ON UNIQUELY DIVISIBLE SEMIGROUPS ON THE TWO-CELL

John A. Hildebrant

Abstract

A topological semigroup S is a Hausdorff space together with a continuous associative multiplication on S. A semigroup S is said to be uniquely divisible if each element of S has unique roots of each positive integral order in S. The present paper concerns uniquely divisible semigroups on the two-cell.

The main result of this paper is a statement of equivalent conditions for a commutative uniquely divisible semigroup on the two-cell to be the continuous homomorphic image of the cartesian product of two threads. This result is applied to determine the structure of commutative uniquely divisible semigroups on the two-cell whose idempotent set consists of a zero and an identity.

A U-semigroup is a semigroup which is iseomorphic (topologically isomorphic) to the real unit interval [0,1$]$ under usual multiplication. A thread is a semigroup on an arc such that one endpoint is a zero and the other endpoint is an identity.

For a semigroup $S, E(S)$ denotes the set of all idempotent elements of S. The statement " $E(S)=\{0,1\}$ " means that the only idempotents of S are a zero (0) and an identity (1).

Throughout this paper N denotes the set of all positive integers and R denotes the set of all positive rational numbers. Hereafter the statement " S is an $U D S$ " means that S is an uniquely divisible topological semigroup.

If S is an $U D S, x \in S$, and $n \in N$, then $x^{1 / n}$ denotes the unique n th. root of x in S. If $r \in R, r=m / n ; m, n \in N$, and $x \in S$, then $x^{r}=\left(x^{1 / n}\right)^{m}$. It is not difficult to show that x^{r} is unique for each $r \in R$. Define $[x]=\left\{x^{r}: r \in R\right\}^{*}$ (closure in S).

2. Preliminary results.

Theorem 2.1. Let S be a compact UDS such that each subgroup of S is totally disconnected. Then, for each $x \in S \backslash E(S),[x]$ is a U semigroup.

Proof. Let H denote the maximal subgroup of $[x]$ containing the identity (e) of $[x]$, and let K denote the kernel (minimal ideal) of $[x]$. Then H and K are connected subgroups of S. Hence $H=\{e\}$ and $K=\{f\}$, where f is the identity of K.

There exists a continuous one-to-one homomorphism σ from the
additive nonnegative real numbers \bar{R} into $[x]$ such that $[x]=H \sigma(\bar{R})^{*}$ (closure in [x]) [4, Theorem 3.1]. Since $H=\{e\},[x]=\sigma(\bar{R})$. Note that $\sigma(\bar{R})^{*} \mid \sigma(\bar{R})=\{f\}$ [4, Theorem 3.1].

Let $I=[0,1]$ under usual multiplication. Define $\psi:[x] \rightarrow I$ by $\psi(f)=0$ and $\psi(p)=\exp \left(-\sigma^{-1}(p)\right)$ if $p \neq f$. Then ψ is an iseomorphism of $[x]$ onto I.

Corollary 2.2. Let S be a compact semigroup such that each subgroup of S is totally disconnected. Then S is an UDS if and only if each point of $S \backslash E(S)$ lies on an unique U-semigroup in S.

Corollary 2.3. Let S be a semigroup on the two-cell. Then S is an UDS if and only if each point of $S \backslash E(S)$ lies on an unique U-semigroup in S.
3. Uniquely divisible semigroups on the two-cell. Throughout this section S denotes an $U D S$ with identity (1) on the two-cell and B denotes the boundary of S. Note that $1 \in B$ [10]. If S has a zero (0) and $0 \in B$, then B_{1} and B_{2} denote the boundary arcs from 0 to 1 in S. Thus $B=B_{1} \cup B_{2}$ and $B_{1} \cap B_{2}=\{0,1\}$.

Lemma 3.1. If S has a zero (0) and each point of $E(S)$ lies on a thread in S containing 1, then each point of S lies on a thread in S from 0 to 1.

Proof. Since $0 \in E(S)$, there exists a thread T from 0 to 1 in S.
Let $e \in E(S)$. Then there exists a thread T_{0} from e to 1 in S. Now $e T$ is a thread from 0 to e in S. Thus $e T \cup T_{0}$ contains a thread $T(e)$ from 0 to 1 in S such that $e \in T(e)$. Hence, if $e \in E(S)$, then e lies on a thread $T(e)$ from 0 to 1 in S.

Let $x \in S \backslash E(S)$. Then, by Corollary 2.3, x lies on an unique U semigroup I in S. Let z denote the zero of I and u the identity of I. Since $z, u \in E(S)$, there exists threads $T(z)$ and $T(u)$ from 0 to 1 in S such that $z \in T(z)$ and $u \in T(u)$. Thus $T(z) \cup I \cup T(u)$ contains a thread T^{1} from 0 to 1 in S such that $x \in T^{1}$.

