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CONGRUENCES ON REGULAR SEMIGROUPS

N. R. RElLLY AND H. E. SCHEIBLICH

For any regular semigroup S the relation 6 is defined on
the lattice, A(S), of congruences on S by: (o, 7)€ 6 if and only
if o and 7 induce the same partition of the idempotents of S.
Then 6 is an equivalence relation on A(S) such that each
equivalence class is a complete modular sublattice of A(S).
If S is an inverse semigroup then # is a congruence on A(S),
A(S)/6 is complete and the natural homomorphism of 4(S) onto
A(S)/6 is a complete lattice homomorphism,

Any congruence on an inverse semigroup S can be char-
acterized in terms of its kernel, namely, the set of congruence
classes containing the idempotents of S. In particular, any
congruence on S induces a partition of the set Es of idempo-
tents of S satisfying certain normality conditions. In this
note, those partitions of Es which are induced by congruences
on S and the largest and smallest congruences on S correspond
ing so such a partition of Es are characterized.

1. Preliminary results and definitions. We adopt the notation
and terminology of Clifford and Preston [2]. A semigroup S is called
regular if aca Sa, for all aecS. If, for all aec S, there exists an
element be S such that aba = a and bab = b then we say that b is an
inverse of a and that (a,bd) is a regular pair [11]. In a regular
semigroup, every element has an inverse. An inverse semigroup is
a semigroup in which each element has a unique inverse. The ele-
mentary properties of regular and inverse semigroups can be found in
[2]. In particular, a semigroup S is an inverge semigroup if and only
if it is regular and its idempotents commute ([2], Th. 1.17). The
inverse of an element ¢ is then denoted by a~*. For any idempotent
e, et = ¢, and, for any elements a, b of S

(a ™) =a, (ab)™ = bla™?.

If (a,a’) is a regular pair, then aa’ and a’a are both idempotents
but are not always equal (even in an inverse semigroup).

A regular (inverse) subsemigroup T of a semigroup S is just a
subsemigroup of S which is a regular (inverse) semigroup in its own
right,

For any semigroup S we shall denote by E the set of idempo-
tents of S. The set Ey can be partially ordered by defining ¢ < f if
and only if ¢f = fe = e. Of course, if S is an inverse semigroup then
this reduces to ¢f = ¢ and E, then becomes a semilattice, withe A f =
ef, called the semilattice of idempotents of S.
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We shall call a subset A of a partially ordered set B convex if
x <y <=z x2cA implies that y e A.

If p is a congruence on a semigroup S then we shall denote by
0|z, the partition of Eg induced by o, thatis oz, = 0 N (Es X Es), and
by ao the p-class containing the element a. We shall also make use
of the fact that, in an inverse semigroup, if (@, b) € o then (¢, 07" e p
([4] Corollary 2.3) and, consequently, (aa™?, bb™") € p.

Clearly a homomorphic image of a regular semigroup is regular
and it was established in [12] that a homomorphic image of an in-
verse semigroup is an inverse semigroup.

Finally, two elements of a semigroup S are said to be &~- (#-)
equivalent if they generate the same principal left (right) ideal of S.
Clearly & and &% are equivalence relations on S, as is the relation
o7, defined by o7 = <&~ N #.

2. Maximal regular subsemigroups. In this section we shall
generalize the well known result that for any idempotent ¢ of a semi--
group S there is a unique maximum subgroup of S with identity e.

LemMA 1.1. Let (a, @) and (b, b') be regular pairs in a semigroup
S. Then a'a bb" and b’ a’a are idempotents of S +f and only if (ab,
b'a’) is a regular pair.

Proof. Let a’a b’ and bb’' a’a be idempotents. Then
(ab)(V'a’)(ab) = aa’abb’'a’abb’b = aa’abb’b = ab
and
b'a’)(ab)(b'a') = b'bb'a’abb'a’aa’ = b'bb'a’aa’ = b'a’

as required.
Conversely, if (ab, b'a’) is a regular pair, then

(a’abb’)(a'abb’) = a'(ab)(b'a’)(ab)t) = a’abb’

and similarly bb'a’a is an idempotent.

LemMaA 1.2, ([5] Lemma 1.1) If e and f are idempotents in a
regular semigroup S then, for some idempotent g in S, (g, ef) is a
regular pair.

