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SPECTRAL CONCENTRATION FOR
SELF-ADJOINT OPERATORS

R. C. RlDDELL

If the resolvent of a (not necessarily bounded) self-adjoint
operator Hκ converges strongly to the resolvent of a self-
adjoint operator H, and if λ is an isolated eigenvalue of H
of multiplicity m < oo, then although Hκ need not have an
eigenvalue near λ, the spectrum of Hκ will in some cases be-
come ''concentrated" near λ as tc is reduced. In fact, there
exist sets Cκ with Lebesgue measure o(κp\ p ^ 0, such that the
spectral projection assigned by Hκ to Cκ converges strongly as
/c->0 to the projection on the Λ-eigenspace of H, if and only
if there exist m pairs (λjK9 ψjκ\ j — 1, , m, where λjK -> λ,
the ΨJK are nearly-orthogonal unit vectors converging strongly
to the Λ-eigenspace, and IKH* — λjκ)φjκ\\ = o(κp). In this case,
Cκ may be taken as the union of intervals about the Ajκ, and
the λjK are essentially the only numbers associated in this way
with "pseudoeigenvectors" φjκ of Hκ. The result is applied
to the weak-quantization problem in the theory of the Stark
effect, where H is the Hamiltonian operator for the hydrogen
atom, and Hκ is the same for the atom in a uniform electric
field which vanishes with tc.

In §1 the basic notions of spectral concentration and pseudo-
eigenvectors are discussed, and some simple lemmas are proved relating
the two. The theorem quoted above is proved in § 2 (Theorem 2.7),
and the question arises how the pairs (λiίC, φjκ) can be constructed.
For a family of the form Hκ — H + fcV, this construction is carried
out in § 3 by means of the formal perturbation process applied to the
unperturbed eigenvalue λ. In §4, the special case is considered in
which λ is stable, i.e. Hκ has m eigenvalues in a neighborhood of λ;
asymptotic estimates of these perturbed eigenvalues follow easily.
Finally, in § 5, the theory is applied to the generic example, the family
of operators appearing in the Stark effect. Here the spectrum of Hκ

is purely continuous and covers the real line, and so technically the
perturbed system has no stationary states. Yet the lines in the
physical spectrum of hydrogen persist when a weak electric field is
applied, each one splitting into several quite sharp lines. These lines
can be traced to the existence of "almost stationary" states, which
are represented by the pseudoeigenvectors φjκ mentioned above. It is
stressed that there are many other vectors ψκ which represent "almost
stationary" states, in the sense that the solution of the equation
of motion with initial state ψκ remains close to ψκ for a long time.
It is the fact that no sequence φjKn converges weakly to zero (κn —> 0)
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which distinguishes the φiκ.
Perturbation problems of this sort, involving continuous spectra,

were considered in [3] and [4]. In [6], Kato proved for the operators
here considered in § 5 that the formal solutions of the perturbation
equations are essentially the only almost stationary states, although
in a somewhat different sense of ' 'essentially'' from ours. The notion
of spectral concentration originated with Titchmarsh [10], who proved
that the spectrum of the operator for hydrogen in an electric field is
concentrated on intervals of length o(/cp), p < 2, centered on the first
order solutions Xjκ of the perturbation equations. Conley and Rejto
proved an abstract version of Titchmarsh's result in [1].

Having completed a preliminary version of this article, the author
received from Professors Conley and Rejto a preprint [2] containing
similar results with different proofs. One such result was the "if"
part of Theorem 2.7; the "only if" part was asserted for the case
m = 1 and posed as a problem for general m. Their condition that
the pseudoeigenvectors converge strongly to the unperturbed eigen-
space, less restrictive than the one originally used by the author,
facilitated the proof of the theorem in the reverse direction.

The author would like to extend cordial thanks to Professor T.
Kato for valuable suggestions and encouragement through the course
of the work.

1* Spectral concentration and pseudoeigenvectors* H will
denote a self-adjoint operator, in general unbounded, with domain
&(H) in a Hubert space Sίf. J will always denote a Borel set of
real numbers, and the spectrum of H in J, that is, the intersection
of J with the spectrum of H, will be denote by 2(J). E will denote
the spectral family of H, assumed continuous from the right: E{μ) =
E(μ + ). The same symbol will be used for the measure induced by
E, with E[J] denoting the projection assigned by this measure to J.
When J is the closed interval λ — δ <^ μ <>X + δ, we shall write
E[\, δ] for E[J] = E(X + δ) -E((X - δ)-). In case δ = 0, E[X] =
E[X, 0] is zero unless X is an eigenvalue of H, in which case E[X] is
the projection on the λ-eigenspace.

Analogous symbols with a suffix tc will be used for a family of
self-ad joint operators {Hκ: 0 < /c ^ /c0}. For instance, ΣK(J) will denote
the spectrum of Hκ in J .

Convergence of vectors will always be strong convergence, unless

marked • for weak convergence. Landau symbols o(fcp) for vectors

will be used in the sense of strong convergence. The symbol *
will denote strong convergence of bounded operators. Limits of func-
tions of tc will always be taken as K —> 0 + .
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Our basic notions are made precise in the following:

DEFINITION 1.1. Let {Hκ} be a family of self-ad joint operators,

o < fc <̂  ΛΓ0, and let {Cκ} be a family of Borel subsets of J. We say

ΣK(J) is concentrated on Cκ provided EK[J — Cκ] > 0.

DEFINITION 1.2. Let {φκ} be a family of unit vectors such that
φκ e £&(HK) and let {λκ} be a family of real numbers. If, for a real
number p ^ 0, (Hκ — \κ)φκ — o(/cp), then {φκ} is a pseudoeigenvector of
{Hκ} of order p and {λκ} a corresponding pseudoeigenvalue. For short
we shall say simply that {(λ*, φκ)} is a p-pair for {Hκ}.

It is essential to realize that each of these definitions prescribes
the behavior of a certain function of tc in the limit as tc —> 0, and
that the quantities could be changed more or less at random for a
given K > 0 without affecting this behavior. Thus it does not make
sense to say that ψκ is a pseudoeigenvector of Hκ. Nevertheless we
shall do so, but only to avoid writing in the braces each time; the
reader will easily see where they belong.

Of course a p-pair for Hκ is also a g-pair for q ^ p, and an
eigenvalue-eigenvector pair constitutes a p-pair for any p. The basic
connection between p-pairs and spectral concentration is made apparent
in the following elementary result, which asserts that a high-order
pseudoeigenvector is almost in the range of the spectral projector sup-
ported by a small interval about its corresponding pseudoeigenvalue.

LEMMA 1.3. Let (λκ, φκ) be a p-pair for Hκ, and let ηκ he an
arbitrary family of nonnegative real numbers. Then

ηκ(l - EK[XK1 ηκ])φ. = o(fcp) .

Proof. Let Kκ denote the complement of the interval

K - VK < μ < K + ηκ .

Then

0(fC2*) - \\(Hκ-\κ)φκ\\2

= \~ (μ-κyd\\Eκ{μ)φκ\\s

J-oo

^ ( (μ-Xκyd\\Eκ(μ)φ<\\2

>ηl\ d\\Eκ(μ)φκ\\*
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It is a familiar fact that if (H — X)φ is small in norm, then there
must be a point of the spectrum of H near λ. The following result
can be regarded as a generalization of this to the case of a family
of operators.

