A SUM OF A CERTAIN DIVISOR FUNCTION FOR ARITHMETICAL SEMI-GROUPS

E. M. HORADAM

Let $\{b_n\}$ denote the set of elements of a free ordered arithmetical semi-group with multiplication and a known counting function. Using the corresponding terminology of arithmetic let $b_n = d\delta$ and let $\tau'(b_n)$ denote the number of divisors d of b_n where both d are δ and square free. Then it is shown here that T(x) defined by

$$T(x) = \sum_{\substack{b_n \leq x \\ (b_n, b_u) = 1}} \tau'(b_n) \sim Ax \log x$$

where A is a constant depending on b_u .

A more explicit definition of the semi-group is as follows. Suppose there is an infinite sequence $\{p\}$ of real numbers, which we will call generalised primes, such that

$$1 < p_{\scriptscriptstyle 1} < p_{\scriptscriptstyle 2} < \cdots$$
 .

Form the set $\{b\}$ of all *p*-products, i.e., products $p_1^{v_1}p_2^{v_2}\cdots$, where v_1, v_2, \cdots are integers ≥ 0 of which all but a finite number are 0. Call these numbers generalised integers and suppose that no two generalised integers are equal if their v's are different. Then assume $\{b\}$ may be arranged as an increasing sequence:

 $1 = b_1 < b_2 < \cdots < b_n < \cdots$.

We say $d | b_n$ if $d \in \{b\}$ and there exists $\delta \in \{b\}$ such that $d\delta = b_n$; dand δ are then called complementary divisors of b_n . Let $\tau'(b_n)$ be the number of divisors d of b_n where both d and its complementary divisor are square free. In fact

(1.1)
$$au'(b_n) = \sum_{d\delta = b_n} 1 \ .$$

 d square free δ square free

This means that $\tau'(b_n) = 0$ unless b_n is of the form $\prod_{ij} p_i p_j^2$. Let x be any positive number and b_u any generalised integer. The sum to be evaluated, T(x) is defined by

(1.2)
$$T(x) = \sum_{\substack{b_n \leq x \\ (b_n, b_u) = 1}} \tau'(b_n)$$

where (b_n, b_u) denotes the greatest common divisor of b_n and b_u . In

order to evaluate this sum a further assumption on the number of generalised integers less than or equal to x is required. Let [x] denote the number of generalised integers $\leq x$.

Assume

(1.3)
$$[x] = x + R(x), R(x) = 0 \ (x^{\alpha}) \ \text{and} \ 0 < \alpha < 1$$
.

Using (1.3) it will be shown that when b_u is square free

(1.4)
$$T(x) = Ax \log x + 0 \left(x \exp \left\{ \frac{(\log b_u)^{1-\alpha}}{\log \log b_u} \right\} \right)$$

where

$$A = \prod_{p \mid b_u} rac{p^2}{(p+1)^2} \prod_p rac{(p^2-1)^2}{p^4}$$
 .

This sum is similar to that found by Gordon and Rogers in [2]. Also using the methods of [2] exactly analagous results for arithmetical semi-groups can be found to those shown by Gordon and Rogers. The only extra difficult result required is the prime number theorem for generalised integers. This is proved in [6] and is

(1.5)
$$\pi(x) = \frac{x}{\log x} + 0\left(\frac{x}{\log^2 x}\right).$$

2. Supplementary definitions and results. Define the Möbius function $\mu(b_n)$ for the semi-group as follows: $\mu(b_n) = 0$ if b_n has a square factor $\mu(b_n) = (-1)^k$, where k denotes the number of prime divisors of b_n and b_n has no square factor; $\mu(1) = 1$. Let $\phi(x, b_n)$ denote the number of generalised integers $\leq x$ which are prime to b_n . Then it is proved in [3] that