LemMmA 1.3. For a regular semigroup S the following are equiv-
alent:

(1) EE; S Eg

(2) eckH, (e, x) a regular pair tmplies that x ¢ Eg;
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(3) (a,a) and (b,b') regular pairs implies that (ab,b’a’) is a
regular pair.

Proof. (1) imples (2). (Cf. [11] Th. 1.) Let ec Es and (e, x) be
a regular pair. Then x = wex = xeex € E;Ey & E,. (2) implies (1).
Let e, fe By, then by Lemma 1.2, for some idempotent g, (g, ef) is a
regular pairs and so ef ¢ Ej.

(1) implies (3) by Lemma 1.1.

(3) implies (1). Let ¢, fe Ey. Then, since (e, ¢) and (f, f) are
regular pairs, (ef, fe) is also a regular pair. Then ef = (ef)(fe)(ef) =
(ef)(ef) and ef e K.

LEMMA 1.4. Let S be a regular semigroup such that Eg is a
subsemigroup. Then, for any regular pair (a,a’)

albx S Ey .

Proof. Let (a,a’) be a regular pair and ee Es. Since

adaeec BEgEy & Ey ,
we have

(aea’)? = aea’aea’ = aa’aea’aea’ = aa’aea’ = aea’ .

THEOREM 1.5. Let E be an idempotent subsemigroup of a semi-
group S. Then E° ={xeS: for some &, (x,2") is a regular pair,
xx', 2’xe E, xEx’ S E and o'Ex S E} is the largest regular subsemi-
group of with E as its set of tdempotents.

Proof. Let a,be E° and let o, b be elements of S such that
a,a’ and b, b’ satisfy the conditions of membership for a and b, re-
spectively. Then clearly o', ¥’ ¢ E°. Moreover, since a'a, bb’c E, we
have a’abb’ and bb’'a’a contained in E and so, by Lemma 1.1, (ab, b'a’)
is a regular pair. Also

abb'a’ caba’ = E,ba’'abc VEb = F
and
abEb o S aFa S E,bad’Eab S VEb S E .

Thus abe E° and E° is a subsemigroup of S. Since, as pointed out
above, for each a e E° some inverse of a is also in E°, E° is a regular
subsemigroup of S.

To show that K, = E, let ¢« be an idempotent in E° and let
(a, @’) be a regular pair with a,a’ € E°. Then

o = ad'ad’ = d'aad’ c EE S E



352 N. R. REILLY AND H. E. SCHEIBLICH

and so
a=ada =add’'acEE S FE .

Hence E,c = K, since clearly E & Ey..

Now suppose that T is a regular subsemigroup of S such that
E, = E. Then, for any 2 ¢ T, there exists an '€ T such that (z, ')
is a regular pair in T and so 22, 2'x € E, = E. Then, since EE S E,
we have, by Lemma 1.4,

xEx' S F and o’ Ex S FE .

Thus %€ E°.

COROLLARY 1.6. Let E be a subsemigroup of commuting tdem-
potents of a semigroup S. Then E° (defined as in Theorem 1.5) 1s
the largest inverse subsemigroup of S with E as its set of tdem-
potents.

Proof. By Theorem 1.5, E°¢ is the largest regular subsemigroup
with E as its set of idempotents. Since the elements of E commute,
E° is, in fact, an inverse subsemigroup and so is clearly the largest
such.

3. The lattice of congruences on a regular semigroup. For
any semigroup S we denote by A(S) the lattice of congruences on S.

If 0 and p are congruences on a semigroup S such that 0 S p
then the relation p/o on S/o defined by

p/o = {(xo, yo)e Sjo x S/o : (x,y) € p}

is a congruence on S/o. Moreover, the mapping o — p/o is a one-to-
one order preserving mapping of the congruences p on S containing o
onto the congruences on S/o, as is easy to show.

It is straight forward to verify that if o, 0,7€A(S)and 0 S p,
then

(oN7)o =plocNtjoand (o \V 7)o = (p/o) V (t/o) .

It is convenient to point out here that, for any semigroup S,
A(S) is complete ([2] p. 24) and that if C is a nonvoid subset of
A(S) then VY,e, 0 may be characterized as {(x,y)e S x S: there exist
%y, ce-,x,€8 and oy, -+, 0,.:€ C (not necessarily all distinct) such
that (x, ) € 01, (¥, ) € 03, + =+, (T, Y) € P
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In order to show that a sublattice R of A(S) is a modular sublat-
tice, it follows from ([1] Th. 3, p. 86) that it suffices to show that
the congruences in R commute; that is, that p,7ze R implies that
0oT = Top.