Lemma 3.2. If $E(S)=\{0,1\}$, then $0 \in B$.
Proof. Suppose $0 \notin B$. Let $x \in B \backslash E(S)$. Then $B \backslash[x] \neq \square$. Let $p \in B \backslash[x]$. Since $[x] \cap B$ is closed, there exists a point y in the arc from p to x on B which does not contain 1. Then $[y]$ must meet $[p]$ or $[x]$ in a point q not in $E(S)$. Thus q lies on two distinct U semigroups in S. This is a contradiction to Corollary 2.3. Hence $0 \in B$.

Lemma 3.3. Suppose S has zero (0) and $0 \in B$. If each of B_{1} and B_{2} is a thread, then $S=B_{1} B_{2}=B_{2} B_{1}$.

Proof. Now $1 \in B_{1} \cap B_{2}$. Hence $B \subset B_{1} B_{2}$. Define $\varphi: B_{1} B_{2} B_{2} \rightarrow S$ by $\varphi\left(\left(b_{1} b_{2}, b\right)\right)=b_{1} b_{2} b$. Then φ is continuous, $\varphi\left(\left(b_{1} b_{2}, 0\right)\right)=0$, and $\varphi\left(\left(b_{1} b_{2}, 1\right)\right)=b_{1} b_{2}$. Hence $B_{1} B_{2}$ is contractible, and thus $S=B_{1} B_{2}$. Similarly, $S=B_{2} B_{1}$.

Lemma 3.4. Suppose S has a zero (0) and $0 \in B$. If each point of S lies on a thread from 0 to 1 in S, then each of B_{1} and B_{2} is a thread.

Proof. Let x and y be distinct points of $B_{1} \backslash\{0,1\}$ such that y separates x from 1 on B_{1}. Suppose $[x] \neq[y]$. Let T_{1} and T_{2} denote threads from 0 to 1 in S containing x and y respectively. Then, since y separates x from 1 on $B_{1}, T_{1} \cap T_{2}$ contains an idempotent f such that $x f=x$ and $f y=f$. Hence $x y=(x f) y=x(f y)=x f=x$. Thus, if y separates x from 1 on B_{1} and $[x] \neq[y]$, then $x y=x$.

If $B_{1} \backslash E(S)=\square$, then the fact that B_{1} is a thread follows from the preceding paragraph. Suppose $B_{1} \backslash E(S) \neq \square$. Let $z \in B_{1} \backslash E(S)$. Then there exists a U-semigroup I in S such that $z \in I$. Let a be the zero of I and b the identity of I. Let M be the component of $I \cap B_{1}$ containing $z, h=\inf M$, and $g=\sup M$ in the cut-point ordering (\langle) of B_{1} from 0 to 1 . Since $h=\inf M$, there exists a sequence $\left\{h_{n}\right\}$ of points of $B_{1} \backslash I$ such that $h_{n}<h$ for each $n \in N$ and $h_{n} \rightarrow h$. Thus, by the preceding paragraph, $h_{n} h=h_{n}$ for each $n \in N$. Since multiplication is continuous in $S, h_{n} h \rightarrow h^{2}$. Hence $h=h^{2}$. Since $h \in I, a=h$. Similarly, $g=b$, and hence $I \subset B_{1}$. Thus B_{1} is a thread. Similarly, B_{2} is a thread. This completes the proof of Lemma 3.4.

A commutative UDS S can be considered to be a generalization of a semilattice (a commutative idempotent semigroup). Indeed, if $S=E(S)$, then S is a semilattice. Consequently, Theorem 3.5 is a generalization of Theorem 3 in [1].

If S is commutative, then the kernel K (the minimal ideal) of S is a compact connected group. Hence K is either the circle group C or a point. It is not difficult to show that K is uniquely divisible. Thus, since C is not uniquely divisible, K is a point. Hence, if S is commutative, then S has a zero (0).

Theorem 3.5. If S is commutative and $0 \in B$, then these are equivalent:
(i) each point of $E(S)$ lies on a thread in S containing 1;
(ii) each point of S lies on a thread from 0 to 1 in S;
(iii) each of B_{1} and B_{2} is a thread;
(iv) S is the continuous homomorphic image of the cartesian product of two threads.

Proof. (i) implies (ii). [Lemma 3.1].
(ii) implies (iii). [Lemma 3.4].
(iii) implies (iv). By Lemma 3.3, $S=B_{1} B_{2}$.

Define $\psi: B_{1} \times B_{2} \rightarrow S$ by $\psi\left(\left(b_{1}, b_{2}\right)\right)=b_{1} b_{2}$. Then ψ is a continuous homomorphism onto S.
(iv) implies (i). Let I_{1} and I_{2} be threads and φ a continuous homomorphism of $I_{1} \times I_{2}$ onto S. Let $g \in E(S)$ and $p \in \varphi^{-1}(g)$. Then there exists a thread from $(0,0)$ to $(1,1)$ in $I_{1} \times I_{2}$ containing p. Hence, by Theorem 2 of [3], $\varphi(T)$ is a thread in S containing g and 1.

