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FIXED POINTS IN A CLASS OF SETS

D. R. SMART

THEOREM. A set of the form J = i u \JiejBi has the fixed
point property if

( i ) A is a closed simplex and each Bi is a closed simplex;
(ii) Ar\Bi is a single point Pi for each i;
(iii) any arc in X joining a point in some Bι to a point

in X—Bi must pass through pi.

(J can be any index set. The topology on X can be given by any
metric satisfying (i) and (iii).)

The statement that X has the fixed point property means that
each continuous mapping of X into X has a fixed point. The theorem
applies to many sets which are not locally connected so that even
Lefschetz's fixed point theorem is inapplicable. Instead of assuming
that the subsets A and B{ are simplices we could merely assume that
each of these subsets is locally arcwise connected and has the fixed
point property. The result should still be true if each point Pt is
replaced by a simplex P* but this generalization would require alto-
gether different methods.

Proof of the theorem. Let T be a continuous mapping of X into
X. We distinguish three cases.

Case 1. Suppose Tp{ eBi — {pj for some i. Then we will show

that T has a fixed point in B{.

Define SiB^Bt by

Sx = Tx if Tx 6 Bi

Sx = Pi if TxgBi .

Then S is continuous by Lemma 2 below.

Since Bi has the fixed point property, Sx = x for some x in
B^ Now x Φ Pi (for x — p{ would give Spi = pi9 impossible since
Spi = Tpi eBi- {pi}). Thus Sx Φ pt so that Tx = Sx = x.

Case 2. Suppose Tpi = p{ for some i. Then pt is a fixed point.

Case 3. Suppose Tp{ eX — Bi for all i. Then we will show that
T has a fixed point in A. Define R : A —* A by

Rx = Tx \ί TxeA.
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Rx = Pi if TxeBi .

Then R is continuous by Lemma 2. Since A has the fixed point pro-
perty, R has a fixed point in A. The fixed point £ cannot be a point
Pi since Rx — p{ only if TxeBi] and Tpi $ B{. Since the fixed point
is not p^ Tζ ί Bi. Thus Tf e A so that Tξ = Rζ = ξ.

Thus in each case T has a fixed point, which proves the theorem.
The above proof depends on two lemmas.

LEMMA 1. If z(t) is a continuous function on [0,1] to a metric
space and either

(i) w(t) is a constant, or
(ii) w(t) = z(t) except on a non-overlapping sequence of intervals

[t2n-i, t2n] (n ̂  1) such that

tx = 0 and w(t) = z(t2) on [tlf t2]

t4 = 1 and w(t) = z(t3) on [ί3, t4]

and for n > 2, s(ί2w_!) = z(t2n) and w(t) = s(ί2 n) o^ [ ί 2 n - 1 , ί 2 w]. T/^e^

w(t) is continuous on [0,1].

Proof. Obvious. (One proof is : if zn is the function obtained
from z by changing its value to that of w on the first n intervals,
then zn is continuous. Also zn —•> w uniformly on [0,1] since the length
of [ί2n-n tzΛ must tend to 0.

LEMMA 2. Let Y be a closed simplex contained in a metric space
X. Suppose that X — Y is the union of disjoint sets Zi9 that Zi (Ί Y
is a one-point set {gj, and that any path from a point in a Z{ to a
point in X — Zi must pass through q{. Let U be continuous on Y
X. Define T by

Ty = UyifUyeY

Ty = g« if UyeZi.

Then T is continuous.

Proof. If yn —> y in Y we must show that Tyn —> Ty. Consider
a path g(t) in F(0 ̂  t ^ 1) such that g(0) = y and g(l/n) - yn. Writ-
ing ί7#(ί) = z(t) and T#(£) = w(t) the conditions of Lemma 1 are satis-
fied. For if w(t) differs from z(t) the possibilities are : z(t) could be
in some Zi for all t, in which case w(t) is a constant; otherwise,
there is an initial interval [0, t2] where z(t) is in some Zit and/or some
intermediate intervals [tin^l9 t2n] where z(t) is in some Zi{n) and/or a
final interval [t3,1] where z(t) is in some Z3. By Lemma 1, w(t) is
continuous. Thus Tg(l/n) —> Tg(0) as required.
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The theorem can be used to establish some pathological examples.
(It seems that all of these are already known.)

I. There exists a noncompact set having the fixed point property.

Take A = {(x, y): 0 ^ x ^ 1, y = 0}

n

(In this case X also has the fixed point property.)
II. There exists an unbounded set having the fixed point property.

Take A as above.

n

III. There exists a set with the fixed point property whose clo-
sure lacks this property. Take X as in II.

IV. There exists a precompact set with the fixed point property,
whose closure lacks this property.

Take = UiΘ : — <

Several sets which have some interest in other contexts have the fixed
point property in consequence of our theorem :-

V. The set

where A is the unit interval, Bn is a unit line segment sloping up
from (0,0) with slope 1/n, and C» is a unit line segment sloping up
to (0,1) with slope 1/n. (This is a non contractible set.)
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