We shall call a sublattice R of A(S) a complete sublattice if, for
CS R,V,eop and Nyeo 0 not only exist in A(S), but also belong to
R.

LEmmA 3.1. Let S be a semigroup and R = {o;:1¢ I} be a subset
of A(S) such that 0 = Nier0:€R. If Rlo = {p;/o:1¢eI} is a sublat-
tice (sublattice of commuting congruences, complete sublattice) of
A(S/o) then R is a sublattice (sublattice of commuting congruences,
complete sublattice) of A(S).

Proof. Let 0,, 0,€ R. Then p,/o N p,/o and p,/o \/ p,/o belong to
R/o, as R/o is a sublattice of A(S/o). Now,

0:/0 N )0 = (0, N P)Jo and /o V p,Jo = (0, V p,)]o

and so, by the one-to-one nature of the mapping o — p/o, it follows
that o, N o, and o, VV o, belong to R. Thus R is a sublattice of A(S).

Now let R/o be a sublattice of commuting congruences of 4(S/o),
let p,7e R and let (a,b)cpor. Then for some ce S, (a,¢c)ep and
(¢, b)er. Hence (ao, co)cp/o and (co, bo)er/o. Since the elements
of R/oc commute it follows that p/o-t/oc = t/oop/o and, consequently,
that there exists a do € S/o such that (ao,do)e /o and (do, bo) € p/o.
Hence (a,d)ec and (d, d) € p; that is, (a,b)erop. Thus por S 7op
and likewise po7 S 7op. Hence pot = top and R is a sublattice of
commuting congruences of A(S).

Finally, let R/c be a complete sublattice and let C’' < R. Then
V.eo 0/0 exists and is contained in R/o, say, 7/0 = Y ,e,p0/0. Then
plo < /o, for all peC and so p S 7. On the other hand, p &7’, for
all pe C implies that p/o & 7’/o, for all pe C, and hence that

<o =V olo S /o .

Thus 7 =7 and V,eo =7 € R.
The verification that N,ec0€ R is even simpler. Thus R is a
complete sublattice of A(S).

Note. It is almost immediate that if, in Lemma 3.1, R is a
sublattice (sublattice of commuting congruences, complete sublattice)
of A(S) then R/o is a sublattice (sublattice of commuting congruences,
complete sublattice) of A(S/o).



354 N. R. REILLY AND H. E. SCHEIBLICH

LemMA 3.2. ([6] Lemma 2.2) Let o be a congruence on a regular

semigroup S. Then each idempotent p-class contains an idempotent
of S.

For any semigroup S, let 3(5#) = {pc A(S): p & &#}.
From [8] Lemmas 1 and 3, we have,

LEMMmA 3.3. Let S be a regular semigroup. Then X(5F) is a
sublattice of A(S) of commuting congruences with a greatest and
least element.

We call a congruence p on a semigroup S idempotent separating
if each p-class contains at most one idempotent.

That any congruence p on a semigroup such that o & 57 is
idempotent separating follows from [2], Theorem 2.15, and the fact
that every idempotent separating congruence on a regular semigroup
is contained in 7 follows from Theorem 2.3 of [6]. Thus, for any
regular semigroup S, 3(5#) is the set of idempotent separating con-
gruences on S,

Now any convex subset, with a largest and smallest member, of
a complete lattice is clearly a complete sublattice. Hence, by Lemma
3.3, for any regular semigroup S, since X(5#°) is clearly a convex
subset of A(S), it follows that 3(2#°) (the set of idempotent separating
congruences on S) is a complete sublattice of A(S).

THEOREM 3.4. Let S be a regular semigroup and let
0 = {(01, 02) € A(S) X A(S):e0, N Eg = ep, N Es, for each ec Eg}
= {(01, 02) € A(S) X A(S): 0,| Es = p0.| Es} .

Then

(i) 6 is a meet compatible equivalence on A(S);

(ii) each O-class is a complete modular sublattice of A(S) (with
a greatest and least element).

