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LINEAR TRANSFORMATIONS WHICH PRESERVE
HERMITIAN AND
POSITIVE SEMIDEFINITE OPERATORS

JOHN de PiILLIS

Let & and B represent the full algebras of linear operators
on the finite-dimensional unitary spaces 57 and .°Z”, respec-
tively. The symbol & (%, B) will denote the complex space
of all linear maps from U to B. This paper concerns itself
with the study of the following two cones in .~ (%, B):

(i) the cone & of all Tc < (%U,B) which send hermitian
operators in 2 to hermitian operators in B, and

(ii) the subcone ="+ (of &) of all Te (U, B) which
send positive semidefinite operators in U to positive semidefinite
operators in B.

In our main results, we characterize the transformations in the
cone = (Theorem 2.1) and present a structure theorem concerning
the transformations in the cone &+ (Theorem 2.3). Identifying oper-
ators in the algebras 2 and B with appropriate square matrices, we
may summarize Theorem 2.1 by saying that any and every linear
transformation 7' which preserves hermitian matrices is of the form
T:A— > a;X*A'X;, where each «; is a real scaler, and each X, is
a certain rectangular matrix depending on 7'; X and A’ represent
the conjugate transpose and the transpose of matrices X; and A,
respectively. Theorem 2.3 says that the cone of positive semidefinite-
preserving transformations &+ “generates” or spans all of _&(, B)
in the sense that any 7 in &2(2, B) can be written

T= (K — K) + (K, — K, ,

where 1> = —1, and each K, is an element of &+.

1. Preliminaries. L(.9, 5#) denotes the space of linear trans-
formations from the Hilbert space .2~ to the Hilbert space 7.
We define:

1 (a). (x X y)—the dyad transformation, an element of L(.9%", 57),
is defined for fixed x € & and ye . by: (x X ¥)(z) = (2, y)x for all
ze 9%, where (z,y) is the inner product of z with . As it turns
out, (z, ¥) = tr (x X ¥)), the trace of (x x y). If Ae(=I(57, &¥))
and BeB(=L(357, %)), then (A(x) X B(y)) = A(x X y)B*.

1 (b). P,—denotes the orthogonal projection onto the subspace
spanned by z, i.e., for (x,x) = 1, we have P, = (x X ).
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1 (¢). [4, B]—is the inner product defined on 2 (resp. B) by
setting [A, B] = tr (B*A4) for all A, Be YU (resp. B) where B* is the
Hilbert space adjoint of B, and tr(-) is the trace functional on A
(resp. B). More generally, L(.9, 5#) becomes a Hilbert space once
we define the inner product [4, B] = tr (B*A) for all A, Be L(.57", 57).
Consequently, for w,, w,e 57, and w,, u,€ %", so that (w, X u,) and
(w, X u,) belong to L( %, 5#), we have

[(w, X uy), (W, X U)] = tr (W, X Us)* (W, X Uy))
= 1tr (%, X W) (W, X U,))
= tr ((wy, w.)(uy X u,))
= (Wy, W) (U, Uy) .

1 (d). (A][B)—the dyad transformation, an element of .o~ (B, %),
is defined for fixed transformations Ac? and Be®B by (4][B)-C =
[C, B]A, for all C in B. As in 1(a)., [A, B] = tr ((A][B)), the trace
of (A][B).

1 (e). AR B—the tensor product of algebras A and B, consists
of sums of elements of the form A @ B, where Ac¥ and BeB
[2, Chapter 16]. The symbol (A ® B)’ will denote the element B & A,
and can be linearly extended to any element of A & B.

1 (f). [A,Q B, A, Q B,]—the inner product which gives the alge-
bra A ® B a Hilbert space structure, is defined by

[A1 ® Bu Az ® Bz] = [An Az]'[Bh Bz]
for all A, A,¢¥, and all B,, B, ®B.

1 (g). _#(T)—the element of A QB which is defined for each
T in 2, B) by [_Z(T), A* ® B] = [T(A), B], for all Ac, BeB.
This equation also defines _# as a linear transformation, sending the
space .7 (U, B) to the algebra A K B.

1 (h). 257 —the space of all linear functionals on S#°. For each
z e 57, we define the functional Z € 57 by Z(y) = (y, x) for all y ¢ S7.
Moreover, these are the only elements of S5#. An inner product is
defined on 57 by setting (%,%) = (y,x) for all %, yeS57. Thus,
(%, 7) = (z, y), the complex conjugate of (y, x).

