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LINEAR TRANSFORMATIONS WHICH PRESERVE
HERMITIAN AND

POSITIVE SEMIDEFINITE OPERATORS

JOHN de PILLIS

Let Si and 33 represent the full algebras of linear operators
on the finite-dimensional unitary spaces έ%f and J3Γ", respec-
tively. The symbol =5 (̂51, 23) will denote the complex space
of all linear maps from % to 33. This paper concerns itself
with the study of the following two cones in iϊ^(2ϊ, 33):

(i) the cone <gf of all Te £f(&9 53) which send hermitian
operators in 51 to hermitian operators in 33, and

(ii) the subcone <gf+ (of 9f) of all ΓeJ^(2t,33) which
send positive semidefinite operators in 5ί to positive semidefinite
operators in 33.

In our main results, we characterize the transformations in the
cone <& (Theorem 2.1) and present a structure theorem concerning
the transformations in the cone ^ + (Theorem 2.3). Identifying oper-
ators in the algebras 21 and S3 with appropriate square matrices, we
may summarize Theorem 2.1 by saying that any and every linear
transformation T which preserves hermitian matrices is of the form
T: A —* Σ oίiX^AtXi, where each a{ is a real sealer, and each Xi is
a certain rectangular matrix depending on T; X* and A* represent
the conjugate transpose and the transpose of matrices X{ and A,
respectively. Theorem 2.3 says that the cone of positive semidefinite-
preserving transformations <£*+ "generates" or spans all of «Ŝ (SI, 33)
in the sense that any T in j£f($ί, 33) can be written

T={Kλ- Kt) + i(K* - K<) ,

where i2 = — 1 , and each K{ is an element of ^ + .

1* Preliminaries* L(3ίΓ, ^f) denotes the space of linear trans-
formations from the Hubert space 3ίΓ to the Hubert space
We define:

1 (a), {x x y)—the dyad transformation, an element of L{^f9

is defined for fixed x e <%f and y e ^Γ by: (x x y)(z) = (z, y)x for all
ze<3?~, where (z,y) is the inner product of z with y. As it turns
out, (x, y) = tr ((x x y)), the trace of (x x y). If A e 3Ϊ( = (L(JT, Sίf))
and £ G 3 3 ( = L ( ^ T , 5ΪΓ)), then (A(x) x B(y)) = A(x x y)B*.

1 (b). Px—denotes the orthogonal projection onto the subspace
spanned by x, i.e., for (x, x) = 1, we have Px = (x x x).

129



130 JOHN de PILLIS

1 (c). [A, B]—is the inner product defined on 2ί (resp. 33) by
setting [A, B] = tr(B*A) for all A, Be% (resp. S3) where B* is the
Hubert space adjoint of B, and t r ( ) is the trace functional on 21
(resp. S3). More generally, L(3ίΓy 2ί?) becomes a Hubert space once
we define the inner product [A, B] = tr (£*A) for all A, Be L(JT\ Sίf\
Consequently, for wlf w2 e Sff, and uu u2 e JfΓ, so that (wλ x uλ) and
(w2 x u2) belong to L(J?Γ, 3ίf), we have

[(w1 x ux), (w2 x u2)] = tr {{w2 x u , ) * ^ x

— tr ((w2 x w2)(w1 x

= tr ((wu w2)(u2 x Uj))

= (wu w2){u2ί ux) .

1 (d). (A][B)—the dyad transformation, an element of _£^(33, 21),
is defined for fixed transformations Ae% and Be S3 by (A][B)-C =
[C, β]A, for all C in J3. As in l(a). , [A, £ ] - tr((Λ][B)), the trace
of (A][B).

1 (e). 2ί ® S3—the tensor product of algebras 2ί and S3, consists
of sums of elements of the form A®J5, where Ae2I and .BeS3
[2, Chapter 16]. The symbol (A <g) J5)° will denote the element J5 0 A,
and can be linearly extended to any element of 2t (g) S3.

1 (f). [Ai 01?i, A2 0 .B2]—the inner product which gives the alge-
bra 21 0 S3 a Hubert space structure, is defined by

[Λ 0 B l f A2 (8) S J = [Λ, A2] [Bl9 Bt]

for all Au A2 e 21, and all Bλ1 B2 e S3.

1 (g). ^ ( Γ ) — t h e element of 21085 which is defined for each
T in .5f(2I, 33) by [ J ^ ( Γ ) , A * ® S ] = [Γ(A),J5], for all A e2ί, £ e 33.
This equation also defines J?~ as a linear transformation, sending the
space .Sf (Sϊ, 33) to the algebra 21 0 S3.

1 (h). 3(f—the space of all linear functionals on έ%f% For each

x e <%f, we define the functional x e <%f by x(y) = (y, x) for all y e §ίf.

