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ON ^-EQUIVALENCE OF UNIFORMITIES
(THE ISBELL-SMITH PROBLEM)

A. J. WARD.

I have recently given an example of two different uni-
formities for the same set X, such that the corresponding
Hausdorff uniformities for the set of nonempty subsets of X
are topologically equivalent; when this is the case we shall
call the original uniformities ίZ-equivalent. The problem
posed by Isbell and discussed in a recent paper by D. H.
Smith may therefore be reformulated as follows:- (a) Under
what conditions are two uniformities ϋ-equivalent? (b) Under
what conditions does iJ-equivalence of uniformities imply
identity? The theorems given below supply an answer to (a)
and a partial answer to (b). In particular, they show that
neither Rn nor Qn (Q denoting the set of rational numbers
with the usual metric) has any other uniformity iί-equivalent
to its metric uniformity. In a sense, therefore, the example
in (1) is the simplest possible one of its kind, though we give
in the course of this paper another simple example using
transfinite ordinals.

TERMINOLOGY. Let It, S3 be two uniformities for the same set X,

and let Xx c X2 c X. We say that 11 is uniformly finer than S3 on
XL over X2 if and only if, given any 7 G S , lUeVL such that
U Π (Xi x X2) c V; usually we take X2 = X. (The use of the different
words 'on' and 'over', and the, logically unnecessary, condition Xλ c X2,
are intended to suggest the motivation and use of the definition.)
We say also (a) that 11 is proximity-finer than S3 if and only if every
pair of sets A, B which are 33-remote (i.e. such that V(A) D B = φ
for some FeSS) are also U-remote; (b) that U is H-finer than S3 if
and only if the topology of its Hausdorff uniformity IX is finer than
that of the Hausdorff uniformity S3 corresponding to S3; i.e. if and
only if given any (nonempty) Eoa X and any V e S3, 3 U e 11 (depending
on Eo) such that E c U(E0) and Eo c U(E) together imply E c V(EQ)
and EodV(Ey\ The corresponding phrases with 'coarser than' or
'equivalent to' are defined similarly. Note that we use 'finer' in the
wide sense, allowing possible equivalence; also that in discussing subsets
of X we shall frequently omit the word 'nonempty' where it is obviously
implied. Finally, we say (cf. (1)) that a set E is V-discrete (FeS3)
if and only if, for x and y in E, (x, y) e V implies x = y, and ̂ -discrete

1 While this is the form in which the definition, derived from that of the
Hausdorff uniformity, is naturally phrased, it is easily seen that the implications
are actually respective rather than joint.
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if and only if it is F-discrete for some Ve%$.
We can now state

THEOREM 1. If VL and S3 are two uniformities for the same set
X then 11 is H-finer than S3 if and only if it is both (a) proximity-
finer, and (b) on every ^-discrete set, uniformly finer over X. If
it is given that U c S3, then (b) may be replaced by the weaker condi-
tion (b'):~ every ^-discrete set is also VL-discrete.

Proof. Necessity. Let 11 be if-finer than 53. The proof that XI
is proximity-finer than 93 is essentially contained in the proof of Theorem
1 of (3), and is omitted.

Now let Eo be F0-discrete, Fo e S3. Given V, e S3, put V2 = V1Γ\ F c .
We suppose for simplicity (w.l. of g.) that Fo and Vx are symmetric. There
exists a (symmetric) £7ell such that E c U(EQ), EoaU(E) imply that
E c VZ(EO) and EQ c V2(E). Consider in particular the set {y} (J (E0\{x0}),
where x0 e Eo and (x0, y) e U. This set satisfies the conditions just
stated, so that E0aV2(E); in particular ly'eE, such that (x0, y

f) e
F 2 c F 0 . Since EQ is F0-discrete, y' can only be y. Thus, for x e Eo

and y e X, (x, y) e U implies (x, y) e VΎ. As Vι is arbitrary this proves
statement (b). (We remark that it follows that every S3-discrete set
is also U-discrete.)

