α i m , then for each fe P(iir -,in),
there exist q,r such that SJg,rS \Jΐ=iSit,fiit)J where P(iu •• , i Λ ) is
the set of all functions on {il9 , in} such that for each t, f{it) is a
positive integer <Lp(it).

Proof. This follows immediately from Theorem 5.1 by defining
E as in Theorem 1.6.

In Theorem 5.1 and Corollary 5.2, we shall refer to condition (i)
as the projective representation of the element ai9 and to (ii) as the
projective criterion for xd - xi% <L x3- + + oojm(a^ -α^ ̂
a5ι -f + a>jm). Observe that in (ii) of Corollary 5.2, if ai — aja for
some iv and j q , then the criterion is automatically satisfied. From
this we again see that free distributive lattices are projective.

DEFINITION 5.3, An inequality e = xiχ* °xi% ̂  xdi + + xjm in
{Xi}, ie I, is said to be one-sided it n = 1 or m = 1. It G = {α{ | i e /},
is a subset of a distributive lattice then G is said to be lower semi-
independent (upper semi-idependent) it whenever G satisfies e then
there exists pe{l, •••,%} such that α* ^ α i χ + + α i m (there exists
^ G {1, , m} such that αίχ αί% ̂  α i ? ).

For the following theorem {Xi}, ie I, will be, as before, a sequence
of distinct variables. Fix a definite simple ordering of J. If iλ < < in

and X = {xiiy , a?€J, then π(X) will denote the expression a;ί;L ίcίft

and Σ(X) will denote ίt% + + Xίn»

THEOREM 5.4. Let L be a distributive lattice generated by {a%},
ie I. If L is projective then {αj, i e I, is E-free for some set E of
one-sided inequalities. Specifically, L is projective if and only if
{α̂ }, i e I, is E-free for some set E of inequalities of the form
EλljE2 where

Ei=\J {π(XifJ) ^ %i 13 = 1, , P(i)} and
iei

E, = \J {x, g Σ{Yitj)\j = 1, , q(ί)} and
ίβί

( i ) Xi}j is a finite subset of {Xi \ i e /}, 1 ̂  j ^ p(i).

(ii) For each i: Yifl, •••, Yitq{i) are all possible sets of the form

{xh, , xin} where x%. e Xitj.

(iii) If xiχ x%n ̂ xh-\ h xjm e E (so that n = 1 or m = 1),
then for each / G ? ( i I ? •• , i , J , there exist q,r such that Xjq,rQ
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Proof. For sufficiency, let

Sifi = {k I xk e Xi9ί}, and Tifj = {k \ xk e YitS} .

Since {αj, ΐ e /, satisfies E, for each i, we have π{ak \ k e Sifj} ^ α* for
i = 1, , p(i). Therefore X ^ i π{ak \ k e Sifj} ^ α*. Similarly, a{ ^
X{αfc I k G Γ ί f J } for j — 1, , g(ί). A simple calculation shows that a{ =
Σ 5 S P(S ί f,) where P(S ί f i ) - π{ak \ k e Sitί}. Since Xjg,r Q U?=i
implies Sά ,r £ UΓ^i^ί./ίit)* ^ ^s P^ojective by Theorem 5.1.

For the necessity we use Theorem 5.2. Thus, let α̂  = Σ&=i
be a protective representation for each i. Then for each i we have
π(Si,j) ^di for y = 1, , p(i) and α̂  ̂  Σ(Titj) for i = 1, , q{ί) where
Γ ί f l, , Ti>qii) are all possible sets of the form {αίχ, , ain} and α .̂ e S*̂ -.
Setting Xi}j = {a?Λ|αΛ e £<„•} and F ί f ί = {%!%€ Titί}, define E' as in the
statement of the theorem. Consequently (i) and (ii) are satisfied. For
(iii) suppose xiχ xin ^ xh + + xjm e E. By the definitions of
Si,,-, Titί, Xifj, and Yit3 , we have ah ain^ah+ + aSm. But
L is projective so for each fe P(ίl9 ,in) there exist g, r such that

S V r S U?=i S 4 ί f / ( i ί ). Hence Xjq,r s U?=i ^ή,/(^).
It remains to show that {α<}, iel, is E-ϊτee. First, {αj, i e I,

obviously satisfies JE. NOW suppose {αj, i e /, satisfies an inequality
e = xh Xin ̂ xh+-" + xάm* Then aiχ ai% ̂  ah + + ajm.
Since L is projective, for each feP(iu •• , i w ) there exist g, r such

t h a t Sjqtr S U?=i ^^/(i ,) . Hence

(6) -ariff.r s ΰ XiVw

To show e is a consequence of E, let {6J, i el, be a sequence in a
distributive lattice that satisfies E. Let Bifj = {6fe | % e -Xi,y} Then
6» = ΣiPk~ιπ(Bi,k) and by (6), for each feP(ίlf" ,in) there exist q, r
such that J5,ρ,r s U?=i5 ί ί f / ( ί ί , . Hence π(U?=i ^ , / ( ί ί ) ) g ττ(^, r ) ^ 6,g.
Thus

K K =

So β is a consequence of £7, and {α, }, i € / , is E-free.