LEMMA 1.4. Let J be an open set of real numbers, and suppose
that ΣK(J) is concentrated on Cκ. Let (λκ, φκ) be a p-pair for Hκ

such that Xκ is eventually in a closed subset of J and such that there
w

is no sequence fcn-^ o for which φKn > 0. Then λ* is within a
distance o(κp) of Cκ.

Proof. Put ηκ = l/2dist(λκ, Cκ). For those K for which ηκ = 0
there is nothing to prove. If ηκ Φ 0 then the interval Xκ — ηκ <S μ ^
X< + 7]κ is disjoint from Cκ, and so EK[XK, τjκ] + EK[CK] ^ 1, the identity
operator. From Lemma 1.3,

o ( ^ ) = # | | ( 1 - EK[K, V t i φ * II2 ^ Ή\\Eκ[Cκ]φκ II2 ,

and it would follow that ηκ = o(/cp) if 11 Eκ[Cκ]φκ \ \ ̂  ε > 0.
To see this, we first use the hypothesis on Xκ to find a number

p > o such that Xκ — p ^ μ ^ Xκ + p is contained in J, for K small
enough. Then by Lemma 1.3,

| | (1 - Eκ[J])φκII ^ II (1 - EK[XK, p])φκ\\ = i - o ( l ) .

Now suppose that there is no ε > 0 for which 11-EJCJ^κll > ε. Then
there is a sequence Λ;W—>0 such that \\EKn[CKn\φKn\\—*Q. Using this
and the convergence just proved, we obtain

φκ = Eκ \J]φ*. + 0(1)

= EKn[J - C κ > * . + 0(1) + 0(1) .

Let φ be any unit vector in Sίf. Then

(φ, CD* ) — \Φ» Eu \J — Cv iΦu ) ~h Oi l )

-1 (^j/ - α > , φ %) i + o(i)
^\\EκJJ-C<Jφ\\+0(l).

wBut EKn[J - CKn] > 0, hence φ<n > 0, a contradiction. Thus
II^K[CJ9>K|| must be bounded away from 0, and the lemma is proved.

The hypothesis on ψκ cannot be done away with. For example,
if Sίf = L2(0,1) and Hκ is multiplication by the characteristic function

χκ of the interval (0, it), then Eκ > 0 and it is easy to check that
the whole spectrum of Hκ is concentrated on C* = {0}. On the other
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hand, Hκ even has an eigenvalue Xκ = 1, with unit eigenvector, e.g.,
ΊJϋ

φκ — /r~1/2χκ; and this λκ is nowhere near Cκ. Of course φκ > 0.
It should be noted that no assumptions have yet been made con-

cerning the convergence of the operators Hκ as K —> 0.

2* Concentration at an isolated eigenvalue* We shall now
consider a family Hκ for which the resolvents Rκ{ζ) = (Hκ — ζ)" 1 con-
verge strongly to the resolvent R(ζ) = (H — ζ)-1 of a self-adjoint
operator H, for each complex number ζ which is at a positive distance
from the union of the spectra of H and Hκ. This convergence holds
for all such ζ if it holds for any, and it does hold if Hκ and H

are bounded and Hκ > H (see [7], p. 429). Thus it is a reasonable
generalization of strong convergence to the case of unbounded opera-

tors. It will be denoted by Hκ > H. We quote without proof the
following sufficient conditions ([7], p. 429, p. 453):

LEMMA 2.1. Suppose that there is a dense linear set

3f c &(H) Π

for sufficiently small tt, such that Hκφ —> Hφ for each φ e 2&. Then

Hκ > H provided that either of the following holds:
(a) the restriction of H to & is essentially self-adjoint, or
(b) Hκ^ H ^ constant, and the restriction of H to & has H

as its Friedrichs extension.

Condition (a) means that the closure of H\£2f is self-adjoint (and
hence equal to H), and it requires that Hs& be dense in Sίf% Con-
dition (b) is stronger in that it requires the operators to be semi-
bounded, but weaker in that only (H + const .) 1 / 2 ^ need be dense in £(f%

Our aim is to study the spectrum of Hκ in the neighborhood of

an eigenvalue of H. First we notice that the hypothesis Hκ —^-+ H
guarantees a rather close connection between eigenvalues of H and
certain pseudoeigenvalues of Hκ.

T

LEMMA 2.2. Suppose that Hκ > H. If (Xκ, φκ) is a 0-pair for
Hκ such that φκ does not converge weakly to 0, then H has an
eigenvalue λ with associated eigenvector φ such that λκ —>λ and

w n

ψκ% > φ for some sequence ιcn —> 0. Conversely, if λ and φ are an

eigenvalue and an associated unit eigenvector of H, then Hκ has such

a 0-pair (λκ, φκ); in fact Xκ and φκ can he chosen so that Xκ = X, φκ—>φ.

Proof. If || (Hz — Xκ)φκ || = f(έ) where f(κ) —> 0, then g(κ) can be
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chosen so t h a t g(tc) —• 0 and f(fc)/g(/c) —* 0. Lemma 1.3 with ηκ =

then gives || (1 — EK[XK, o(l)]φκ \\ = o(l). From this and the spectral

formula for iJK, it follows easily t h a t (Rκ(ί) — pκ)φκ = o(l), where

^ = (χκ — ί ) - 1 . In particular, for any sequence tcn —• 0,

Next, by hypothesis there is some open weak neighborhood N of

0 G £ίf and some sequence κn —• 0 such t h a t ^ g AT. Since || <£>KJ| = 1,

there is a subsequence, again denoted by φKn, which converges weak-

ly; the weak limit φ is not zero. The numbers ρ<n are all bounded
w

in absolute value by 1, and so Pκn{ψκn — φ) > 0 .

Since RKn(i)* = RKn(-ί)-^-+R(-i) and f ^ ^ - ^ Λ o , we

have for each ψ e

n, ψ) = (ψn, RKn(-i)ψ)

- (ψn, [RKn(-i) - R(-ί)]ir) + ( f Λ> R(-i)ψ) > 0 ,

w
t h a t is, RKn(ί)φ — RKn(i)φKn > 0.

T W

Finally, Hκ > H gives, in particular, t h a t R(i)φ — RKn{i)φ > 0.
Adding the four sequences which have been shown to converge

weakly to 0, we obtain pκ%φ > R(i)φ. With ψ = || φW^φ, this gives
pκn = (pκnψj Ψ) —»(R(i)ψ, ψ). Then (JB(i)ψ, -f) ^ 0, for otherwise

(i ί — i)"V = weak limit pκ%ψ = 0, and ψ — 0, impossible.

Set λ = i + (B(i)^, t ) " 1 . τ h e n ( K - ί)" 1 = ι°^ — ( W ) t » t ) =

(λ — i)~\ and so λKn —> λ. Moreover, (£f — i)"1ψ = weak limit ^ ^ =

(λ — i)"V> a n d s o -ff̂  — λ^> a s required.

To prove the converse, let λ be an eigenvalue of H with an as-

sociated unit eigenvector φ. Set ψκ = Rκ(ί)(H — i)φ. Then H< > H
gives ψκ —> φ; moreover ψκ e &(HK) and

(Hκ - X)ψκ = ( a . - i)fκ - (λ -

= (H - i)φ - (λ - i)φ + (λ

= (λ - i)(φ - -f κ)

- 0 ( 1 )

since Hφ = λφ. Thus (λκ = X,φκ= \\ ^κ||~V/c) is the 0-pair for HK

whose existence was asserted.