(2.1)
$$\sum_{d \mid b_n} \mu(d) = \begin{cases} 0 \text{ when } b_n \neq 1 \\ 1 \text{ when } b_n = 1 \end{cases}$$

and in [4] that

(2.2)
$$\phi(x, b_u) = \sum_{d \mid b_u} \mu(d) \left[\frac{x}{d} \right].$$

Hence using assumption (1.3) we have

(2.3)
$$\phi(x, b_u) = x \sum_{d \mid b_u} \frac{\mu(d)}{d} + 0 \left(x^{\alpha} \sum_{d \mid b_u} \frac{|\mu(d)|}{d^{\alpha}} \right).$$
$$= x f(b_u) + 0 (x^{\alpha} f_{\alpha}(b_u)) \text{ say }.$$

Then as is shown in [3], and in any case as the functions are multiplicative

(2.4)
$$f(b_u) = \sum_{d \mid b_u} \frac{\mu(d)}{d} = \prod_{p \mid b_u} \left(1 - \frac{1}{p}\right),$$
$$f_\alpha(b_u) = \sum_{d \mid b_u} \frac{|\mu(d)|}{d^\alpha} = \prod_{p \mid b_u} \left(1 + \frac{1}{p^\alpha}\right).$$

Define $\zeta(s) = \sum_{n=1}^{\infty} b_n^{-s}(s > 1)$. Then it is proved in [1], using an assumption equivalent to (1.3) that

$$\zeta(s) = \prod_{r=1}^{\infty} (1 - p_r^{-s})^{-1}$$
.

Hence

$$rac{1}{\zeta(s)} = \prod_{r=1}^\infty (1 - p_r^{-s}) = \sum_{n=1}^\infty \mu_n b_n^{-s}$$
 .

Abel's transformation, in the following form, will be used to give some necessary estimates. Suppose $\{b_n\}$ and $\{a_n\}$ are given with $b_1 \leq b_2 \leq \cdots, b_n \to \infty$. Let $A(x) = \sum_{b_n \leq x} a_n$. Suppose $\psi(x)$ has a continuous derivative $\psi'(x)$ for all x involved. Then

$$\sum\limits_{b_n\leq x}a_n\psi(b_n)=A(x)\psi(x)-\int_{b_1}^x\!\!A(u)\psi'(u)du\;.$$

Using (1.3) and this transformation, we obtain the following results.

(2.5)
$$\sum_{b_n \leq x} \frac{1}{b_n^{\beta}} = \frac{x^{1-b}}{1-\beta} + \gamma_{\beta} + 0(x^{\alpha-\beta}), \begin{cases} \beta \neq 1 \\ \beta \neq \alpha \end{cases},$$

and γ_{β} is a constant equal to $\zeta(\beta)$ when $\beta > 1$.

(2.6)
$$\sum_{b_n \leq x} \frac{1}{b_n^{\alpha}} = \frac{x^{1-\alpha}}{1-\alpha} + 0(\log x) .$$

(2.7)
$$\sum_{b_n > x} \frac{1}{b_n^\beta} = \zeta(\beta) - \sum_{b_n \le x} \frac{1}{b_n^\beta} = 0(x^{1-\beta}) \quad \text{for } \beta > 1.$$

Again using (1.5) and Abel's transformation we obtain

(2.8)
$$\sum_{p \leq x} \frac{1}{p^{\alpha}} = \frac{x^{1-\alpha}}{(1-\alpha)\log x} + 0\left(\frac{x^{1-\alpha}}{\log^2 x}\right)$$

(2.9)
$$\sum_{p \le x} \log p = x + 0(x/\log x) .$$

Define

(2.10)
$$\lambda(b_u) = \sum_{\substack{b_n=1\\(b_n,b_u)=1}}^{\infty} \frac{\mu(b_n)}{b_n^2} = \prod_{\substack{p\\p/b_u}} \left(1 - \frac{1}{p^2}\right).$$

Then from (2.7) we have

E. M. HORADAM

(2.11)
$$\sum_{\substack{b_n \leq x \\ (b_n, b_n) = 1}} \frac{\mu(b_n)}{b_n^2} = \lambda(b_n) + 0(x^{-1}).$$

3. The Q function. Let

$$q_u(b_n) = egin{cases} 1 & ext{if } b_n ext{ is square free and } (b_n, b_u) = 1 \ 0 & ext{otherwise .} \end{cases}$$
 $Q_u(x) = \sum_{b_n \leq x} q_u(b_n) \ .$
 $e(b_n) = egin{cases} 1 & ext{if } b_n = 1 \ 0 & ext{if } b_n
eq 1 \ . \end{cases}$

Then from (2.1)

$$q_u(b_n) = e((b_n, b_u)) \sum_{d^2\delta = b_n} \mu(d)$$
 .