Proof. (i) Clearly 6 is an equivalence relation on A(S). Let
(01, 02) €0 and p,e A(S). Then

0.0 (Es < Ey) = 0:N (Es X Ey)
and so

0N s N (Ey X Eg) = 0,0 05N (Ey X Ey)

that is (0, N s 0. N 0s) € 6.
(ii) Let A be a 6-class, let 0 =).es7 and let pe A. For
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e, feEy, let (e, f)ep. Then (e, f)ez, for all ce A and so (e, f)eco.
Conversely, as 0 S p, (e, f) €0 implies that (e, f)ep. Thus o, =
oly, and ce A. Thus A has a least member.

Now, for any pe A, p/o is idempotent separating. For suppose
that f, and f, are idempotents of S/o such that (f, f,) €p/o. By
Lemma 3.2, f, = e, and f, = ¢,0 for some idempotents e, e, of S.
Thus (e,0, e,0) € p/o and so (¢, ¢)€p. But plz; = 0z, and so

fi=eo=e0=f,.

Hence p/c is idempotent separating.
On the other hand, for any congruence z on S/o,

' = {(a,b)e S X S:(ao, bo) e}

is a congruence on S. Suppose that ¢ is idempotent separating, If,
for ¢, fe Es, we have (e, f)e7’, then (eo, fo)er and so, as 7 is
idempotent separating, e = fo. Thus ¢’ [, = 0, and 7’ ¢ A. Now
7’/o = 7 and so {p/o : p € A} is just the sublattice of idempotent separat-
ing congruences on S/o. Since this, by Lemma 3.3 and the remarks
following it, is a complete sublattice of 4(S/o) of commuting congru-
ences, we conclude from Lemma 3.1 that A is a complete sublattice
of 4(S) of commuting congruence and so a complete modular sublat-
tice of A(S).

Finally, since A is a complete sublattice of A(S), V,e.0€c 4 and
A has a greatest member.

4. Congruences on inverse semigroups. In this and the fol-
lowing sections we consider inverse semigroups, for which we are
able to improve on the results of the previous sections.

DEFINITION 4.1. Let S be an inverse semigroup and
P={E,:aecd}

be a partition of E;. Then P is a normal partition of Ej if

(i) a, Bed implies that there exists a veJ such that E,E; S E,

(i) aed and ac S implies that there exists a B eJ such that
a0 S K.

If, for an inverse semigroup S, P = {¥,:acJ} is a normal parti-
tion of Ej, then E, is convex for each aeJ. For if e, gec E, with
e < f<g and feEj then ef = e implies that E,E; S E, and so f =
9feE,E; S E,. Moreover, we shall denote by 7, the equivalence
relation on Ey induced by P and show in the following theorem that
there exists a congruence o on S such that o|;; = 7p. In fact, we
give characterizations of the largest and smallest such congruences.
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THEOREM 4.2. Let P = {E,:aecJ} be a normal partition of the
semilattice of tidempotents of an inverse semigroup S. Let ¢ =
{(@,b)e S x S: there exists an aed with aa™, bbec E, and, for
some ec K, ea =eb} and p ={(a,d)eS x S:aecd vmplies that, for
some Bed,aE,a, bEb™ & Es}. Then o and o are, respectively, the
smallest and largest congruences on S such that 0 |,3 = 0lzg = Tp.

Proof. Clearly o is an equivalence relation. So let (a, b) €0 and
ce S, where aa™, bb~ € E, and ea = ¢b, for some ec E,. Now suppose
that (ac)(ac)™ = acc'a™' € E, while (bc)(bc)™ = bec™'b*e Es. Then,
since (aaY)(acc'a™) = acc'a™? and (aa ‘)N acc'a™) e K, E,, it follows
that E.E, = E,. Likewise E . E; & E;. Now, eacc™'a™ = eacc'a™e =
ebee'b~'e = ebec™'b™" where eacc~'a™' € E E, S E, and ebcc'b' e K By =
E;. Hence E, = E;. Now, for any feF,, feec E.E, < E, and

(fe)ac = flea)e = f(eb)e = (fe)be .

Thus (ac, be) e o.

For some veJ, cE,c' S E, and so (ca)(ca)™ = caa ¢ ecE.c' &
E, and (cb)(cb)™ = cbb'c'eckE,cT & E,. Also, if f = caa~'ec™ then
fecE.c? < E, and

fea = caa™'ec'ca = caa"'c'cea

= caa'c'ceb = caatec™'ch = fcb .

