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ON THE BEHAVIOR OF THE SOLUTION OF
THE TELEGRAPHIST'S EQUATION

FOR LARGE VELOCITIES

LARRY E. BOBISUD

Consider the solution φ of the inhomogeneous telegraphist's
equation with signal velocity l/i/ ε, where ψ satisfies the initial
conditions φ(x, 0) = g(x), φt(x, 0) = h(x). Let U be the solution
of the parabolic equation that results from the telegraphist's
equation when the velocity is set equal to oo (ε = 0), and let
U satisfy the initial condition U(x, 0) = g(x). Our main result
is that, under suitable conditions on the coefficients and data,

) - U(x, t)fdx = 0(1/7)

uniformly in O^t^t for any finite t.

We shall investigate the behavior of the solution of the telegra-
phist's equation

\a'φtt + Vφt - C'φxx = / ' ,
c

where af > 0, b' > 0, c' > 0, as the velocity c becomes large. For
ease of writing, we will treat explicitly only the case of one space
dimension, although the method employed will obviously extend to
any number of space variables. Since we suppose that c' is never
zero, we can write the telegraphist's equation in the form

(1) εa(x, t)φtt + b(x, t)φt - φxx = fix, t) ,

where s = 1/c2 is a small parameter. We shall require that the
solution φ satisfy the initial conditions

( )

φt(x, 0) = h(x)

for each ε > 0. Clearly φ depends on ε; when it is desirable to
make this dependence explicit we shall write either φt or φ(x, t; ε),
and similarly for other quantities which may depend on ε.

If we set ε = 0 in eq. (1) we get a parabolic equation

(3) b(x,t)Ut- Uxx = f(x,t)

called the degenerate equation corresponding to eq. (1). Since this
equation is of first order in t, we cannot hope to impose both initial
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conditions (2) on its solution; but the function U can satisfy the
single initial condition

( 4 ) U(x,0) = g(x).

If α, δ, /, g, h are sufficiently well behaved functions, then, as is well
known, eqs. (1), (2) and (3), (4) will form correct problems having
unique solutions φε and U, respectively. It seems reasonable to expect
that φε—+U as ε —>0, and we shall show that in terms of a certain
norm to be introduced this does indeed happen wherever U is defined
(normally only for t ^ 0). Moreover, as a step in this direction we
shall show that, in a certain other norm, φt(x, t; ε) —> Ut(x, t) and
φx(x, t; ε) -* Ux(x, t).

The degeneration of the solution of the pure Cauchy problem for
the telegraphist's equation with constant coefficients has been studied
by means of the Fourier transform [1], [5]. Also, the mixed problem
for the equation

εutt + β(t)ut — Lu = F(x, t) ,

where L is an elliptic operator whose coefficients do not depend on
t, has been studied, again using Fourier methods [4]. In this paper,
however, we do not much restrict the coefficients, except that they
must of course be positive and sufficiently smooth, and we deal
directly with the degeneration by means of an energy-integral tech-
nique, rather than by actually constructing the solutions (which are
well known to exist) by a Fourier method. However, our estimates
are then in an U norm instead of the sup norm.

In the papers referred to above it is shown that, in fact, φ—>U
and φx-+ Ux pointwise uniformly for t G [0, t], any t > 0, but that
<Pt—*Ut pointwise only for t e [0, t ] and uniformly only for te[δ, t],
any δ > 0. This behavior is of course reasonable because at t = 0
φt — h, a condition that Ut cannot in general satisfy. No previous
studies of the degeneration of the solution of eq. (1) have included
considerations for t < 0; the technique—reduction to a symmetric
linear system—which we shall employ holds also for t < 0 provided
the solution U of the parabolic problem (3), (4) exists for negative t.
(This can happen, see [3], [1].) We shall not explicitly be concerned
with the possibility of negative t in the following, but the argument
goes through there if U exists and satisfies the conditions to be
imposed.

Concerning the problem (3), (4) we shall assume only that a so-
lution U exists and is smooth enough that Utt(x, t) is continuous and
square integrable over the domain & = {(x, t): 0 ^ t ^t} for any
t > 0. This will, for instance, be the case if &, /, and g are suf-
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ficiently smooth and, for some constant a > 0, ab — (l/2)bt > 0 holds
for all (x, t)e&; this can be seen by writting eq. (3) as a symmetric
positive system in e~atU and e~atUx for a suitable a (cf. [2]).

We set ψ = ^ - Ϊ7, where <£> satisfies eqs. (1), (2) and U satisfies
(3), (4), and proceed to determine a problem which ψ satisfies. This
is easily seen to be

( 5 ) eaψu + bψt — ψxx = —eaUtt

ψ(x, 0) = 0

ψt(x, 0) - h(x) - Ut(x, 0) ,

the inhomogeneous telegraphist's equation with inhomogeneous data
of a special form. It is this problem for ψ that we shall consider
in detail.

We introduce the following inner products and corresponding
norms, in terms of which our results will be formulated. For vectors

u = (Ul) and v = (VΛ we set (u, v) = u'v = uxvx + ^2v2, where w' is

the transpose of w; for functions (i.e., 1-vectors), we set (u, v) = uv.
Which of these inner products is meant will always be clear from the
context. If for fixed t, u and v are square integrable in x, we set

{μ, v)t = \ (u(xf ί), v(a;, ί))da?

if moreover u and v are integrable over the domain

we set

(u, v)& = \ (u, v)tdί = II (u(a?, ί), v(x, t))dxdt .