Turning now to concentration of the spectrum of iJK, we note

that Hκ > H implies Eκ(μ) > E(μ) provided that μ is not an

eigenvalue of H (see [7], pp. 432-433; with the hypothesis (a) of

Lemma 2.1, this is a classical result due to Rellich). If J = [a, β] is

an interval containing an eigenvalue λ of H in its interior but other-
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wise disjoint from the spectrum of H (an isolating interval for λ),

then this convergence gives Eκ(a)-^-+E(a),E(β)—^-*Elc(β) and so

EK[J]—?->E[J] = E[X], the eigenprojection associated with λ. Of
course the same is true if J is replaced by any smaller isolating in-
terval J7; thus ΣK(J) is concentrated on any such J' c J. Our con-
cern is with the possibility that ΣK(J) is in fact concentrated on sets
Cκ whose Lebesgue measure v(Cκ) tends to zero with some definite
order of continuity in tt. To settle this we shall have to assume that
λ has finite multiplicity.

ASSUMPTION 2.3. Hκ > H, and X is an isolated eigenvalue of
H with finite multiplicity m; J denotes an isolating interval for
λ, ^ the m-dimensional X-eigenspace, and P the eigenprojection
E[X] onto ^ .

DEFINITION 2.4. Under Assumption 2.3, if p is any real number
^0, ΣK(J) is concentrated to order p provided that there are sets
Cκ c J such t h a t EK[CK] - ^ P and v{Cκ) = o(tcp).

It turns out that p-th. order concentration of ΣK(J) hinges on the
existence of a certain family of p-pairs for £ΓK.

DEFINITION 2.5. (cf. [2], p. 6) Under Assumption 2.3 suppose
that (XjK1 φ3-κ), j = 1, , m, are p-pairs for Hκ such that (1 — P)φίκ —y 0
for each j and (<p, κ, φkκ) -> 0 for j Φ k. Then {φlκ, , φmκ) will be
called an asymptotic basis of order p for EK[J].

LEMMA 2.6. If {φlκ, , φmκ} is an asymptotic basis of order 0

for EK[J], then the operator Pκ — Σ?=i (* > ΨO^ΨOK > P, and the as-
sociated pseudoeigenvalues Xκ—>λ.

Proof. The vectors Pφiκ = ψάκ + o(l), j — 1, , m, satisfy

(Pφjκ, Pφkκ) - δiκ + o(l) ,

and so can be orthonormalized to give a basis {φlκ, **,φmκ\ of

such t h a t \\φiκ — φiκ\\ = o(l). Then for each φ

m m

i = l 3=1

= Pκφ + 0(1) ,

that is, Pκ —ίU P.

As we have seen, Assumption 2.3 guarantees that Eκ[Jf] —̂ -» P
for any isolating interval J ' about λ. Since φjκ can be written, with
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an error o(l), as a linear combination of a basis of <_/£ = P3ίf, it
follows that Eκ[J']φjκ = <piκ + o(l), i = 1, , m. On the other hand,
Lemma 1.3 shows that (1 — EK[XK, o(l)])φjκ = o(l), i = 1, , m, where
the first o(l) is suitably chosen as in the proof of Lemma 2.2. Com-
bining these convergences, we obtain

Eκ[J']φ3 κ = EK[XK, o(l)]φjκ + o(l), j = 1, , m .

The norm of each side tends to 1, which is impossible if the two
projections EK[J'] and EK[XK, o(l)] remain orthogonal, that is, if the
interval λκ — o(l) ̂  μ ^ Xκ + o(l) remains disjoint from J'. Hence Xκ

tends to J ' , and since Jf can be any interval about λ, this proves
λκ — λ.

We are now in a position to prove the main

THEOREM 2.7. Under Assumption 2.3, ΣK(J) is concentrated to
order p if and only if there is an asymptotic basis of order p for
EK[J]. In either case, the concentration sets Cκ can be taken as the
union of intervals of length o(/cp) centered on the corresponding
pseudoeigenvalues Xjκ.

Proof. Suppose that {φlκ, , φmκ\ is an asymptotic basis of order
p for EK[J], with associated pseudoeigenvalues Xjκ. As in the proof
of Lemma 2.2, Lemma 1.3 gives

φjκ - Eκ[Xjκ1 0(fCp)]φjκ = 0(1), j = 1, , m .

Then with Cκ = U7=i {μ I ^ - μ \ ̂  o(κp)} and Pκ = ΣJU ( , ψώψ^ we

have P κ - EK[CK]PK —?-> 0. But from Lemma 2.6, P κ -^-> P. Hence if

Eκ[Cκ]φ = Eκ[Cκ]Pφ

= Eκ[CJ(P<φ + 0(1))

- Pκφ + 0(1) + 0(1)

= Pφ + 0(1) + 0(1) + 0(1) ,

where the uniform boundedness of the projections EK[CK] has been
used. Thus Eκ[Cκ]φ —> Pφ = φ.

Since Xjκ—>X by Lemma 2.6, C κ c J for small enough Λ:, and so
^ EK[J]. Hence, if t

|| tfJCJ* II ̂  II ̂ [ J ] f II > II P t 11 = 0 .

But any vector θ e <%f is the sum of φ = Pθ and <f = (1 - P)θ, and

we have shown that EK[CK]Θ -> ̂  + 0 = Pθ. Thus ^[C,] -^-> P, and
= o(Λ:ί)), as desired.
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Conversely, suppose that EK[CK] • P, where v(Cκ) = o(κ?). For
each K, cover Cκ with an open set Gκ whose measure is within tcp+1

of v(Cκ). Gκ is the union of at most countably many disjoint open
intervals / j , whose lengths are obviously o(fcp). Let

Pi = Eκ[Iϊ\ ,

and note that

Σ Pί = Eκ[Gκ] ^ EK[CK] .
ΐ = l

The search for a p-pair (λκ, <£>κ) will proceed in several steps.
I. Fix tc > o. Let £f = ^£ f]{ψ: \\ ψ \\ = 1}; £f is compact since

^£ is m-dimensional. For each i = 1, 2, •••, the function | | P j | | de-
fined on ^ is continuous and so achieves a maximum, say at ψ\.

We claim that \\Piψi\\—>0 as i—> co. For if not, there is a
number ε > 0 and an increasing sequence of integers j for which
11 Pίψί 11 > e. Since the sequence ψ4 j lies in the unit ball of ^ , it
has a convergent subsequence, which we might as well denote with
the same index j . Thus ψ{ -^fκ as i - > c o , with || ψκ \\ = 1, Pfκ = τ/τκ,
and

|| Piψκ II = II P ί ( ψ ί + o(l)) II ̂  II P ί ^ ί II - 0(1) > ε > 0

for large j . Hence 1 - || f κ\\2 ^ ΣΓ=i II PiΨi IΓ = °°; absurd.
II. Since 1 ^ || Piψi \\ —> 0 as i —> oo, there is for each tc at least

one integer i(tc) such that

= max {|| P i t ||: i = 1,2, . . . , f

For each Λ:, set Qκ = P^U) = ^ [ I ^ ^ ] and fκ = f ^ .
III. Letting tc vary, we claim that

/ 1 \l/2

( 1 ) \\Qκψκ\\^(—±—) Ξ ε > 0

V 2(m + 2) /

for all sufficiently small tc. For, if not, there is a sequence tcn —•> 0
such that QκnΨ*n violates (1) for all w = 1, 2, . Since the sequence
ψn ΞΞ τ/rκ% lies in the unit ball of ^£, it has a subsequence, again
denoted by ψni converging to some ψ e ^/ί. By the definition of
ψn — Ψ<n — ψ{κ*n) w e have, uniformly in i — 1, 2, ,