Sufficiency. Suppose the conditions satisfied; let Eocz X and Fo e S3
be given arbitrarily. Since X\V0(E0) is S3-remote? hence also U-remote,
from Eo, lUQ e U such that U0(EQ) c V0(E0). Now take Vλ e S3, symmetric,
such that Vι c Vo, and let E1 be a maximal Frdiscrete subset of Eo,
so that Eo c V^Ej). By (b) we can take a symmetric ^ e l l such
that U1 n (-EΊ x X) c V19 and also C/Ί C £7O. If ^ is a set such that
£70 c UΊiE), then in particular (as £7X c Eo) for any xe Elfiy e E such
that (#, 7/) G ΪTL and so also (x, y) e Vτ. That is, Ex c F^S) and so

We have thus shown that Eo c ^ ( ί / ) implies £Ό c V0(E) and also,
since Uλ c C70, that J S c Ϊ7i(2£o) implies that £ c 7 0 ( £ Ό ) . Since Eo and
Fo were arbitrary, U is H-finer than S3.

In the case when H e S3 and (a), (b') are given, let Eo be any S3-
discrete set. Then 3 symmetric i70Gll with EQ Ϊ7o

2-discrete. Now let
FL e 93 be given arbitrarily; as 11 c 93, 3 symmetric F2 e 93, F2 c Uo Π F x .
Since 11 is proximity-finer than 93 we see as before that S C ^ G I I such
that Uλ(EQ) c F2(^o): w e m a y take UΎ c ί70 and symmetric. We say
that C/Ί C (EO X X) C F 2 C F l β For let x0 e EQ, (x0, x) e UΊ; soxe U^EQ) C
V2(E0). That is, 3x' e Eo, (xr, x) e F 2; then as Ux and F2 are both
contained in UQ we have (xQ, x') e ϋ70

2 and by definition of Uo this implies
xf = x0, (x0, x) e F 2. Thus we have proved that (b) is satisfied: the
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result follows.
We now turn to the second question raised in the introduction;

we can give an answer only when X has a certain homogeneity of
structure.

THEOREM 2. Let (X, S3) be a uniform space such that there exist
a set K c X, compact in the topology induced by S3, and a family
of functions fifK—+X (ie I), satisfying:-

( i ) \Jfi(K) = X;
(ii) the set Ex = {/<(#); iel} is ^-discrete for every xeK;
(iii) the functions fif ie I, are equi-uniformly continuous: that

is, given Ve S3, 3F1 G S3 such that (x, xf) e VΊ implies [/*(#), /*(#')] e F,
for all x, xf in K and all iel.

Then there is no other uniformity for X H-equivalent to S3.

Proof. Let XI be iί-equivalent to S3. Given Uo e U, take a sym-
metric J7iGU with Uί c Uo. By Theorem 1, every S3-discrete set is
11 discrete, and conversely; thus condition (ii) and Theorem 1 imply
that, for any k e K, lVk e S3 such that VI ΓΊ (Ek x X) c Ux. By condi-
tion (iii), there then exists Wke$8 such that, for all kf in K, i in
I,(k,k')e Wk implies {f{k), f(k'))e Vk. The compact set K may be
covered by a finite number of sets of the form Wk{r)(k(r)), r = 1, 2, , n
say; let FeSS be the intersection of the corresponding Vk(r). Then if
(x, xr) e V we can put x = /<(&), some ίeI,keK. For some
r, (fc(r), fe) G Wk{r) and so {f{k{r))y x) e Vk(r); since F c Vk[r) this gives
(Λίftr)), x') G F| ( r ) . Thus (/,(Λ(r)), α?) and (f(k(r))y x') are both in Ul9 so
as ί7i is symmetric we have (x, x') e Ut a Uo. We have thus proved that
V c Uo; it follows that S3 D U.

Since U, S3 (being ίZ-equivalent) induce identical topologies, they
must induce the same uniformity over the compact subspace K. As
we have now shown that S3 ID U, condition (iii) must be satisfied with
S3 replaced by U. A proof exactly similar to the above then shows
that SScU, so that U and S3 are identical.

We now apply Theorem 2 to the case of a topological group.