EXAMPLE 5.5. Let {Xi\, i = 1, 2, be a sequence of distinct
variables and E = {cta£2 ^ ^3 + #J. Then any E-ϊτee distributive lattice
is nonprojective for xλx2 ^ x3 + x4 is not a consequence of one-sided
inequalities.

EXAMPLE 5.6. Let {a?J, i = 1, 2, . . . be a sequence of distinct
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variables and

E = {xλx2 ^ a?8, xλx2 <Ξ* x 4 , x z ^ x , + x 6 , x 1 ^ x± + xδ} .

Then the distributive lattice generated by the E-tree sequence {αj,
i 6 /, is projective for a protective representation is: α2 = aλa4 + α ^ ,
α2 = α2, α3 = α3α4 + α3α5 + α ^ , α4 = α4 + α ^ , and a4 = a{ for i Ξ> 5.

6* Meet and join irreducible elements*

DEFINITION 6.1. An element a of the lattice L is called meet
irreducible (M.I.) if whenever xy ^ a then x ίg α or y ^ a. Join
irreducible (J.I.) elements are defined dually.

In a distributive lattice the following are equivalent
( i ) a is M.I.
(ii) If ax an ^ a then α, ^ α for some i e {1, , %}.
(iii) If α : an = α then a4 = α for some i e {1, , w}.

THEOREM 6.2. /w α projective distributive lattice the sum of
any two meet irreducible elements is meet irreducible and the product
of any two join irreducible elements is join irreducible.

Proof. Let L — {a{,}ie I and suppose aλ and α2 are M.I. and

Let a; = Σ?=ί π(Si,j) be a projective representation for each i. If
^3^0,! + α2 and α4 ^ «! + α2 then there exist integers m, π such that
π(S3,m) ^ αx + α2 and π(S4,m) ^ αx + α2. For otherwise, for either k = 1
or & = 2, π(Sk,t) ^ a1 + a2 for all ί e {1, , p(&)} and so ak ^ aλ + a2.
Now choosing feP(3, 4) such that /(3) = m and /(4) = π, we have

( 8) ff(Swit)) ^ αa + α2 for ί - 3, 4 .

By the criterion (applied to (7) and for the given / ) , there exist
qe{l,2} and r e {1, , p(q)} such that S ί l f S S3,/(3) U S4,/(4). Hence
π(S3,/(3))7r(£4,/(4)) <; π(Sq,r) ^ αg. But αg is M.I. so for either % = 3 or
n = 4, π(Snιf{n)) ^ aq ^ aλ + α2, contradicting (8).

Since the dual of a projective distributive lattice is projective,
the second statement follows.

7* Finite projective distributive lattices* We will now choose
a special set of generators and apply Theorem 5.2. In particular,
recall that in a finite distributive lattice every element is a product
of M.I. elements.
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THEOREM 7.1. In a finite distributive lattice L, the following
are equivalent.

( i ) L is projective.
( i i ) L is generated by a lower semi-independent set.
(ii') L is generated by an upper semi-independent set.
(iii) The sum of any two meet irreducible elements is meet

irreducible.
(iii') The product of any two join irreducible elements is join

irreducible.

Proof, (i) => (iii) and (i) => (iii') follows from Theorem 6.2. (iii) =>
(ii): Let G be the set of M.I. elements. Then G generates L. If

where ais, ajt e G then by (iii) aj± + + ajm is M.I., so there exists
p 6 {1, , n} such that aip S α^ + + ajm. (iii') => (ii'): This is
the dual of (iii) => (ii). (ii') ==> (i). For each a{ e G, it will be proved
that a projective repesentation is a{ = π(Sitl) + . . . + π(Si>p{i)) where
the Si,,- are all possible sets such that π(Sifj) ^ ai9 Equality holds
since one of these sets is {α̂ }. To show the criterion is satisfied,
suppose aiχ ain^ajl ajm. Then there exists q such that
ah ain^ajq. Let feP(il9 •• ,i»), then

Uπ(Sit,f{it)) ^ah ain ^ ajq .

But by the definition of Sjqtl, Sjq,2, there is an r such that Sjq,r =
\Jt=iSit,f{it). (ii)=>(i): Since (ii')==>(i), by duality if (ii) then" the
dual of L is projective and hence L is projective.

The hypothesis of finiteness is essential for the J.I. elements in
ring of subsets of the integers are the singletons and 0 . So (iii') is
satisfied but we have seen (Ex. 4.8) that this lattice is not projective.

EXAMPLE 7.2. Let / be the free distributive lattice generated
by the independent set {au α2, α3}. Then the sublattice

L\ — {α!α2α3, aγa^ aγaz, ax{a2 + α3), au a2 + α3, aL + α2 + a3}

is not projective for αx and α2 + α3 are J.I. in Lλ but α^a + αiα8 is
not J.I. in Lx.