_i
2(m + 2)
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for n large enough. On the other hand, Eκ[Cκ]φ-+φ by hypothesis,
so that \\EκJCκJψ\\2 > (m + 1)1 (m + 2) for sufficiently large n. Fix
any such n. *We have || EκJCκJψ ||2 ^ l i m ^ Σ?=i II P\nf II2; and so for
sufficiently large g, Σ? = 1 1| P\nf\ > (m + l)/(m + 2). Thus with w still
fixed we can define integers

( 3 ) g ί

for j = 1, , m + 1, and q0 = 0. These integers satisfy

Qo< Qi< < qm+i. for if ^ = qj+1 = q

for some j , then

Σ ll P * oV II2 < J V I I P * Ί/Γ II2 ^> J

* = i m + 2 i = i m + 2

by the definition (3), and so | |P*+V| | 2 > l/(ra + 2), contradicting (2).
Thus we can set

In view of the pairwise disjointness of the intervals I*n for different
i, the Si, j = 1, , m + 1, are pairwise orthogonal projections for
each fixed n. Moreover,

( 4 ) II S ί t II > 4 " ^ Γ ' i = 1, « ,m + 1 .
2 m + 2

For if, e.g., | | S i t l l ^ (l/2)l/(m + 2), then using (2) we have

2 m + 2 2 m + 2 m + 2

contradicting the definition of qλ in (3). Hence (4) holds.
Now we have m + 1 sequences {ψjn — Siψ, n = 1, 2, •}, j =

1, , m + 1, where || ψjk || ^ ε > 0 and (ψjn, ψkn) = 0 for j Φ k.

Moreover, ψjn = EKn[J]ψjn for each j , and since EICJJ] > P, this
means (1 — P)ψjn —> 0. Then Lemma 2.8 (below) implies that dim ^/f >̂
m + 1. This contradiction establishes (1).

IV. We assert that \\Qκψκ || —> 1 as fc —> 0. For if not, then there
is a number δ > 0 and a sequence ιcn —> 0 such that || QκnψKn j | < 1 — 3
for all w = 1, 2, . Let Qn = QKn, ψn = ^K w. The sequence
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( 5 )

lies in the unit ball of ^f, and so by passing to a subsequence we

can a s s u m e t h a t ψ4—»some Ψ' Since Pψn = ψn and \\ψn\\ = 1,

( 6 ) || ψ'n || = || PQnψn || ^ I (PQ»1rn, f n ) \

in view of (1), part III. Thus f' φ 0.

On the other hand, Qn ^ EKJJ] — -̂> P gives (1 - P)QW —?-> 0, and
since the ψn are confined to the finite-dimensional space ^£, this gives

( 7 ) Qnψn = PQΛn + (1 - P)Qnfn

that is,

( 8 ) Qnfn = t + 0(1) = <f' + 0(1) .

Hence

- Qnfn + 0(1)

= ψf + 0(1) +

Since ψ' Φ 0 we may set ψ* — || ψ' ||"V'> a n ( i n o w

> HQn'f ll

for large n. But ψ e £f and the last inequality contradicts the max-
imality of \\QKnψKn\\ (part I). Thus | | Q ^ K | | — > 1 is proved.

V. Let φκ=\\Qκilrκ\\-'1Qκψκ. Then | | ^ | | = 1. Recalling that
Qκ = E^Ii™], we choose λ̂  = midpoint of /*(/0. Since the measure
generated by \\Eκ(μ)φκ\\2 is supported in /*U), an interval of length
o(/cp), the spectral formula yields the estimate || (Hκ — Xκ)φκ \\ = o(/cp); and
we have a p-pair (λκ, φκ) for Hκ with (1 — P)φκ —> 0.

VI. To find another p-pair we repeat the whole procedure. First
put λlκ = λκ, φlκ = φκ, ψlκ = ψκ and Qlκ = Qκ, and note that, since

IV gives

( 9 ) Qltψu = ψyc + 0(1) .

For each K, let ^f2K = {f e ^f, ψ _L ^ lκ} and 6^κ = {f e ^/f2K: \\ ψ \\ = 1}.
Since <9ζκ is compact for each /c, the arguments of I, II, and III apply
without change, to show that | | Q K ^ | | > ε, where now
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|PϊΉ:ΐ = 1, 2,

Note that ψκ _L ψlκ but that Qκ may be the same as Qlκ for some or
all fc.

The argument in IV must be adjusted slightly. Denote by Pκ the
projection on ^f2ICJ and put Pn = PKn, where κn—>0 is the sequence
in IV. Instead of (5), set

( 5') f'n = PnQnψn

and put ψ' — limit (subsequence) ψ'n as before. Since Pnψn = ψny

inequality (6) holds with Pn in place of P. Relation (7) holds without
change, but in order to get (8) we need in addition that (P — Pn)Qnψn =
o(l). This follows from (9) together with the fact that P{l.Pi for

i Φ j :

(10) (Qnφn, ψln) = (Qnφn, Qlnψln)

= JO + o(l) if Qn Φ Qln

K, Ψm) + 0(1)

Thus the projection of Qnψn along φln, i.e. (P — Pn)Qnfn, tends to 0.
Hence (8) holds with ψ'n given by (5'), and it follows as before that
QnΨ' = Ψ' + o(l). Again we set ψ = \\ψf ||"V'> a n d it follows that
ζ)%α/r = ψ + o(l). But τ/r is, like ψ', the limit of vectors in ^€2κn, and
so Pnψ = ψ + o(l). Hence

IIQnPnf \\ = \\Q»Ψ + o(l) || = II ψ + 0(1) + 0(1) II

for large n, contradicting the choice of ψn as a vector where 11 Qnψn \ \
is a maximum among ψe S^Kn* Thus || Qnψn || < 1 — o is untenable,
and 11 Qn^n 11—*1 a s befere.

Part V goes through without change, and we have constructed a
second p-pair (λκ, φκ) with (1 — P)φκ —• 0. Denoting this second batch
of quantities Xκ,φκ, ψκ and Qκ by λ2κ, ^2K? ̂ 2K, and Q2tc, and bearing in
mind that || Qκψκ \\ —* 1, we see that

( 9' ) Q a ^ - ψ2κ + 0(1) .

Hence

(11) (%κ, 9>lκ) - (Q 2 ^2., Qlκf lκ) + 0(1)

- ( f 2K, ̂ 1.) + 0(1) + 0(1)



SPECTRAL CONCENTRATION FOR SELF-ADJOINT OPERATORS 389

since ψ^-L ΨΊ* by construction.
It is clear that this procedure can be repeated m-2 more times.

At the kth stage, steps (10) and (11) can be verified with the index
1 replaced by each j < k and 2 replaced by k. After m iterations we
have constructed the required asymptotic basis {φ1<9 , φmκ} for EK[J].
Note that the procedure halts here since there are no unit vectors in
^y£ perpendicular to all of ψlti, , ψmκ.

Of course it follows from the first part of the theorem that Σκ(J)
is concentrated on the union of the (at most) m intervals I*U) whose
midpoints were chosen as the Xjιc. This completes the proof of the
theorem.

In the proof, the following fact was used:

LEMMA 2.8. Let P be a projection of dimension m. Let

Ψm, " ,Ψdn,n = 1,2, •-•

be sequences of vectors satisfying (1 — P)ψjn —> 0, 1 ^ || ψjn || :> ε > 0,
and (ψjny fkm) —• 0 for j Φ k. Then d ^ m.