1 (i). A’—the transpose of the operator A, is the linear operator
on 57 defined by AY#)(x) = J(A(x)), for all Fe 57, and all ze
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[1, p. 103]. From this it follows that (x X y)'= (¥ x ). If A is
defined to be (A4*)t, then (z X y¥) = ( x ) and AZX) = A(x). From
this we see that for all Ae, A* = A*, In fact, set A = (x x y) for
z,ye . Then

I =@X P =@ XD =FxD)=GxD =@ xy) =4

Hence, by linear extension, A* = A* for all Ae .

1 (§). L(57,2#)—is spanned by the dyads (x x %), where x ¢ %
and 7e .9 . In this context, we identify the transformation A ® B
with the transformation C— ACB* for all Ce L(%, 5#), where
AeW(=L(s#, 57)) and Be B(=L(27, 2¢). Behind this identification
is the isomorphism ¢: 57 ® . % — L(.%¢", 5#) defined by s(z @ y) =
(x x g) for all xes”,ye 2. If for each Ac U, BeB we define
the linear transformation O, ,: L(.9%7, 57) — L(.9", 57) by 0,,C) =
ACB! for all Ce L(.57, &), then A ® B corresponds to 0, in the
sense that ¢o(A Q B)op™ = 0,,5. In fact, we have

(pe (AR B)og™x X ¥) = ¢(AQ B(x Q y)) definition of ¢’
= ¢(A(x) ® B(y)) definition of A ® B
= (A(») X B)) definition of ¢
= (A(x) x B®#)) from 1 (i).
= A(x x 7)B* from 1 (a).
= A(x X §)B! since B* = B¢, see 1 (i).
= 04,5((% X 7)) definition of 0, .

For convenience, however, we shall treat A ® B as though it were
actually equal to the concrete linear transformation O, , = A(-)B".
In so doing, we have

@ X P x v) = (@ x u) QF X )

for vectors x, y, u, v in (not necessarily the same) Hilbert space.
The linear transformation _# (see 1(g).) will prove to be of funda-
mental importance. For this reason, we isolate some of its properties in

ProrosiTiON 1.1. (1) _#(BJ[A) = A*® B for all Ac¥, BeB.

(2) _#(T)=3,E*fQ T(E,) for any and every orthonormal basis
{E;} for 2.

(3) If T(A*) = T(A)* for all Ac ¥ (i.e., if Te %), then _#(T) =
> T*(F;)  F* for any orthonormal basis {F;} for B.

(4) If T(A*) = T(A)* for all Aec ¥, then #(T*) = _#(T)".
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(5) _# 1is an isometric isomorphism from the Hilbert space
(¥, B) onto the Hilbert algebra A X B.

Proof. From the definition 1(g). of _#, we have

[~ (Bl[4), C & D] = [(B][A)(C¥), D]

= [C*, A][B, D] from 1 (d).
= [4*, C1IB, D]
=[4A*®Q B, CQ D] from 1 (f).

for all 4,Ce¥U and all B, DeB. This implies Part (1).

Now let {E;} be any orthonormal (o.n.) basis for 2. If 7'= (B][4)
for Ac and Be®B, then

DEFQTE) =X B Q (BIlA)(E)

i

=3 E,AlEF QB from 1 (d).

= é, [A*, EX]EX ® B

= ;1* QB which, from Part (1)
= _#(BJ4).

The dyads (B][A), AcA, BeB, span the space <~ (U, B), so that
(using linearity of _#) for all Te 2, B), #(T) = >, EFX R T(E,),
which establishes Part (2).

Part (3) follows from (2) and (4) inasmuch as if _#(T*) = _#(T)",
then 3\ T*(F) Q F* = X Fi¥ Q T*(Fy)) = #(T*) = #(T)

But Part (4) obtains, since for all Ae ¥, Be B,

[Z(T*), AQ B] = [T*(4*), B] definition 1 (g). of _#
= [T(B)*, A]
= [T(B*), 4] if and only if T(B*) = T(B)*

=[_#(T), BQ A] definition 1(g). of _#
=[A(T), AQ B] .

That is, #(T*) = _#(T)* and Part (4) is proven.
As for demonstrating Part (5), observe that for all A,, A,¢ A, and
Bly BZ € %9

[~ (Bil[4), -~ (B,][4,)] = [Af ® B, Af ® B,] from Part (1)
= [AF, AF] tr (B,][B.) from 1 (d). and 1 (f).
=tr ((Bl][Al)’(Bz][Az)*)
= [(Bl[4), (B:][45)] .
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By linear extension on each argument of the inner product, we have
that for all T, T,e &~ (U, B),

[f(Tl)y f(Tz)] = [le Tz]

so that _~# is an isometry from <=2, B) to A X B. From Part (1) it
is easy to see that _# is also an onto transformation as well, since the
algebra A R B is spanned by elements of the form A* Q B. This
completes the proof of Proposition 1.1.