This gives

$$\begin{split} Q_u(x) &= \sum_{b_n \leq x} e((b_n, b_u)) \sum_{\substack{d^2\delta \leq b_n \\ d^2\delta \leq x \\ (d, b_u) = (\delta, b_u) = 1}} \mu(d) \\ &= \sum_{\substack{d \leq \sqrt{x} \\ (d, b_u) = 1}} \mu(d) \phi\left(\frac{x}{d^2}, b_u\right) \\ &= \sum_{\substack{d \leq \sqrt{x} \\ (d, b_u) = 1}} \mu(d) \left\{ \frac{x}{d^2} f(b_u) + 0\left(\frac{x^{\alpha}}{d^{2\alpha}} f(b_u)\right) \right\} \end{split}$$

from (2.3)

$$= x f(b_u) \{ \lambda(b_u) + 0(x^{-1/2}) \} + 0 \Big(x^{\alpha} f_{\alpha}(b_u) \Big\{ \frac{x^{(1-2\alpha)/2}}{1-2\alpha} + \gamma_{2\alpha} \Big\} \Big)$$

from (2.11) and (2.5). Hence

(3.1)
$$Q_u(x) = x f(b_u) \lambda(b_u) + 0 (x^{1/2} f_\alpha(b_u)) + 0 (x^\alpha f_\alpha(b_u)) .$$

4. The evaluation of the sum of the divisor function T(x). Replacing in (1.2) the value for $\tau'(b_n)$ defined in (1.1), we have the result that T(x) is the number of elements in the class satisfying $d\delta = b_n$, $\mu^2(d) = \mu^2(\delta) = 1$, where $b_n \leq x$, $(b_n, b_u) = 1$. This is the same class as that for which $d\delta \leq x$, $(d, b_u) = (\delta, b_u) = 1$ and $\mu^2(d) = \mu^2(\delta) = 1$. Rearranging the order of summation we have that T(x) is the number of elements in the class satisfying $\delta \leq x/d$, $(\delta, b_u) = 1$, δ square free, where $d \leq x$, $(d, b_u) = 1$ and d is square free. Hence

410

$$T(x) = \sum_{d \le x} q_u(d) \sum_{\delta \le x/d} q_u(\delta)$$

= $\sum_{d \le x} q_u(d) \left\{ \frac{x}{d} f(b_u) \lambda(b_u) + 0 \left(\frac{x^{1/2}}{d^{1/2}} f_\alpha(b_u) \right) + 0 \left(\frac{x^\alpha}{d^\alpha} f_\alpha(b_u) \right) \right\}$

from (3.1)

$$= xf(b_u)\lambda(b_u)\sum_{d\leq x}\frac{q_u(d)}{d} + 0\left(x^{1/2}f_\alpha(b_u)\sum_{d\leq x}\frac{1}{d^{1/2}}\right)$$
$$+ 0\left(x^\alpha f_\alpha(b_u)\sum_{d\leq x}\frac{1}{d^\alpha}\right)$$
$$= xf(b_u)\lambda(b_u)\sum_{d\leq x}\frac{q_u(d)}{d} + 0(xf_\alpha(b_u))$$

from (2.5) and (2.6).