Proof. Pψln is a sequence in the unit ball of the m-dimensional
space P3ίf. By passing to a subsequence, we can therefore assume
that Pψln —• ψτ for some vector ψx with Pψx = ψ1% Since (1 — P)ψln —+ 0,

f i = Pψm + (1 - P)fm = Ψi + 0(1)

as n—> oo. Moreover || ψln \\ ̂  ε gives ψ± Φ 0. Looking at the corre-
sponding subsequence of ψ2n, we can apply the same argument to find
ψ2Φ 0 with Pψ2 = ψ2 and ψ2n —

> Ψv Also,

(t i , Ψ2) = (ΨΊ» + 0(1), ir2n + 0(1)) - 0(1) + 0(1) ,

whence ψλ 1 ψ2. In this fashion we can construct pairwise orthogonal
nonzero vectors ψ19 , ψd in P§ίf. Hence dim P ^> d.

The "only if" part of Theorem 2.7 will not be used in what follows.

COROLLARY 2.9. Under Assumption 2.3, if {φlκ, , φmκ) and
{Φlκ, *-,Φmκ\ are two asymptotic bases of order p for EK[J], then
the corresponding pseudoeigenvalues Xiκ and Λjκ satisfy

Λάκ = Xjκ + O(ΪCP), j = 1, . . . , m

{possibly after the Aύκ have been re-indexed).

Proof. By Theorem 2.7, ΣK(J) is concentrated on the union Cκ

of open intervals of length o(/cp) about the Xj.κ. Further, in view of
Lemma 1.3, by lengthening the component intervals of Cκ (still keep-
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ing them o(/cp) in length), we may assume that (1 — Eκ[I^]\)φiκ = o(l),
where I\ is the component subinterval of Cκ containing Xiκ. On the
other hand, for each j = 1, , m, since (1 — P)Φjκ—+ 0 and P is m-

dimensional, there is no sequence fcn —» 0 for which ΦjKn > 0. Then
Lemma 1.4 shows that each Ajκ is within o(/cp) of Cκ. By again
lengthening the components of Cκ (still keeping them o(/cp) in length)
we can assume that AjκeCκ,j — 1, « ,m, and (by Lemma 1.3) that
(1 — Eκ\Ij

κ])Φjκ = o(l), where Zj is the component interval of Cκ con-
taining Ajκ.

Let the distinct open component intervals of the adjusted Cκ be
numbered II, , i>, sκ ^ m. Each I* is still of length o(/cp), so the
asserted relabelling of the Ajκ could be carried out provided the same
number of Ajιc'$ as λΐίC's belong to Pκ.

To see that this must be the case, at least for sufficiently small
/£, we suppose the contrary, i.e. that for some sequence fcn —-> 0 the
component interval JJ> contains Xi<n for m(kn) different i and contains
AjKn for M(kn) > m(kn) different j . Then for each n, the M(kn) dif-
ferent pseudoeigenvectors ΦjKn, together with the m — m(kn) different
pseudoeigenvectors φjκ% not associated with the XiKn in 1\^ make up a
family {<fln, , φdn}, where d = m - m(kn) + M(kn) > m. By the
construction of the intervals Pκ it is clear that 11 ψjn \ \ —> 1 and

(ti«, Ψi<) > 0 if ί Φ j ,

and of course (1 — P)ψjιc —> 0 by definition. Thus d > m contradicts
Lemma 2.8, and the asserted relabelling can be carried out.

COROLLARY 2.10. Under Assumption 2.3, ΣK(J) is concentrated
to order 0.

Proof. Let {φlf , φm} be an orthonormal basis for ^//. Applic-
ation of Lemma 2.2 to each φ5 in turn yields an asymptotic basis of
order 0 for EK[J], and the assertion follows from Theorem 2.7.

It should be noted that Corollary 2.10 can fail if λ has infinite
multiplicity.

3* Construction of asymptotic bases of order p > 0. Corollary
2.10 required nothing beyond Assumption 2.3, but to obtain higher-
order asymptotic bases we shall apply the formal perturbation method,
and this requires that Hκ have a certain form.

Suppose that V is a symmetric operator in ^ίf such that some
linear set £ ^ c £^(H) Π £&(V) is dense; then H + fcV is defined and
symmetric on £&. We shall suppose that for sufficiently small
Λ:, (H + KV) I & admits a self-adjoint extension. Then Hκ is taken to
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be one such extension. Specifically, we consider two cases:

ASSUMPTION 3.1. At least one of the following holds:
(a) Hκ is any self-adjoint extension of H + tcV, and the restric-

tion of H to & is essentially self-adjoint; or
(b) (Hφ, φ) J> (φ, φ) and (Vφ, φ) ^ 0 for all φ e j ^ , Ή.κ is the

Friedrichs extension of H + fcV, and the restriction of H to & has
H as its Friedrichs extension;
and it is still assumed that X is an isolated eigenvalue of H with
multiplicity m.

In view of Lemma 2.1, either (a) or (b) guarantees that Hκ > H,
and so Assumption 2.3 is satisfied and all the results of §2 follow
under Assumption 3.1.

We consider numbers Xκ and vectors φκ of the form

λ κ = X + κX{1) + + fcpX{p)

where p is an integer ^ 1 and ir{0) is an eigenvector of H associated
with λ. If ir{0\ ir{1\ , ir{p) G &r, then (Hκ - Xκ)irκ can be computed
from the formulas Hκir

{r) = Hf{r) + ιcVir{r). We find

V

(Hκ — λκ)^κ = Σ C{r)fcr +

(13) C ( r ) = (H - X)ir{r)

where in J5(1) the formal term X^i0 is to be suppressed. In order that
(λ>κ,<Pκ = IIΉhVic) be a p-pair for Hκ, it is necessary and sufficient
that C ( r ) = 0,r = 1,2, . . . , p .

For simplicity we consider first the case where λ is simple, i.e.
m = 1. Then Pφ = (<p, ir{0))ir{0) for any φ e &. If X(k) and ir{k) have
already been chosen for k < r, then

(14)

- λ ( r v ( o )

can be made to vanish by choosing

(15) λ^ =(\(V - MW1) ~ Σλ

Since (H — λ)P = 0 as well, we now have

(16) C ( r ) = (H-



392 R. C. RIDDELL

Recalling that the reduced resolvent S = \ {μ — X^dEiμ) of H at
JoffJ

X is bounded on ^f and satisfies (H - X)S = 1 - P, SP = PS = 0,
we choose ψ[r) by

(17) (1 - P)f{r) = -SBίr\ Pψ{r) arbitrary ,

so that (16) vanishes, as desired.
Formulas (15) and (17) are meaningful if and only if Vψ{r~1] is

defined. By induction, then, these choices can be made for r = 1, , p
if and only if ψ{0) lies in the domain of each of the composite opera-
tors T1 ••• Tp, where each Tj is either S or SV.

This condition guarantees that λ(r) and ψ{r) are defined and
C ( r ) = 0, r = 1, , p, and that f ( r ) e £&, r = 0, , p - 1. However
it does not guarantee that ψ{p) e 3ί. Thus the computation leading to
(13) is not quite justified, and we must modify ψ{p) as in Lemma 2.2.
Letting

and using the fact that C ( r ) = 0 for r = 1, , p, we find

which is o(tcp) since ψ{

κ

p)—>ψ{p). Hence (λκ, φκ = H ^ H " 1 ^ ) is a p-pair
for iίκ, and since φκ—>ψ{0), the singleton {<pκ} is an asymptotic basis
of order p for EK[J],

If λ is degenerate (m > 1) we seek numbers Xjιc and vectors ψjκ

of the form (12), for j — 1, , m, such that the quantities C^r) as in
(13) vanish for r = 1, - , p. Now (14) no longer holds, and indeed
PB{p cannot be made to vanish merely by the choice of X{p.