THEOREM 3. If (G, <3/) is a locally compact topological group
there is no other uniformity for G H-equivalent to 2, the left-invariant
uniformity associated with ^/.

We recall that 2 is the uniformity with a base consisting of sets
of the form LN — {(x, xf); x~xxr e N}, where N is any ^-neighbourhood
of the identity e.

Let K be a symmetrical compact neighbourhood of e. Take a set
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Y aG which is maximal subject to the condition that for y, y' in Y
and y φ yf we have y^y' not in K; then YK = G, for given # e G,
3y e Y such that one (and hence both) of y~xg, g~xy is in K. Write
fy,ye Y, for the function such that fy(x) = yx,xeK. This family
of functions clearly satisfies conditions (i) and (iii) of Theorem 2, with
G for X, Y for /, and £ for 33; we shall now prove that condition
(ii) is satisfied; the result then follows at once.

The function φ(x, z) = xz~ι is continuous, hence 8-uniformly con-
tinuous, on the set KK x K, for KK is compact as it is a continuous
map of K x K. Thus there exists a (symmetrical) neighbourhood
N c ίΓ of e such that for 2 in Z" and g in N (so that 20 e I^z) =
zN c JBΓUL ) we have zgz"1 e Lκ{zz~x) = if. We now say that for any
ze K the set {yz; y e Y} is Indiscrete. For if (yz)-\y'z) — ge N then
z~ιy~xy'z = g or τ/~y = zgz~ι e K; for ?/,?/' in Y this implies that

y = y'

COROLLARY. If ((?, d) is a locally compact metric group with
the property that, given ε > 0, 3<5 > 0 such that, for all x, y, z of
G, d(x, y) < d implies d(zx, zy) > ε, then there is no other uniformity
for G H-equivalent to that defined by d.

For the left-invariant uniformity coincides in this case with the
metric uniformity defined by d. (In fact, it is known that there exists
a left-invariant metric uniformly equivalent to d.)

In view of the close relation between a space and its completion,
one might hope to be able to replace 'compact' by 'precompact Haus-
dorff' in Theorem 2. If certain additional conditions are imposed this
can in fact be done (Theorems 4 and 5 below). It seems possible that
somewhat weaker conditions might suffice, particularly in the case of
a group, where the algebraic structure imposes homogeneity on the
space. However, the immediate analogue of Theorem 2 is certainly not
true in general, even if the set of functions {/J is enumerable, as we
shall now show by an example.

Let Z be the set of positive integers, 2) its standard (metric) uni-
formity; sot hat Z is ©-discrete. Let Ω1 be the set of ordinals <ω1 and
42* — QX u {o)1}m With its natural order-topology, Ωf is a compact Haus-
dorff space and hence has a unique natural uniformity 353* say. Now
write X* = Z x Ω?, X = Z x Ωl9%$* for the product-uniformity defined
by ®, 2B*, and 93 for the uniformity induced by 33* on X (as a subset
of X*) by restriction.

Let BaX be the set {(1, a); a < ω^; B is clearly 33-precompact
as its 33*-closure is the compact set {1} x Ωf. Define fn:B-+X by
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fH(l, a) = (n, a); then the set of functions {fn;neZ} satisfies the
conditions (i) to (iii) of Theorem 2 (with B for K).

Now let <& be any finite partition of Z, and a0 any ordinal <ω l β

Write U*(^9 aQ) for the set of all pairs (m, α), (m', α') such that α
and α' are both ^ α 0 (and <ωx), while m and m' are in the same set
of ΐf.

Define U* as the set of those members of 33* which contain some
Ϊ7*(^i α0), ̂  and α0 being arbitrary. It is easily verified that U* is
a uniformity for X*, and that the uniformity U which it induces on
X is strictly contained in (i.e. strictly coarser than) 33. We shall show
that 11 and S3 are ίZ-equivalent.

We show first that 11* and 33* are proximity-equivalent (which
certainly implies the same for U and 33).