Now from (3.1) and Abel's transformation we have

$$\sum_{d\leq x}rac{q_u(d)}{d}=f(b_u)\lambda(b_u)\log x\,+\,0(f_lpha(b_u))\ +\,0(x^{-1/2}f_lpha(b_u))\,+\,0(x^{lpha-1}f_lpha(b_u))\;.$$

Substituting this result in the expression for T(x) we obtain

(4.1)
$$T(x) = f^{2}(b_{u})\lambda^{2}(b_{u})x \log x + 0(xf_{\alpha}(b_{u})) + 0$$

From the definition in (2.4) we have

(4.2)
$$f_{\alpha}(b_u) = \sum_{d \mid b_u} \frac{\mid \mu(d) \mid}{d^{\alpha}} \leq \sum_{d \mid b_u} \frac{1}{d^{\alpha}} \leq \sum_{d \mid b_u} 1 = 0(b_u^{\delta})$$

where δ is any positive real number. This is proved in [5, Th. 5] and is true for all b_u . However, when b_u is square free we can obtain a better value for $f_{\alpha}(b_u)$ by using the prime number theorem. Suppose b_u is square free and let $b_u = p_{u1}p_{u2}\cdots p_{uk} \ge p_1p_2\cdots p_k$. Then

$$(4.3) \qquad \qquad \log b_u \geq \sum_{p \leq p_k} \log p = p_k + 0(p_k/\log p_k)$$

from (2.9). Hence

$$egin{aligned} f_{lpha}(b_u) &= \sum\limits_{d \mid b_u} rac{\mid \mu(d) \mid}{d^{lpha}} = \prod\limits_{p \mid b_u} \left(1 + rac{1}{p^{lpha}}
ight) &\leq \prod\limits_{p \leq p_k} \left(1 + rac{1}{p^{lpha}}
ight) \ &\leq \prod\limits_{p \leq (1 + o(1)) \log b_u} \left(1 + rac{1}{p^{lpha}}
ight) \end{aligned}$$

from (4.3), and so

$$\log f_{\alpha}(b_u) \leq \sum_{p \leq (1+o(1)) \log b_u} \frac{1}{p^{\alpha}} (1 + o(1))$$
.

Then from (2.8)

E. M. HORADAM

(4.4)
$$f_{\alpha}(b_u) = 0\left(\exp\left\{\frac{(\log b_u)^{1-\alpha}}{\log \log b_u}\right\}\right)$$

for b_u square free. Now from (2.4) and (2.10)

$$egin{aligned} f^2(b_u)\lambda^2(b_u) &= \prod_{p\mid b_u} \left(1-rac{1}{p}
ight)^2 \prod_{p\mid b_u} \left(1-rac{1}{p^2}
ight)^2 \ &= \prod_{p\mid b_u} rac{p^2}{(p+1)^2} \prod_p rac{(p^2-1)^2}{p^4} \ &= A \ (ext{say}) \ . \end{aligned}$$

Hence from (4.1), (4.2) and (4.4) we have

(4.5)
$$T(x) = A x \log x + 0(x b_u^{\delta})$$

for all b_u and all positive real numbers δ and

(4.6)
$$T(x) = Ax \log x + 0 \left(x \exp \left\{ \frac{(\log b_u)^{1-\alpha}}{\log \log b_u} \right\} \right)$$

for all square free b_u .

This is the result given for T(x) in (1.4). Since

$$\prod_p \left(1 - rac{1}{p^2}
ight)^{\!\!\!\!2} = rac{1}{\zeta^2(2)}$$
 ,

the value for A may also be written

$$A = rac{1}{\zeta^2(2)} \prod_{p \mid b_u} rac{p^2}{(p+1)^2} \; .$$

I gratefully acknowledge assistance given by the referee in the evaluation of the error term.

References

1. A. Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers généralisés, Acta. Math. **68** (1937), 255-291.

2. G. Gordon and K. Rogers, Sums of the divisor function, Cana. J. Math. 16 (1964), 151-158.

3. E. M. Horadam, Arithmetical functions of generalised primes, Amer. Math. Monthly **68** (1961), 626-629.

4. ____, The number of unitary divisors of a generalised integer, Amer. Math. Monthly **71** (1964), 893-895.

5. ____, The order of arithmetical functions of generalized integers, Amer. Math. Monthly **70** (1963), 506-512.

6. B. Nyman, A general prime number theorem, Acta. Math. 81 (1949), 299-307.

Received April 29, 1965.

UNIVERSITY OF NEW ENGLAND ARMIDALE, N.S.W., AUSTRALIA

412