Consider first the case p = 1. Assume Λ? <z.3f(V). Since
f{

3

9) e ^f, we have

(18) PBf = P(V- Xf'H'Γ = P(V - X

The m-dimensional symmetric operator PVP has s ^ m eigenvalues
μλ < < μs and corresponding orthogonal eigenprojections Ql9 , Qs:

P = Σ Q» PVP = Σ /i*Q<.

Put mt = dim Q ί ; so that Σl=i m ί = m For each i = 1, , m put
i(j) = least i such that i ^ m1 + + m ,̂ of course in general more
than one j will correspond to a given i(j). Let Pί, 1} = Qi{ύ), and
choose



SPECTRAL CONCENTRATION FOR SELF-ADJOINT OPERATORS 393

(19) Xf) = μuj)

ψ{r = Pfψ;\ (ψ{;\ yk

0)) = sjk.
Then, with F ( 1 ) ΞΞ V, we have

(20) P(F ( 1 ) - Xf])P{/] = P< υ ( F ( 1 ) - Xψ)P = 0 ,

so that (19) causes (18) to vanish for each j = 1, -, m. Now Cψ is
given by (16) with r = 1, and ̂ ^ can be chosen as in (17) with r = 1
to complete the annihilation of C^. The nonuniqαeness of the ψf
with a fixed i(j) in (19) and of the Pψf in (17) should be borne in
mind.

In the choices for r — 2, we shall need the reduced resolvent
S? = Σw(i) (i"« - ^f)"λQi of P F ( 1 ) P at λ^7 which satisfies

(21) P(F ( 1 ) - Xf)Sf = P - P^υ, S ^ P ^ = PfSf = 0 .

Passing now to the case p = 2, we assume that ^ c
This certainly insures that . / / c ^ f F 1 1 1 ) , so it can be supposed that
the λ^υ, ψf\ and ψf] have been chosen as above to make the Cψ
vanish. In studying the Cf] we treat simultaneously all the j with
a given i(j), and for any such j we consider successively the com-
ponents PψBf and (P - Pf)Bf of PBf. In view of (17) with r = 1,
(19), and (20), the first of these components is

(22) P^βf = Pf(Vf - ' 3

where Vf = (F ( 1 ) - λ^)(-S)(F ( 1 ) - λ^) is, by our assumption, de-
fined at least on ^f. Notice that this would not be true without
the second-order assumption on ^f. Now the same arguments can
be applied to PψVfPψ as were used on PV0)P following (18). We
are led to define, for each j , a projection Pf <* Pψ and a number
Xf such that Pf{Vf - λf )Pf = Pf{Vf - Xf)Pf = 0. Then the
choice

(23) t f - Pfψf\ (Ψ\°\ Ψί0)) = δy*

is possible and causes (22) to vanish.
The second component of PBf is annihilated by refining the choice

of ψf. In view of (17) with r = 1, (20), and the definition of Vf\

(P - Pψ)Bf - (P - Pf)(Vf -
+ (P - Pf)(Vψ - Xf)(P -

Since Pψψ is arbitrary in (17), we are free to make the adjustment

(P - Pf)t? = -Sψ(V?
(Δo)

Pfψψ arbitrary .



394 R. C. RIDDELL

Then (21) shows that (24) vanishes. Now Cf is given by (16), and
once again its annihilation can be completed by choosing ψf} as in (17).

It should be observed that the adjustments (23) and (25) to ψf]

and ψf] do not make sense without the second-order assumption
^f a^(V{1)SV{1)). However, the components adjusted in (23) and
(25) do not affect the first-order coefficients Cf\

The situation with p — 3, 4, is analogous, and the details will
be omitted. Briefly, for any such p, we would suppose inductively
that the condition mentioned in the case m — 1 (with p — 1 instead
of p) would permit the choice of λ^, , λ^"1}, f f\ . -., ψ^-χ) so that
Cψ = = Cf~1] = 0, j = 1, , m. At this point we would have
defined projections P ^ Pf ^ ^ Pf-1] and operators F ( 1 ) , Vf,
•••, Vf"λ) with properties analogous to (20). At this point, moreover,
the components Pί,rVf~1~r) would be arbitrary, r = 0, 1, , p — 1,
save for the restriction (ψ^, ψi0)) = δjk. Passing to the pth-order as-
sumption on &, we could then substitute into B{p all the previous
choices ψf, •• ,ΨΫ~1)- As in (22), this would lead to the definition
of an operator Vf\ a projection Pf\ and a number Xf\ for each j ,
such that an adjustment to ff analogous to (23) would kill Pf-^Bψ.
Next, adjustments like (25) to the components {P{p - P{/+1))f <p~1-r)

would kill {P{p - P{/+1))B{/+1\ r = 0, 1, - , p - 2, leaving (16) in force
with r = p. Then the choice of ff] in (17) would kill Cf\ complet-
ing the induction, and at this point the components P{

5

τ)ψγ-r) would
remain arbitrary, r = 0,l, « , p . Again it should be observed that
the adjustments to ψf\ •• ,'V^ P~1) made at the pth stage would re-
quire the pth-order assumption on & but would have no effect on

Finally, if this process is carried out to the pih stage, the ψf]

can be adjusted as in (12') so that each (λ iκ, φjκ = | | ^ « ||"Vir) is a p-
pair for Hκ; and by the orthogonality of the φ?\{φlκ, •• ,9mK} is an
asymptotic basis of order p for EK[J].

To summarize, we may state

LEMMA 3.2. Under Assumption 3.1, the perturbation method
yields an asymptotic basis of order p for EK[J], provided that ^// is
contained in the domain of any p-fold product of operators, each of
whose factors is either V or SV.

In the degenerate case, were it not for the repeated adjustments
to components already chosen, much simpler closed expressions could
be written down for the λ!, r ) and ψ(/\ The need for the adjustments
to ψ{p at stage r + 1 is evidently due to the appearance of several
distinct coefficients λ^υ, or equivalently, of several distinct projections
P{P < P, a phenomenon known as splittting. Further splitting, and
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hence further adjustments, might occur at any stage, since the only
restriction is that at most m — 1 of the inequalities P ^ Pψ Ξ> Pψ ^
can be strict. Thus, although there must in every case be some in-
teger q such that Pf = P{/+1) = •••, for j = 1, , m, it may be
difficult in any particular case to say just what q is. Of course q = 1
if it happens that all the Xf] are distinct, for then each Pf is one-
dimensional and perforce equal to all the P{p (r > l,j fixed); but this
instance is by no means typical. In some cases of practical importance,
H and Hκ (and hence all the V{p) are invariant under the action of
some linear group G on <̂ gf Then the range of each P{p is the space
of some representation of G, and if for some r = q this representation
is irreducible, we must have Pf = P{/+1) = .-• (see [9], pp. 120ff.).
The example in § 5 is of this type, where q turns out to be 2.

Even under Assumption 3.1 it might happen that ^// is not con-
tained in £&(V), so that Lemma 3.2 does not apply. In such a case
the following observation might be of use.