Thus (ca, ¢b) e o and o is a congruence on S. Moreover, it is evident
that o (z5 = 7p.
Now suppose that t is any congruence on S such that

TlEs: O-{Es =Tp
and let a,b be as above. Then aa='t = bb~'c = et and so

at = (aa~'a)t = (aa™")tat = etar = (ea)t = (eb)T
= etbr = bb~'tbr = bt .

Thus ¢ S 7 and o is the finest congruence on S such that o[, = 7».
The verification that o is the largest such congruence is similar
but simpler and so we omit it.
We devote the remainder of this section to obtaining an alterna-
tive characterization of the congruences o, p of Theorem 4.2 in terms
of kernel normal systems.

DErFINITION 4.3 [9]. Let S be an inverse semigroup. We call
4~ a kernel mormal system of S if _y~ is a collection of inverse
subsemigroups of S, 7+~ = {N,:aeJ} such that, if K, = E, then
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(1) {E.:acd} is a normal partition of E;
2) aa™',bb'eE, and a, abe N, implies that be N,;
3) aa,bb e E, ab™e N, and aE,' & E, implies that aN ™' &
N,.
Then we have

THEOREM 4.4. (Preston [9], Th. 1). Let S be an inverse semi-
group and let 4 = {N,.acd} be a kernel normal system of S.
Let o, ={(a,b)eS x S:aa™",bb' € E, and ab™* e N, for some acJ}.
Then o, is a congruence on S and {N,.acJ} is the set of idem-
potents in S0

Conversely, let p be a congruence on S. Then _y~ = {eo:ec Eg}
18 a kermel normal system of S and o0 = 0.

Thus a congruence on an inverse semigroup is uniquely determined
by the congruence classes which contain the idempotents.

THEOREM 4.5. Let S be an inverse semigroup and P = {E,: a e J}
be a normal partition of Eg. For each acd, let T, be the largest
imverse subsemigroup of S such that E,, = E,, let M, ={xc T,cex =¢
Jor some ec E,} and let N, = {x € T,: E,E; S E, implies that xEx™ &
E}. Then # ={M,aecd} and ¢~ = {N,: aed} are kernel normal
systems of S, o, = 0 and p, = p, where 0 and o are defined as in
Theorem 4.2,

Proof. For each aedJ, let U,, V, be the o and p-classes, respec-
tively, of S containing K,.

Clearly M, S U.. Also, since E, = E,, it follows that U, & T..
Hence for xz e U,, we have first that x e T,. Moreover, from the de-
finition of o, since z, xx~'e U,, that is, (x, xx~') € 0, we have that, for
some idempotent ec E,, ex = exx™ and so exe = exx'¢ = exx'c E,.
Hence (ewe)r = exex = ex = exe and so x e M,, M, = U, and po_, = 0.

For xe N,, we have za¢~'e E,. Now, for any SeJ, xa'Emxa™ =
20Ky & EF; S K, say. Then xFEx & E,, by the definition of N,,
and so (x, xx~')e p. Consequently, € V,. On the other hand, since
E, =E, V.S T, and so x¢ V, implies that «, 2'e T,. For BeJ,
suppose that E.E; S E, and let e¢ecE,, feE; and geE,. Then
efec E.F:E, S E, and so (ep)(fpo)(ep) = (go). Hence, since epo = xp =
z7o, (wfe ™o = (xp)(fo)(x~'p) = gp; that is, xfe~' e E,. Since P is a
normal partition of Ej, it follows that xEm™ S E, and that zeN,.
Thus V,= N, and o, = p.

5. The lattice of congruences on an inverse semigroup.

THEOREM 5.1. Let S be an inverse semigroup and let
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0 = {(01, 02) € A(S) X A(S): 01 |5 = 0s |ng}

Then

(i) 6 is a congruence on A(S);

(ii) each 6O-class is a complete modular sublattices of A(S)
(with a greatest and least element);

(iii) the quotient lattice A(S)/0 1is complete and the mnatural
homomorphism 6% of A(S) onto A(S)/6 is a complete lattice homo-
morphism.