Moreover, these are the only elements of Sff. An inner product is

defined on J p by setting (x, y) = (y, x) for all x, y e 3&. Thus,

(x, y) = (x, y), the complex conjugate of (y, x).

on

1 (i). A*—the transpose of the operator A, is the linear operator

J T defined by A*(y)(x) - y(A(x)), for all ye<%Fy and all xeSίf
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[1, p. 103], From this it follows that (x x y)* = (y x %). If A is
defined to be (A*)*, then (x x y) = (x x y) and A(x) = A(x). From
this we see that for all A e 21, A* = A\ In fact, set A = (x x y) for
x, y e 2ί. Then

A* = (x x ?/)* = (a; x y)* = (2/ X x) = (2/ x a;) = (x x 2/)* =

Hence, by linear extension, A* = A* for all A G 21.

1 (j). L(3ίΓi 3$f)—\& spanned by the dyads (x x y), where x e,

and y e ST. In this context, we identify the transformation A (g) B

with the transformation C-^ACB* for all C e L(J?f, Sίf), where

A G 2I( = L ( ^ , £έ?)) and B e SB( = L(JΓ\ J^Γ"). Behind this identification

is the isomorphism φ: 3ίf ® .<%? —> L(J?^, <%**) defined by 0(& (g) #) =

(x x ^) for all x e £ίf, y e JΓ ' . If for each A G 21, 5 G 33 we define

the linear transformation OA,B: L(^ΓΓ, <^) —> L( JΓ 7 , ^ ^ ) by OAtB(C) =

ACB1 for all CeL{^, <^), then A(g)B corresponds to O )̂jB in the

sense that 0 o (A 0 B) ° ^ - 1 = O^fβ. In fact, we have

(φ o (A 0 5) © ^(a? x ^) = ^(A 0 5(x 0 2/)) definition of ζ "̂1

= φ(A(x) (g) B(2/)) definition of A 0 5

= (A(α ) x 5(τ/)) definition of φ

= (A(x) x B(y)) from 1 (i).

= A(x x ^)B* from 1 (a).

= A(a; x y)Bι since 5* = β*, see 1 (i).

= OA,B((x x y)) definition of OAtB .

For convenience, however, we shall treat A 0 JB as though it were
actually equal to the concrete linear transformation OA,B = A{-)B\
In so doing, we have

(x x y)][(u x v) = (a? x u) 0 (j/ x v)

for vectors a?, y, %, v in (not necessarily the same) Hubert space.
The linear transformation ^ (see l(g).) will prove to be of funda-

mental importance. For this reason, we isolate some of its properties in

PROPOSITION 1.1. ( 1 ) ^(B][A) = A* ® B for all A e 21, B e S3.
( 2 ) ^(T) = Σn E* (g> T(Ei) for any and every orthonormal basis
for 21.

( 3 ) If T(A*) = T(A)* for all A G 21 (i.e., if Te <g>), then
T*(Fi) (g) Ff for any orthonormal basis {i^} for S3.
( 4 ) If T(A*) - T(A)* for all A e 21, then
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(5) ^ is an isometric isomorphism from the Hubert space
, S3) onto the Hubert algebra 21 (g) 33.

Proof. From the definition 1 (g). of J^, we have

), D]

D] from 1 (d).

= [A*,C][B,D]

= [A* <g) J5, C (g) D] from 1 (f).

for all A, Ce2ί and all ByDe%>. This implies Part (1).
Now let {#<} be any orthonormal (o.n.) basis for 51. If T= (B][A)

for AeSί and J3e33, then

Σ ^ * Θ T(Et) = Σ

= Σ [̂ <» ^W* <S> B from 1 (d).
i

= A*<g)B which, from Part (1)

The dyads (B][A), Ae%, Be®, span the space j^(SI, 35), so that
(using linearity of J?) for all Te &>(%&), ̂ (T) = Σ*-^*®
which establishes Part (2).

Part (3) follows from (2) and (4) inasmuch as if J?{T*) =
then Σ T*(Ft) <g> Ft = (Σ ^ * Θ Γ*!^))0 = ^ ( ϊ 1 * ) 0 = ^"(Γ)

But Part (4) obtains, since for all A e 21, B e S3,

*), A ® 5] = [Γ*(A ), B] definition 1 (g). of j?

= [T(B*),A] if and only if T{B*) = T(B)*

= [^"(Γ), £ <8> A] definition 1 (g). of j?