LEMMA 3.3. Under alternative (b) of Assumption 3.1, EK[J] has
an asymptotic basis of order 1/2, provided that ^yf is contained in
the domain of HI12 for some /c > 0.

Proof. Under these conditions λ Φ 0 and λ"1 is an eigenvalue of
if-1 with eigenspace ^f, and it can be proved ([6], pp. 189-191) that,
for each unit vector ψ e ^ C (λ"1, ψ) is a 1/2-pair for H~λ. Denoting
the spectral family of H~λ by Eκ and applying Lemma 1.3, we get
(1 — Eκ\X~ι, O(Λ;1/2)])Ί/Γ = o(l), where o(/c112) is suitably chosen as in
Lemma 2.2. Since Eκ{μ) = -Eκ{ljμ) and (λ"1 ± o{ιc112))-1 = λ + o(/s1/2),
this means that (1 - EK[X, o(tcll2)])ψ = o(l). We put fκ = EK[X, O(Λ;1/2)JΠ/Γ,

so that ψκ-^ψy and it follows from the spectral formula that
(Hκ - λ)^ κ = o(/c1/2). Thus (X9φκ=\\ψκ\\"1ψκ) is a 1/2-pair for Hκ,
and it is clear that an asymptotic basis of order 1/2 for EK[J] can be
constructed in this way starting with a basis for ^//.

The hypothesis ψe^iHl12) is equivalent with the existence of a
sequence Θne S? such that θn —> ψ and ((H + ιcV)(θn - θm), θn - θm) is
Cauchy; it is weaker than ψe£&(V). If Hκ \ &ί happens to be es-
sentially self-adjoint for some ιc > 0, then ψ£^(Hψ) follows from
the existence of Vll2ψ ([6], p. 189.).

4* The case of a stable eigenvalue* Under Assumption 2.3 it
may happen that EK[J] is m-dimensional for sufficiently small /cβ In
this case λ is called stable under the perturbation of H to Hκ: ΣK(J)
must consist of precisely m eigenvalues Λlκ, , Λmκ (counted with
their multiplicities) with associated orthonormal eigenvectors Φlκ1 , Φmκ.

Since Eκ[J] > P and EK[J] is m-dimensional, it follows that EK[J] ~* P
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in the uniform operator norm. Hence

| | (1 - P)ΦSκ II = II (EK[J] - P)Φjκ || ^ || EK[J] - P\\ — 0 ,

and {Φlκ, , ΦmJ is an asymptotic basis (of any order) for EK[J].
Then Δjκ —> A by Lemma 2.6. More precise estimates follow under
the hypotheses of Lemma 3.2.

THEOREM 4.1 Under the hypotheses of Lemma 3.2, let (λ iκ, <pJK),
j = 1, « ,m, δβ ίfee p-pairs for Hκ computed by the perturbation
method. If X is stable then ΣK(J) consists of m eigenvalues Ajιc —
Xjκ + o(tcp). Each corresponding eigenvector Φjκ is tυithin o(tcp~q) of
a linear combination of those φiκ for which Xiκ agrees with Xjκ up to
the qth order (i.e. λ^r) = λ!, r ) for r ^ q).

Proof. The estimate of the AjHi follows from Corollary 2.9.
For each j — 1, « ,m, let Sq(j) denote the set of all integers i

such that λ<κ has the same coefficients as Xjιc up through the order
κq. If i $ Sq(j) then Xiκ and Xjκ have different coefficients of some power
κr with r ^ q, and so | Xiκ — XjK \ > M/cq for some M > 0 and sufficiently
small fc. Then the interval Iκ — {μ: \ μ — λi/c | < ilfeg} contains precisely
those λί/c and Aiκ for which i e Sq(j). Lemma 1.3 gives, for each such
i, (1 - Eκ[Iκ])φiκ = o(/cp-q), so that the vectors

ψiκ = Eκ[Iκ]φiκ = ψiκ + o(κ*-η, i e Sq(j) ,

are eventually linearly independent. But EK[IK] is the projection on
the linear span of the Φiκ with i e Sq(j), and so the ψiιc also span the
range of E^I^]. Hence, in particular, Φjκ is a linear combination of
the ψiκ = ψiκ + o(fcp~q) with i e Sg(i), and the theorem is proved.

Since in general all the Xiκ agree at the zeroth order, each Φjκ

can be written as a linear combination of all the φ5κ with an error
o(/cp). Of course if m = 1 then 01/c = <plκ + o(/cp). But if m > 1, even
if Xjκ splits away from all the other Xiκ at the first order (S^j) = {j}),
the estimate in the theorem is only Φjλ = φjλ + o ^ " 1 ) , and the coef-
ficient of K? in < î/c is not given any significance. Better estimates of
the Φjκ evidently require more careful choice of the φjκ than suffices
merely to make them pseudoeigenvectors of order p.

There is a more serious defect in the estimates of the Ajκ, for
pth order assumptions on ^£ = ^[λ] ^f (see Lemma 3.2) actually
guarantee the existence of coefficients λ̂  r ) for r = 1, , p, , 2p, all
of which are significant in estimating perturbed stable eigenvalues
([6], pp. 182-184). Such estimates to within o(κ2p) cannot be based solely
on the theory of pseudoeigenvectors developed here.

The stability of λ is a rather delicate matter, and there is no
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abundance of useful sufficient conditions. A well-known one is that
Hκ >̂ H Ξ> c as in Lemma 3.1 (b), and that the part of the spectrum
of H lying to the left of λ consist entirely of isolated eigenvalues of
finite multiplicity ([6], p. 181.).

5* The Stark effect in the hydrogen atom* We consider as
an example the quantum mechanical system of a hydrogen atom in a
uniform electric field. Here 3(f = L2(R3). Regarding the electric field
as a perturbation, we consider a basic system governed by the Hamil-
tonian operator of the hydrogen atom in free space. With spin neg-
lected, this is formally

T = -Δ - c/r ,

where Δ is the three-dimensional Laplacian, c is a positive constant,
and r is the distance to the origin. With jgr(T) = C~(R5), T is es-
sentially self-adjoint (see [5]), and we take the unperturbed Hamiltonian
H to be the closure T. From the boundedness of c/r relative to Δ it
follows that £&(H) is identical with £&{A) and is contained in &(c/r),
where the last two are the domains of the self-adjoint extensions of
Δ and c/r defined by closure from C~(R*). Thus it is meaningful to
write Hψ = — Δψ — (c/r)ψ for ψe^(H); this will be useful later.

The spectrum of H is well known (e.g. [11] p. 133): the continu-
ous spectrum covers the nonnegative real axis, and the point spectrum
consists of countably many isolated negative eigenvalues X{n) = c2/kn2,
w = l, 2, •••, where the multiplicity m(n) of X(n) is n2 and each
eigenspace ^# ' (n) consists of functions which decay exponentially at
infinity ([11], p. 282).

If coordinates are chosen so that the electric field is parallel to
the #3-axis then the perturbation of the Hamiltonian by the electric
field is formally κx3, where fc is a positive number proportional to the
field strength. We define the operator V to be multiplication by a?3,
on the domain

= {φ e L2(JB8): 1R ^ 0, 3C ^ 0, lη > 0 9 | <p(x) \ ̂  Ce~^x]

for almost every x with | x \ ̂  R} .