By considering the partially ordered set of nonzero J.I. elements of
a finite distributive lattice we obtain the following theorem [1, p. 139],

THEOREM 7.3. Every finite distributive lattice is isomorphic
with the family of all hereditary subsets of partially ordered set.
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Conversely, the family of all hereditary subsets of a finite partially
ordered set is a lattice.

By adding a 0 and 1 to the partially ordered set, we find that
every finite distributive lattice is isomorphic with the family of all
nonempty proper hereditary subsets of a partially ordered set with 0,1.
Conversely, every such family is a distributive lattice. In contrast,
for finite protective distributive lattices we have:

THEOREM 7.4. Every finite protective distributive lattice is
isomorphic with the family of all nonempty proper hereditary
subsets of a finite lattice. Conversely, the family of all nonempty
proper hereditary subsets of a finite lattice is a protective distribu-
tive lattice.

Proof. Let L be a finite projective distributive lattice and P
the set of all nonzero J.I. elements. Then L is isomorphic with the
family of hereditary subsets of P. Let M = {0} UP U {1*} where 1* > x
for all x e L. Now M will be a lattice if S £ M implies π(S) exists.
If S = 0 then π(S) = 1* e M and if S Φ 0 it is sufficient to consider
S = {x, y). If x or y equals 0 then π(S) = 0 and if x or y equals 1*
then π(S) equals y or x respectively. Thus, suppose x,yeP. Since
x,y are J.I. and L is projective x LyeP\J{0\ and therefore is equal
to x-My. Hence, I is a lattice. Finally, the lattice of hereditary
subsets of P is isomorphic with the lattice of nonempty proper he-
reditary subsets of M under the correspondence H e P «-> {0} (J H e M.

Now suppose L is the family of all nonempty proper hereditary
subsets of a finite lattice M. Clearly L is a distributive lattice. Let Lx

be the set of all hereditary subsets of M; then Lx = {0, M) U L. By
the proof of [1, Th. 5, p. 139], the set of all nonzero J.I. elements of Lλ

is isomorphic with the collection of principal ideals of M. Therefore,
the set of J.I. elements of L is isomorphic with the set consisting of 0
and all proper principal ideals of M, and is therefore closed under
products. Hence L is projective.

8* Applications and Examples*

THEOREM 8.1. Boolean algebras and Boolean rings are projective
if and only if they are finite.

Proof. Infinite Boolean algebras and rings contain infinite dis-
jointed sets, and hence can not be projective. On the other hand,
a finite Boolean ring is a Boolean algebra and every finite Boolean
algebra is isomorphic with the collection of all subsets of a finite
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set. Clearly the J .I . elements-the singletons and 0-are closed under
products.

THEOREM 8.2. A chain is projective if and only if it is countable.

Proof. Theorem 4.2 shows the necessity. Now suppose C =
{ai I i = 1, 2, •} is a chain. It will be shown that C is a retract of
the free distributive lattice F generated by the independent set {&* | ΐ =
1, 2, •}. Let / : F—> C be an epimorphism such that fφi) — ai for
i — 1, 2, . Define,inductively, a function g: C—+ F by g(a^) — bx and

g(an) = b%π{g{ai) | α* > αΛ, ΐ < w} + -^(α*) | α̂  < αn, i < n} .

Then ^ is a homomorphism and fg = Io.

EXAMPLE 8.3. Let C be the chain of nonnegative integers. Then
C x C is not projective.

Proof. C x C is generated by the elements α̂  — (ΐ, 0) and δy —
(0, j>) where i > 0, j" > 0. If C x C is projective then there exists a
projective representation:

a* = π(Sitl) + + π(SitPii)) (i > 0)

bj = τr(Γifl) + + π(T,,, ( i )) ( i > 0) .

Now for some r, say r = 1, Sitr is of the form Sitr — {ai9 •• , α ί j
where ί ^ ix < < ΐΛ. For if not, by distributivity, we have a{ ^
<?! + ••• + cp ( ί ), where for each r, cr e S ί>r and either cr — b3- for some j
or cr = ak for some k <i. This is impossible, as is seen by comparing
first coordinates. Similarly, we may assume TjΛ — {bjlf , bjm}y where

o ^ Ji < < i».
Now let p be an integer larger than the subscripts of all elements

ai or bj which occur in the projective representation of α lβ Since
apbp g au by the projective criterion, SPtl U TPrl 3 jSifi for some i.
This is a contradiction.

THEOREM 8.4. The direct product ILez-kί of finite distributive
lattices is projective if and only if L{ is projective for each i e I
and I Li | = 1 for all but finitely many ie I.

Proof. Suppose the condition holds. Then it is sufficient to show
that if Lx and L2 are projective then Lx x L2 is projective. It is
easily verified that the M.I. elements of Lλ x L2 are those of the
form (x, y), (x, 1) and (1, y) where x and y are M.I. in Lx and L2

respectively. But since the M.I. elements of Li(I/2) are closed under
sums, the M.I. elements of Lλ x L2 also have this property. Hence
I/x x I/2 is projective. Conversely, each L{ is a retract of I L e i ^
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is therefore protective. If Li > 1 for infinitely many iel9 then ]Jiei Li
has an infinite disjointed subset and could therefore not be projective.
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