That is, jf(τ*) = ^(Tf and Part (4) is proven.
As for demonstrating Part (5), observe that for all Alt A2eSI, and

xlίΛ), ^(B,][A2)] = [A* 0 -Bi, A? ® BJ from Part (1)
from 1 (d). and 1 (f).
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By linear extension on each argument of the inner product, we have
that for all Tu T2 e j^(3I, 33),

[^r(T1)f^(T2)] = [Tl9 T2]

so that JF is an isometry from j^(2I, 33) to SI (g) 33. From Part (1) it
is easy to see that ^ is also an onto transformation as well, since the
algebra 310 S3 is spanned by elements of the form A* (g) B. This
completes the proof of Proposition 1.1.

Our next result establishes a necessary and sufficient condition
for a transformation in i^(3I, 93) to be in the cone <̂ \

PROPOSITION 1.2. A transformation Te £f(%9 33) is in <g> if and
only if ^(T) is hermitian.

Proof. Recall that j? maps £?(% 33) (isometrically) onto SI (g) 33,
which has been identified as the algebra of linear operators on the
Hubert space L(JT, Sίf) (see l(j)). Now for all A e SI, B e S3,

(a) [jr(T)*9 A (g) B] = U^(Γ), A* (g)
(b) = [Γ(A), £*J definition l(g) of ^
(c) =[Γ(A)*,B]

where (a) and (c) follow from the properties of the inner product,
viz., [Y,Z\ = [Y*, Z*] for all operators Y and Z. Now,

[T(A)*9 B] = [T(A*)9 B] for all A e SI, B e 33 ,

if and only if T(A)* = T(A*) for all AGSI. Finally, [Γ(A*), S] is
equal to [^"(Γ), A (g) β], so that for all A e SI, Be 33,

, A (g) B] - 0

if and only if Γ(A*) = Γ(A)*. This completes the proof.

REMARK. We have just shown that Tej*?($ί, 33) preserves her-
mitian operators (Γe^ 7 ) if and only if ^{T) is hermitian. It is
not unreasonable to suspect that T preserves positive semidefinite
(psd) operators (Tec^+) if and only if ^(T) is psd. However, this
conjecture is false, for if 31 = L{3ff, 3έf), and if 33 = L(JΓ, ^T),
then for any multiplicative transformation T e £?(% 33) (T(AB) =
T(A)T(B)), we have Te^+; but ^(T) will always have some nega-
tive eigenvalues. For a specific example choose SI = 33 = L{3(f', ^g^),
the algebra of operators on £ί?. Let Γe=S^(2I, 33) be the identity
transformation T(A) — A for all AeSt. Surely Γ e ^ + Now choose
the o.n. basis {el9 e2, , en} for έ%f\ then {(β̂  x β̂  ): i, j = 1, 2, , n]
is an o.n. basis for SI so that from Proposition 1.1 Part (2), we have
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Σ (βi x ed)* <g) (et x βy) = Σ (βy x «,) (8) (et x e, ) .

The situation may be represented by the following diagram:

e x βy)

(e* x eq) (eq x ep) .

From l(i) and l(j) we conclude that ^(T)((ep x eq)) = (βff x ep) for
(ep x eq),p,q = 1, 2, .. ,w, in the space L(&f, 2if). That is, if Γ
is the identity operator on the Hubert algebra L{Sίf y £(?), then ^(T)
is the transpose operator on the Hubert space L{3ίf', ^ ^ ) . It is easy
to see that vectors of the form (ep x eff) — (βff x ep) in L(β^y Sίf) are
eigenvectors for ^ ( ϊ 7 ) corresponding to the eigenvalue —1. ^F(T)
(which is hermitian due to Proposition 1.2), is therefore not a psd
operator on the Hubert space L ( ^ , Sίf).

2. The main results* We present a structure theorem which
characterizes elements of the cone ^ .

THEOREM 2.1. Suppose that Te <Sf c ^(Sί, S3). ^ ( Γ ) is self-
adjoint by Proposition 1.2, with spectral resolution Σiai<^(Xi),
where a{ is real, ^(Xi) = (X^lXi) is the orthogonal one-dimensional
projection on the unit vector X{ e L(J%Γ, Sίf), and the X[s form an
o.n. basis for L{ JΓ7, £έf). Let A e 21: then

T(AY =

Proof. For any xe Si? and

( 1 ) [T(Pm), Py] = IS(T), Px (8) Py]

( 2 ) = Σ [ ^ ( ^ i ] ! ^ ) , ( x x ι t ) ® ( | / x 2/)] from l(b)
i

( 3 ) = Σ [aiiXillXi), (x x y)][(x X y)] from 1 (j)

( 4 ) = Σ «i tr ((x x y][α; x y) (XJX,)) from 1 (c)

( 5 ) = Σ at[Xt, (x x y)][(x x »), ^ 1
i

( 6 ) = Σ α< tr ((y x a;)^) tr (Xt*(x x y))

(7 ) = Σ α , t r ( ( « x X?(x)) tr (^(a; x y)) since

® x x)Xi = y x X?(x) see l(a)
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(8) = Σ a<(V, Xt*(xMXf(x), V) from l(a)
i