Our next result establishes a necessary and sufficient condition
for a transformation in <~ (U, B) to be in the cone & .

ProrosiTION 1.2. A transformation Te <22, B) is in & if and
only if _#(T) is hermitian.

Proof. Recall that .# maps (U, B) (isometrically) onto A R B,
which has been identified as the algebra of linear operators on the

Hilbert space L(.%, 5#°) (see 1(j)). Now for all Ac U, BeB,
(a) [A(T),AQB]=|7(T), A* ¥ B*|

(b) =|T(4), B*| definition 1(g) of _#
(¢) = [T(4)*, B]

where (a) and (¢) follow from the properties of the inner product,
viz., |Y, Z| = |Y*, Z*] for all operators Y and Z. Now,

[T(A)*, B] = [T(A*), B] for all Ac, Be®B,

if and only if T(A)* = T(A*) for all Ae . Finally, [T(A*), B] is
equal to [_#(T), AR B], so that for all Ae?, Be®B,

[AAT) — A(T)",AQ B] =0
if and only if T(A*) = T(A)*. This completes the proof.

REMARK. We have just shown that Te <~ (U, B) preserves her-
mitian operators (T'e %) if and only if _#(T) is hermitian. It is
not unreasonable to suspect that T preserves positive semidefinite
(psd) operators (T'e °*) if and only if _#(T) is psd. However, this
conjecture is false, for if A = L(SF, &), and if B = L(5, %),
then for any multiplicative transformation T ¢ <~ (U, B) (T(AB) =
T(A)T(B)), we have Te & *; but _#(T) will always have some nega-
tive eigenvalues. For a specific example choose A = B = L(SZ, 5F),
the algebra of operators on 527, Let Te &, B) be the identity
transformation T(A) = A for all AeA. Surely Te . Now choose
the o.n. basis {e, e, +--,¢,} for o#°; then {(e; X ¢;):4,7 =1,2, ---, n}
is an o.n. basis for 2 so that from Proposition 1.1 Part (2), we have
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F(T) =2 (6: X €e)*Q (e X g;) = 3, (e; X ;) R (e; X ;) .
The situation may be represented by the following diagram:

A = L(57, 5F) T = identity A = L(s7, 5F)

(e: X e;) (e: X e;)
L(SF, 57) _#(T) = transpose L(SF, SF)
(e, X &) (e, X &) .

From 1(i) and 1(j) we conclude that _#(T)((e, X €,)) = (e, X &,) for
(e, X €&),p,9=1,2,--+,m, in the space L(57, 5#). That is, if T
is the identity operator on the Hilbert algebra L(2#, 57°), then _#(T)
is the transpose operator on the Hilbert space L(57, 5#). It is easy
to see that vectors of the form (e, X &,) — (¢, X €,) in L(57, 5#) are
eigenvectors for _#(T) corresponding to the eigenvalue —1. _#(T)
(which is hermitian due to Proposition 1.2), is therefore not a psd

operator on the Hilbert space L(S7, 57).

2. The main results. We present a structure theorem which
characterizes elements of the cone &.

THEOREM 2.1. Suppose that Te w c <L, B). _~Z(T) is self-
adjoint by Proposition 1.2, with spectral resolution >; a; F(X;),
where «; 1s real, P (X;) = (X;][X;) ts the orthogonal one-dimensional

projection on the unit vector X, e L(.57, 57°), and the X!s form an
o.n. basis for L(5¢, 57). Let AecU: then

T4 =Y X AX, .

Proof. For any xe 57 and yec . %,
(1) [T(P,), P,] =[~(T), P.® P,]

(2) = 2 [a( X)X, (2 X 2) @ (v % y)] from 1(b)
(3) = 2 [a( XX, (@ x D@ x §)] from 1(j)
(4) = Slaitr ((@ X gllz x §)-(X][X) from 1(c)
(5) = 2 alX;, (@ x Pz x 7), Xi]

(6) = S a;tr (7 x 2)X,) tr (X7 @ x 7))

(7) = S a;tr((e x X#(@) tr (X7 (@ x 7)) since

@ X 0)X; =y X X*(»); see 1(a)



LINEAR TRANSFORMATIONS WHICH PRESERVE HERMITIAN 135
(8) = Z a (Y, XF@)NXF (), §) from 1(a)
Now for w,, w,€ 57 and u,, u,€ .5, we have that

(U, W) (W1, We) = [(wy X %y), (W, X Uy)] (see 1 (¢)).,

so (8) becomes
(9) = Z af(XF(x) X XX (=), (¥ X §)]
(10) = 3 ;X x ©) X, (P)] .