Corollary 3.6. If S is commutative and $E(S)=\{0,1\}$, then S is iseomorphic to $(I \times I) / J$, where $I=[0,1]$ is a U-semigroup and J is the ideal $\{(x, y): x=0$ or $y=0\}$.

Proof. By Lemma 3.2, $0 \in B$. By Theorem 1 in [7], there exists a thread from 0 to 1 in S. Therefore, by Theorem 3.5, each of B_{1} and B_{2} is a thread, and thus are U-semigroups. The map $\psi: B_{1} \times B_{2} \rightarrow S$ defined by $\psi\left(\left(b_{1}, b_{2}\right)\right)=b_{1} b_{2}$ is a continuous homomorphism of $B_{1} \times B_{2}$ onto S.

Suppose $\psi\left(\left(b_{1}, b_{2}\right)\right)=0$. Then $b_{1} b_{2}=0$. Suppose $b_{1} \neq 0 \neq b_{2}$. Then, for each $n \in N, b_{1}^{1 / n} b_{2}^{1 / n}=0$. But $b_{1}^{1 / n} \rightarrow 1$ and $b_{2}^{1 / n} \rightarrow 1$. Thus $1=0$. This contradiction implies that either $b_{1}=0$ or $b_{2}=0$. Hence $\psi\left(\left(b_{1}, b_{2}\right)\right)=0$ if and only if $\left(b_{1}, b_{2}\right) \in J$.

Suppose $\psi((a, b))=\psi((c, d)),(a, b),(c, d) \in\left(B_{1} \times B_{2}\right) \backslash J$. Then $a b=$ $c d$. Since B_{1} and B_{2} are U-semigroups, there exist $p \in B_{1}$ and $q \in B_{2}$ such that one of the following cases hold:
(i) $a=c p$ and $b=d q$;
(ii) $a=c p$ and $d=b q$;
(iii) $c=a p$ and $b=d q$:
(iv) $c=a p$ and $d=b q$.

We will assume that case (i) holds. The proof for the other cases is similar. Thus we have $c p \cdot d q=c d$. Hence $(p q)(c d)=c d$. Let $x=p q$ and $y=c d$. Then $x y=y$. Hence, for each $n \in N, x^{n} y=y$. If $x \neq 1$, then $x^{n} \rightarrow 0$. Thus, if $x \neq 1$, then $y=0$, and hence $c d=0$. By the preceding paragraph, either $c=0$ or $d=0$. But $c \neq 0 \neq d$. Hence $x=1$ and $p q=1$. Then for each $n \in N, p^{n} q^{n}=1$. If $p \neq 1$, $p^{n} \rightarrow 0$, and hence $0=1$. Similarly, if $q \neq 1$, then $0=1$. This contradiction implies that $p=q=1$. Thus $a=c, b=d$, and $(a, b)=(c, d)$. Hence ψ is one-to-one on $\left(B_{1} B_{2}\right) \backslash J$, thus completing the proof of the corollary.

References

1. D. R. Brown, Topological semilattices on the two-cell, Pacific J. Math. 15 (1965), No. 1.
2. D. R. Brown and J. G. LaTorre, A characterization of commutative uniquely divisible semigroups, Pacific J. Math. (to appear)
3. H. Cohen and I. S. Krule, Continuous homomorphic images of real clans with zero, Proc. Amer. Math. Soc. 10 (1959), 106-109.
4. J. A. Hildebrant, On compact unithetic semigroups, Pacific J. Math. (to appear)
5. K. H. Hofmann, Topologische Halbgruppen mit dichter submonoger Unterhalbgruppe, Math. Zeit. 74 (1960), 232-276.
6. R. J. Koch, Threads in compact semigroups, Math. Zeit. 86 (1964), 312-316.
7. Anne Lester (Hudson), Some Semigroups on the two-cell, Proc. Amer. Math. Soc. 10 (1959), 648-655.
8. P. S. Mostert and A. L. Shields, On the structure of Semigroups on a compact manifold with boundary, Ann. of Math. 65 (1957), 117-143.
9. T. Tamaru, Minimal commutative divisible semigroups, Bull. Amer. Math. Soc. 69 (1963), 713-716.
10. A. D. Wallace, Cohomology, dimension, and mobs, Summa Brasilia Math. 3 (1953), 43-54.

Received January 27, 1966. This paper contains part of a doctoral dissertation written under the direction of Professor D. R. Brown while the author held a National Aeronautics and Space Administration graduate fellowship.
The University of Tennessee
Knoxville, Tennessee