If El9 E2 are 33*-remote, then for any m, (m, ωλ) is in at most
one of El9 E2 (closures relative to 33*, of course). Thus we can find
am < ωlf each me Z, such that the set {(m, a): a ;> am} meets at most
one of El9 E2. If cc0 = sup am then a0 < ωx and we can clearly find a
two-set partition & such that E1 x E2Π U*(<£*, a0) = φ. It easily
follows that Eu E2 are U*-remote.

Now let EQaX be any 33-discrete set; as such, it is clearly closed
in X*. Hence (considering the point (m, ωx)) we see that for each
miam < a>i such that α < am for all α with (m,a)eE0. Put α0 =
sup^TO < fi>i; then, for every ^ ?7*(^, α:0) Π Eo x Eo = φ; it follows
that £?0 is U-discrete. By Theorem 1, 33 and 11 are if-equivalent;
contrary to the assertion of the supposed analogue of Theorem 2.

We note that 11 * and 33* are certainly not ίf-equivalent (on X*):
this follows either from application of Theorem 2 (since II* Φ 33*) or
directly from Theorem I on observing that the set {(m, ωλ): me Z) is
33*-discrete but not 11 *-discrete. Thus our example shows also that
two uniformities may be proximity-equivalent (hence topologically
equivalent) on a space X* and ίf-equivalent on an everywhere dense
subset X of X* without being iί-equivalent on X*.

We now state and prove the positive results referred to earlier:
it will be seen that the essential step in the proof is the demonstra-
tion that, under the conditions we impose, the situation just illustrated
does not arise.

THEOREM 4. Lei (X, d) be a metric space, 33 the uniformity
defined by d. Suppose there exist a set B, precompact with respect
to 33, and a sequence of functions {fr; r = 1, 2, •} satisfying condi-
tions (i) to (iii) of Theorem 2 with K replaced by B (and with
{fr-f r = 1, 2, •} for {fa i e I}). Then there is no other uniformity
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for X H-equivalent to 23.2

Proof. Consider X as imbedded in its metric completion Xτ; let
K (compact) be the closure of B in X\ The uniformly continuous
functions fr, B —> X, have (unique) continuous, in fact uniformly-
continuous, extensions f?,K—> X\ We write X* = \Jrf*(K), and
for the rest of the proof work in the space X* with metric d* (the
extension of d), of which X is a dense subset. (It is not difficult to
prove that in fact X* = Xΐ, but we do not need this result.) We
denote by 23* the uniformity for X* defined by d*; its restriction to
X x X is obviously 23. It is clear, by extension from X, that the
set of functions {/r*; r = 1, 2, •} satisfies conditions (i) to (iii) of
Theorem 2 for X*, K, 23*.

Suppose now that U is a uniformity for X, if-equivalent and hence
proximity-equivalent to 23; as 23 is metric we must have U c 23. We
can define U by a family {p; peP} of pseudometrics for X; we can
suppose further that for pu p2e P we have max (pλ, p2) e P. Since
l i e 23, each peP is d-uniformly continuous (on X x X), so it has a
c£*~uniformly continuous extension p* to X* x X*, which is clearly a
pseudo-metric for X*. The family P* of all such p* defines a uniformity
U* for X* whose restriction to X x X is U. It is clear that P*, like
P, is closed under the taking of finite maxima; also that U*cSS*.
We shall show that U* is ίf-equivalent to 23* on X*; by Theorem 2
this gives II* = 23* and hence U — 23.

We first show U* proximity-finer than 23*. Let A*, B* be subsets
of X* such that d*(a, β) ^ 3ε > 0 for all aeA*,βeB*. Put i =
X Π {ξ; d* (£, A*) < ε} and define B similarly. A and B are clearly Si-
remote (i.e. ώ-remote) in X; by the data and Theorem 1 they are also It-
remote: that is, lρeP,δ>0 such that ρ(a, b) ^ δ, all a e A, b e B. Since
A * c A and B*aB we have ρ*(a, β) ^ δ for all ae A*, βe 5*, so
that A*, 5* are tt*-remote as required. Since tt* c 23* the two unifor-
mities are therefore proximity-equivalent, a fortiori topologically
equivalent. By Theorem I we need now prove only that any 25*-
discrete set 2£0* in X* is also tt*-discrete. Since E? can have only a
finite number of points in each of the compact sets fϊ(K) it must be