Since the transpose is a self-adjoint operator, equation (10) becomes

(11) = 2 [a(X#P,X)', Pyl .

Thus, for every xze€ o7 and every yc . %,
t
|7P) - (Saxep.x), B] = 0.
But then,
T(P,) = a;X}PX,)

for all P,e . Since the transpose operator squared is the identity,
we may apply it to both sides of the last equation to obtain

(12) T{P,) =3 a;X}P.X;

for all P,e . This result extends from the set of one dimensional
orthogonal projections P, to hermitian operators; this, in turn, extends
to arbitrary operators of . Thus, the theorem is proved.

REMARK. Suppose the dimension of 2% = n and the dimension
of 9% = m, where 57 and 9 are the underlying Hilbert spaces
for the operator algebras 2 and B, respectively. Relative to certain
ordered bases for 5% and .9, each operator of 2 and P is identified
with a certain square matrix. The o.n. basis vectors X; of L(.5%, 57)
are then realized as certain = x m matrices; the operator X is
identified with the m x m conjugate transpose matrix of X;. Thus,
Theorem 2.1 may be interpreted as saying that any linear transform-
ation 7, sending the full matrix algebra 2 to the full matrix algebra
B is of the form

T(4) = (z oziXi*AXiy

for certain real scalars a; and certain n x m matrices X;, if and only
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if T preserves hermitian matrices. Equivalently,

t
T(4) = (z, a,.X,.*AX,.>
= > o, X]AY(XF)

= > a;YrA'Y; setting Y; = (X*)*

for certain real scalars «; and certain n X m matrices Y; depending
on T, characterizes those transformations 7: % — B which preserve
hermitian matrices.

COROLLARY 2.2. Let Te <~ (U, B) where _Z(T) is psd in AR B.
Then Te &+ c <, B).

Proof. Since _#(T) is psd in AR B, . #(T) has spectral resolu-
tion > «,”(X;) where the scalars «; are nonnegative, 7(X,) is the
orthogonal one-dimensional projection onto X;e L(%, 5#) and the
Xs form an o.n. basis for L(5%, 5#). Since _#(T) is psd, it is,
a fortiori, self-adjoint, so that 7' is at least an element of the cone
& (Proposition 1.2). But this gives us sufficient leverage to employ
the representation of Theorem 2.1. Hence, T'(-)" = 3>, a; X;*(+)X,; where
the a,;’s are nonnegative scalars. In order to show that T sends psd
operators to psd operators (i.e., T'e &*), it is (necessary and) sufficient
to show that T sends one-dimensional orthogonal projections P, to psd
operators; to do this, it is (necessary and) sufficient to show that the
operator 7T'(-)’ sends these projections P, to psd operators. But

T(P,) = X a(XiP, X))

from Theorem 2.1. Observe that each term X}*P X, = (P, X,)*(P,X;)
is psd, and hence, so is >}; a; X;* P, X;, the sum of nonnegative multiples
of these psd terms. The proof is done.

We come to our final theorem which tells us that the cone &+
“generates” the space .~ (2, B) in much the same way that the cone
of psd operators (in A, say) “generates” 2.

THEOREM 2.3. Suppose Tec < (U, B). Then for some K, K,, K,,
K ez,
T = (K, — K,) + «(K; — K))

where ¥ = —1

Proof. _#(T), an element of the algebra A QB can be decomposed
as follows:
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(%) A(T)=(U,-U,) +ulU,—U) ,

where each of the U;’s is psd in A X B. Proposition 1.1, Part (5),
tells us that _#: &2, B) - A X B is an isometry. Since the (vector
space) dimensions of <~ (U, B) and AR B agree, _~ is, in fact, one-
to-one and onto; thus, _# ' exists as a well-defined linear operator,
Applying _Z~" to (x) yields

T=[r~77(U) - )] +i[7U) — #7U)] .
Now let K, = _~(U,),* =1,2,3,4. Corollary 2.2 forces us to conclude
that K;e &* since _#(K;) = U; is psd. Thus, for any Te (YU, B)
T = (Kl - Kz) + i(Ka - K4)

where each K; ez C (%, B).

BIBLIOGRAPHY

1. Hoffman and Kunze, Lineara algebra, Prentice Hall, New York, 1961.
2. Mostow, Sampson and Meyer, Fundamental structures of algebra, McGraw Hill,
New York, 1963.

Received April 4, 1966. This work was supported in part by an NSF grant.
Portions of this paper derived from the author’s doctoral thesis (1965) which was
written under Professor J. Feldman at the University of California, Berkeley.

UNIVERSITY OF CALIFORNIA
RIVERSIDE, CALIFORNIA