As customary, we set (u,u)t = | | M ||?, (W, ^)^» = | |^i | 2 ^..
Our main result is then

THEOREM. Let a, b, /, g, h be sufficiently smooth and /, g, h in
L\&). In addition, let b and a satisfy the condition that for
some e0 > 0 and some δ > 0 the inequality

26 - εat ^ 2δ

holds for all (x, t)e& and all ε e (0, ε0]. The smoothness conditions
on the coefficients and data are such that a C\&) and U(&)
solution φ of (1), (2) exists with φt and φx also in L\&) and that
a C2{&) solution U of (3), (4) exists such that Uu satisfies the same
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conditions as were imposed on f for a suitable solution of (1), (2) to
exist. These conditions being met, we have

uniformly for 0 <; t ^ t, any t finite.

As noted above, the proof is easily modified so that the theorem
holds for negative t, provided a sufficiently will behaved solution of
the degenerate problem exists for t < 0.

The smoothness conditions which the coefficients must satisfy
may be found, for instance, by reducing the problem to a symmetric
linear system of first-order equations, as in [2].

As a step in establishing this theorem we shall first prove the
following lemma.

LEMMA. Under the conditions of the Theorem,

\\ft\U = 0(1/7"),

lit. II* = 0(vT).

We begin by writing eq. (5) as a system in the two variables
uλ = e~λtψt and u2 = e~uψx for a λ to be determined. In terms of

ίu \
u = ( 1) this system is

\U%J

( 7 )

lεa 0\ / 0 - 1 \ leaX + b 0\ l-εae-χtUn

\0 1/ V - l 0 / ^ 0 λ/ V 0

the initial data for u are clearly

( 8 ) %(», 0; ε) =
I Q

Defining the matrix k as

εαλ + 6 0\ i (eat 0
k~ι o xj Ύ{o o)'

we wish to determine λ so that l/2(k + kf), where kf denotes the
transpose of yfc, is positive definite. But for λ = δ, where d is the
constant of the theorem, we have

—uf(k + k')u = u'ku = Γεαλ + — (26 - ea^lu; + \u\ ^ Xu'u
2 L 2 J

whence, moreover,
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(u, ^ λ \\u \

an inequality which will be needed later.
Following Friedrichs [2], and using the "divergence theorem" and

the fact that Lu can be written as

1 lea 0\ Γ i lea
Lu = -7Γ\ \ut + — \u

2 \0 1/ L 2 \ 0 1
0 -0 - 1

we calculate (u,Lu)& for any two-vector ue C\&) which, together
with its first derivatives, is in

(u,Lu)a = — ϊϊ
Δ J J

ea 0

Ίo i
O - 1

Ί-i o
lea 0

'\0 1

/εa 0

'•(o
lεa 0

2 " J — V M ' \ O 1

+ U,
εα 0

+
0 - 1

- 1 0, ,.,_,

0 - 1

- 1 0

+ (tt,

+ (u, ku)<

u) \dxdt + (u,

Thus we have, since ( ) is clearly positive definite for each ε > 0,

1
(u,Lu)J$e + —

(εa(x, 0) 0
", 0),

\ 0 1

for any continuously differentiate u which, together with its first
partial derivatives, is in L 2 ( ^ ) . By choice of λ we have (u,ku)<%> ^
X\\u \\%>, so w e g e t

1 f Ίea(x, 0) 0\

(9) \\n\U\\Lu\U + Y L N ^ ° ) J )
It is this energy inequality which yields the lemma. For we can

write the solution u of problem (7), (8) as u — v + w, where v satisfies
the homogeneous equation with inhomogeneous data and w satisfies the
inhomogeneous equation but homogeneous data. For w inequality (9)
yields

|| Lw |U = ε \\e-χtaUu IU ^ λ II w IU ,
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whence also

from this it is clear that

which at once yields the weaker statement

Similarly for v we have

— Γ a{x, 0)(h(x) - Ut(x, 0))2dx ^ λ || v \

whence

Thus H^IU = 0 ( v T ) . But % = (e~λtftye~xtψx)' = e-'ty0, say, and it

follows that HfolU = O(τ/T). Since

l l * o IIS. = j j Λ * ϊ + Ψl - II ̂ l l 2 ^ + II t * l l ^

we conclude that

II ft IU = O(τ/T), II <f. |U = O(i/T) ,

completing the proof of the lemma.

The theorem is an easy consequence of the lemma and the following
simple estimate:

For we have

S *o | | 2 f oo rrt0 ϊ 2 Coo rt0

ψtdt\\ =\ <\ ψtdt\dx^t0\ \ ψldtdx
0 | | ί 0 J_oo(Jθ J J__oojθ

*ψ2

tdtdx = t\\ψt\\% = [0(VT)Y
0

for any t0 e [0, t]. Hence the theorem is established.

EEMARK. The lemma and theorem proved above are equally true
for the mixed boundary-initial value problem with homogeneous
boundary data. For our entire proof has depended only upon the
existence of the energy estimate eq. (9), which in turn depends only



THE TELEGRAPHIST'S EQUATION FOR LARGE VELOCITIES 219

on writing the problem (5), (6) as a symmetric linear system with
admissible boundary-initial conditions. Since that can be done for
the mixed problem as well as for the pure Cauchy problem for the
case at hand [2], the theorem is equally true in both cases.

It should also be observed that the considerations used here can
doubtless be used in studying the degeneration of the solutions of
other problems which can be written as symmetric linear systems
with admissible boundary-initial data.

I wish to thank Professor Reuben Hersh for several stimulating
conversations.
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