2 Since submitting this paper I have extended the proof of Theorem 4 to the
case of a nonenumerable family of functions, provided only that the cardinal of
the family is nonmeasurable. Conversely, if there exists a measurable cardinal
then there is a counter-example in which both the set of elements and the family
of functions have this cardinal. (The usual definition of a measurable cardinal is
equivalent to the following form, convenient for topological applications:- a cardinal
is measurable if and only if it is the cardinal of a set over which there exists a
nontrivial ultrafilter with the enumerable intersection property. It is not known
whether measurable cardinals actually exist but it is known that any such cardinal
must be extremely large.)
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enumerable, say as (ξn; n = 1, 2, •}. Let ε0 be such that d*(ξm, ξn) ^
ε0 > 0 whenever m Φ n, and let {en; n — 1, 2, •} be a sequence such
that en —> 0 as n —• °o and 3ε% < ε0 for all π ^ 1. Choose xn e X such
that d*(xn, ξn) < en{n ^ 1); thus d(xm, xn) ^ (l/3)ε0 if m Φ n. Put
JEΌ = {%n) n = 1, 2, •••}; by Theorem 1, Eo being 33-discrete is also
U-discrete: thus there exist p e P, δ > 0 such that <o(̂ m, α?n) ̂  3d whenever
m Φ n (we need take only a single p, by the closure condition we
imposed on the family P ) . Since U* c 33*, 3ε > 0 such that d* (£, £') < ε
implies ρ*(ξ, ζ') < δ. As εw —> 0, m0 such that d*(»n, ίn) < s whenever
w ^ n0: it easily follows that p*(ξm, ζn) ^ δ if m Φ n and m, w both
exceed %0. Since each fΛ is d*-isolated in E* and U*, SS* are topologi-
cally equivalent, 3 ^ e P, δ1> 0 such that, for m = 1, 2, , π0,
p*(£m> ίw) = î f ° r a ^ n Φ m. Combining these results we see that
i?o* is U*-discrete, as required.

To apply Theorem 4 to a topological group we need an additional
condition (effectively, that the left—and right—invariant uniformities
should be uniformly equivalent on B) which in the locally compact
case was proved in the course of the work.

THEOREM 5. Let (G, d) be a metric group with the (ε, δ) property
of Theorem 3, Corollary. Suppose there exist a precompact neigh-
bourhood B of the identity such that the function φ defined by
φ(xf z) = xz~λ is d-uniformly continuous on B x B, and an enumerable
set EodG such that EGB = G. Then there is no other uniformity
for G H-equivalent to the uniformity S3 induced by d.

Proof. With the notation of Theorem 3, the (ε, δ) condition implies
that S = 53. We can take symmetric neighbourhoods JVi, Bλ of the
identity e, such that iVΊiVi = Bλ, B1Bι c Ba As B is 8-precompact,
there is a finite set {zL, , zp} c B such that \Jr£P LNι{zr) ~ \J (zrNx)z)B1

hence \Jr^P EύzrNτ = G. Select from the enumerable set \Jr Eczr a
maximal L^-discrete set Y = {y8; s = 1, 2, •}; then \JS (y8Nλ) =

U.s L^iy.) 3 Ur^p EQzr and hence (J* (V&) = Us (y.N1N1)^>\Jr^p EQzrNλ =

G. As in Theorem 3, since φ is uniformly continuous on B x B and
JSjiVx cz B, 3 symmetric neighbourhood N2 c JVi of e such that for all
z in JE>! and g in N2 we have zgz~ι e Nly and this implies that, for
r Φ s and z in Bl9 {yrzYY{ysz) is not in N2. Thus Yz is L^-discrete
for every z in Bτ, so that the set of functions f8, where fs(z) = ysz,
and the set Bx satisfy the conditions of Theorem 4.

It is immediately obvious that both Rn and Qn, considered as
metric groups under translation, satisfy the conditions of Theorem 5;
Rn (but not Qn) also satisfies the conditions of Theorem 3, Corollary.
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