Now for wlfw2e £ίf and uuu2e 3ίΓ, we have that

(u2, Ui)(^i, w2) = [(w1 x ux), (w2 x u2)] (see 1 (c)). ,

so (8) becomes

(9) = Σ (XiUXfix) x x?(χ)), (y x y)]
i

(10) = Σ [<XiXi*(χ x χ)Xt, (PVY].
i

Since the transpose is a self-adjoint operator, equation (10) becomes

(11) = Σ [ai{X?PuXiγ, Pυ] .
i

Thus, for every x e έ%f and every y e jsΓ,

[T(P.) - (Σ a,XtPxx)\ P,] = 0 .

But then,

T(PX) = ( Σ cdXtPtXiY

for all Px e SI. Since the transpose operator squared is the identity,
we may apply it to both sides of the last equation to obtain

(12) τ(P9y = Σ (*iX?PΛi

for all Px e SI. This result extends from the set of one dimensional
orthogonal projections Px to hermitian operators; this, in turn, extends
to arbitrary operators of Si. Thus, the theorem is proved.

REMARK. Suppose the dimension of <^f — n and the dimension
of 3ίΓ — m, where Sίf and 3Γ are the underlying Hubert spaces
for the operator algebras 2ί and S3, respectively. Relative to certain
ordered bases for 3f and 3Γ, each operator of SI and S3 is identified
with a certain square matrix. The o.n. basis vectors Xi of L(JF", Sίf)
are then realized as certain n x m matrices; the operator X? is
identified with the m x n conjugate transpose matrix of Xi% Thus,
Theorem 2.1 may be interpreted as saying that any linear transform-
ation Γ, sending the full matrix algebra 3ί to the full matrix algebra
33 is of the form

T(A) -

for certain real scalars a{ and certain n x m matrices Xiy if and only
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if T preserves hermitian matrices. Equivalently,

T(A) =

Σ a.YtA'Y, setting Yi = (X?y

for certain real scalars a{ and certain n x m matrices Yι depending
on Γ, characterizes those transformations T: 21 —* S3 which preserve
hermitian matrices.

COROLLARY 2.2. Lβί Te £f(% S3) wftere ^ ( Γ ) is psd in SI® S3.
Then Te<tf+(z ^(21,33).

Proof. Since J^{T) is psd in 21 (g)S3, ̂ ^(Γ) has spectral resolu-
tion Σ °ti&*(Xi) where the scalars α̂  are nonnegative, ^(Xt) is the
orthogonal one-dimensional projection onto Xi e L(^3 £tf) and the
X/s form an o.n. basis for L( j r\ ̂ g^). Since ^ ' ( Γ ) is psd, it is,
a fortiori, self-ad joint, so that T is at least an element of the cone
& (Proposition 1.2). But this gives us sufficient leverage to employ
the representation of Theorem 2.1. Hence, T( )* = Σ 0LiX*( )Xi where
the cti's are nonnegative scalars. In order to show that T sends psd
operators to psd operators (i.e., Te ^ + ) , it is (necessary and) sufficient
to show that T sends one-dimensional orthogonal projections Px to psd
operators; to do this, it is (necessary and) sufficient to show that the
operator T( Y sends these projections Px to psd operators. But

from Theorem 2.1. Observe that each term X?PmXi = (PίCXί)*(Pa;Xί)
is psd, and hence, so is Σ* aιX*PχXii the s u m of nonnegative multiples
of these psd terms. The proof is done.

We come to our final theorem which tells us that the cone
"generates" the space ^(21, S3) in much the same way that the cone
of psd operators (in 21, say) "generates" 21.

THEOREM 2.3. Suppose Te^(%, S3). Then for some KlyK2,Kd,

T=(Kλ- K2) + i(K, - K,)

where i2 = — 1

Proof. ^(T), an element of the algebra St ® S3 can be decomposed
as follows:
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(* ) ^(T) = (Ux - U2) + i(U9 - U4) ,

where each of the f//s is psd in 2 1 0 S3. Proposition 1.1, Part (5),

tells us that ^ \ -5^(21, S3) —> 21 0 S3 is an isometry. Since the (vector

space) dimensions of =2 (̂21, S3) and 21 0 S3 agree, J? is, in fact, one-

to-one and onto; thus, ^~ι exists as a well-defined linear operator.

Applying .J^~λ to (*) yields

T =

Now let Ki = J^-\Ui), i = 1, 2, 3, 4. Corollary 2.2 forces us to conclude

that ϋQeίf4- since ^ ( J ^ ) - ^ is psd. Thus, for any Te £f(% S3)

where each Kt e ^ + c jS^(2I, S3).
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