Then C~(R*)(Z^(H) f] &(V), and H + fcV defined on C~{RZ) has a
self-ad joint extension (in fact a unique one [5]) which we take as the

T

perturbed Hamiltonian Hκ. By Lemma 2.1 (a), Hκ > H9

For each ιc > 0, Hκ has no eigenvalues, and the continuous spectrum
of Hκ covers the whole real axis ([11], pp. 134 ff.). However, by
Corollary 2.10 the spectrum of Hκ near each X(n) is concentrated to
order 0; and we shall now show that this concentration in fact holds
to any positive order.
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Clearly Assumption 3.1 (a) holds for each λ = X(n); moreover,
^ — ̂ {n) c £2f(V) since the eigenvectors of H all decay exponenti-
ally; and V^(V)(z^f{V) by inspection. Thus to verify the hypotheses
of Lemma 3.2 for all integers p, it suffices to show that S&(V)<z&(V),
where S is the reduced resolvent of H at λ. For as soon as this is
known, it is clear that any composite of finitely many factors S and
SV can be applied to each φe &(V).

To see that S&(V)c:&(V), Άxφe ^r(V). Since Pφ e y / c S ( 7 ) ,
it is enough to consider the case in which φ is orthogonal to ^f, i.e.
(1 - P)φ = φ. Now ψ = Sφ e ̂ (H), and

(H - λ)f = (H - X)Sφ = (1 - P)φ = φ .

According to the remark after the definition of H, this equality can
be written

( — Δ — X)ψ = φ + (c/r)ψ .

The operator on the left has a bounded inverse, given by convolution
with the function (Aπry1e"kr, where — λ = 2k2, k > 0. Applying the
inverse to the above relation, we obtain

(26) ψ(x) = - U e~klX~y' \φ(y)
y

for almost all x e i?3. Since our aim is to show that ψ decays ex-
ponentially at infinity, it suffices to estimate ψ in the exterior Bf of
some ball B = B(R) with center at the origin and radius R. To this
end we write (26) as

(27) φ(χ) = ζ(χ)
\x - y\ \y

where ζ(x) is the sum of the contributions of ψ and φ to the integral
in (26) over B and the contribution of φ to the integral over B'.
Treating each of these contributions separately, taking R sufficiently
large, and using the fact that ^ e ^ and f e ^ ( F ) , together with
Schwarz' inequality and various elementary inequalities on \x — y\,
one can show that ξe^(V), i.e.

(28) \ξ(x)\ ^A(R)e~r^

for \x\^R, where 0 < 7 < (l/2)&, and A(R) is a constant which
grows with R. It should be noted that ψ is already a well-defined
item, namely Sφ, and that (27) expresses one of its properties; there
is no question of solving (27) for an unknown ψ.

Now we regard the right side of (27) as defining a map K in
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L2(B'). A straightforward estimate shows that this is true, and in
fact that K is a strict contraction map if R is sufficiently large.
Thus K has a unique fixed point given by ψ = lim KnΦ, where Φ is
any element whatever in L2{Bf). With Φ(x) = 0, KΦ = ζ obeys (28),
and it can be shown easily by induction that, for R sufficiently large,
KnΦ is dominated by 2A(R)e~rlx]. Hence so is the fixed point ψ.

But (27) asserts in particular that ψ restricted to B' is a fixed
point of K, and as such it must agree almost everywhere with ψ.
Hence ψ decays exponentially, and we have shown that ψ = Sφe £&(V)
if φe^r(V).

It follows from Lemma 3.2 that, for each eigenvalue X(n) of H
and each positive integer p, the perturbation method yields an asymp-
totic basis of order p for Eκ[J(n)], where J(n) is an isolating interval
for X(n). Theorem 2.7 then shows that Σκ(J(n)) is concentrated on the
union Cκ(n) of intervals of width o(ιcp) centered on the pseudo-
eigenvalues Xjκ(n) computed by the perturbation method.

In passing, we remark that these pseudoeigenvalues have been
calculated at least up to the second order (e.g. [8], p. 270). At the
first order, X(n) splits into 2n — 1 distinct pseudoeigen values, the
different λ^1} being proportional to ni, — n + l ^ i t ί n — 1, and hav-
ing multiplicities (as eigenvalues of P(n)VP(n)) equal to n — i . At
the second order, further splitting occurs: if n — | i | is even, λ^υ cor-
responds to (l/2)(n — I i I) distinct λ̂  2) all of multiplicity 2, and if
n— \ί\ is odd, λ^1} corresponds to (Ij2)(n — \ i \ + 1) distinct λ!, 2), of
which one has multiplicity 1 and the rest have multiplicity 2. Alto-
gether, at the second order, X(n) has split into n "simple" pseudo-
eigenvalues and (Ij2)n(n — 1) "double" ones. Now, the symmetry group
of Hκ is generated by all rotations of R* about the avaxis together
with reflections in a plane containing the α;3-axis, and its irreducible
representations are all one-and two-dimensional. The w2-dimensional
representation of this group in the eigenspace ^f(n) contains n copies
of the first kind of irreducible representation, and (l/2)n(n — 1) copies
of the second kind (see, e.g. [22], pp. 204-205). These correspond
exactly to the multiplicities of the λ̂  2) and so X(n) cannot split further
past the second order.

Returning to the concentration of the spectrum of HK1 we can
write the negative real axis N = (— °o, 0) as the union of closed in-
tervals J(n), each of which isolates X(n),n = 1, 2, •••. By consider-
ing the dense family g of finite linear combinations of vectors in
U » = i ^ ^ ( w ) a n ( * using the uniform boundedness of the projections

Eκ[(Cκ(n)], we easily see that EK[N - Cκ] - ^ 0, where Cκ = U»=i Cκ(n).
In other words, for any positive integer p, the negative spectrum of
Hκ is concentrated on the union of intervals of length o(&p) centered
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on the numbers Xjκ(n) computed by applying the perturbation method
to the unperturbed eigenvalues X(n) (cf. [2], p. 20).

This property distinguishes the Xjκ(n) from other negative points
of the spectrum of Hκ. It is frequently pointed out that, although
the system governed by Hκ has no stationary states in the strict sense
(since Hκ has no eigenvalues), nonetheless the Xjκ represent the energies
of "almost stationary" states (see, e.g. [8], p. 274 fn.; [12], p. 206).
Indeed, if (λΛ, φκ) is any p-pair for Hκ, then by estimating the spectral
formula in two parts, off and on the interval Xκ — fcp <Ξ μ ^ λ* + κp,
we obtain

If ε > 0 is specified, Lemma 1.3 shows that /c0 > 0 can be chosen so
that the first term on the right is <ε2/2 for tc < /c0. Then the second
term remains <ε2/2 for all t tί T — (ε/\/2)/c~p. In other words, for
tc small enough, the state e~itHκ φκ remains with in e in norm of its
original value φκ for all times in an interval [0, T] whose length
increases with l//cp.

It is stressed that this result holds for an arbitrary p-pair of Hκ;
and since Hκ has continuous spectrum everywhere, a p-pair (λff, φκ)
can be constructed in which Xκ has any value whatever. Thus the
"almost stationary" property does not by itself characterize the pairs

However, in view of the concentration of ΣK(N) near the XjK(ri),
we see by Lemma 1.4 that if (XK9 φκ) is a p-pair whose φκ has no

sequence φKn >0(/cn-+0), then Xκ must be within o(/cp) of the set of
all XjK(ri). We may conclude that the Xjκ(n) represent the only pos-
sible energies which are continuous in ιc and whose corresponding
states <PjK(n) are both ^almost stationary" and remain outside some
weak neighborhood of 0. The last condition rules out wave functions
which, though technically "almost stationary", have supports which
shrink to a point or migrate to infinity as fc is reduced.
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