Proof. We already know from Theorem 3.4 that 6 is a meet
compatible equivalence on A(S). To establish that 6 is a congruence
it only remains to be shown that for (o, 0.) €6, ps€A(S) we have
(01 V 05, 0.V 0s)€0. Let ecEg and fee(o,V 0s) N Es. Then feEjg
and (e, f)epo, V 0. Hence there exist x,a, ---,2,€S such that
(e, @) € 0y, (T, ;) € O3y +, (T4, f) € P5. Thus (e, x,x7?) € O,(x,@77, X,057) € O3y
<o, (@it f) € s But (o), 0) € 0 and so (e, 2,a77) € 0, (X077, 2,257) € 05
oo, (257, f) € 0, Consequently, (e, f) €0,V o5 and f €e(o, V 0:) N K.
Similarly e(o, V 0:) N Ey S e(0, V 0;) N Ey. Hence o,V 05 lgg = 02V 05 |ES
and (0, V 05, 0, V 05) € 0.

Part (ii) follows immediately from Theorem 3.4,

(iii) To show that 4(S)/6 is complete and the natural homomor-
phism 64 of 4(S) onto A(S)/6 is complete, (i.e., 08 preserves arbitrary
joins and intersections as well as pairwise joins and intersections) it
is sufficient to show that ¢ is a complete congruence in the following
sense: if, for some index set I, o;, o} € A(S) for all 1€ I, and (p,, 0}) €0,
for all 7¢I, then

(2) (Qow Qei)er
and
(b) (v 0i, i\ellp§> cd.

However, quite minor alterations to the proofs of (i) in Theorem 3.4
and (i) in Theorem 5.1 will establish (a) and (b), respectively. Hence
we have (iii).

6. Kernel normal systems. Let S be an inverse semigroup and
define ¢ on A(S) as in Theorem 5.1.

DeFINITION 6.1 [3]. Let T be a semigroup, o a congruence on 7,
and B< T. Then [Blo = {x| (b, x)cp for some be B}.

The proofs of the following two lemmas are based on the methods
of Goldie [3] and Preston [9].
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LEMMA 6.2, Let T be a semigroup, 0., 0. congruences on T, and
B< T. Then [[Blodo. = [[Blo.Jo. implies that [[Bloio. = B(o, \V 0.).

Proof. (i) It is immediate from the definition that [[B]o,]e. <
[Bl(o: V ©2).

(i) Let xz€[BJ(o, V 0:). Then (b, x)e p, \V p. for some be B so
that there exist «,, @, +++, 2, € T such that (b, )€ p, (®, 2.) €0, + -,
(%, ¥) € 0,. Hence =,€[Blo, and so z,€[[Blo,]o. = [[Blo.Jo.. Thus
x; € [[[Ble:p:]o. = [[Blo:Jo. = [[Bl]o:]p.. Proceeding by induction, it is
easy to see that x e [[B]o,]0..

LEMMA 6.3. Let p,0€A(S) be such that (0,0)el and let
{No|laed}, {M,|aecJ} be the kernel mormal systems of o and o,
respectively. Define (NN M), = {k|kke E, and kn = m for some
neN, and me M,}. Then (NV M), = [N,]Jo = [M,]p.

Proof. (i) (NV M), < [N.on|[M,]p. Letke(N \V M),. Then
kk*e E, and kn =m for some neN, and me M, Thus ki,
() 'e E, and k(n')" e M, so that (k, n™*) € 0 and hence k € [N,]o.

Now, ke[N,]o implies that (k,a)eo, for some ae N, and so
(k7k,a'a)e o, where a'ac K, Hence k'kcE, and (k'k,n)ecop.
Then (k, m) = (kk~'k, kn) e p or ke [M,]o.

(ii) [NJo & NV M),. Let ke[N,Jo. Then (k,n)co for some
n in N, Thus kk*,nn"'eE; and kn'e M, for some BeJ. But
neN, and so nn~'e E, so that E, = E;. Now kn~'e M, implies that
ke(NV M),.

(ili) [M].oe S[NV M),. Let ke[M,p, say (k,m)ep where
me M,. Then, as mm™e E,, we have kk~'e E,. Also, (k',m™)ep
and m™m ¢ E, imply that k'me N,, say k'm = neN,. Then kn =
kk?me E.M, S M, or ke (N V M),.

THEOREM 6.4. Let {N,|aecd} and {M,|aecJ} denote the kernel
normal systems of p and o, respectively, where (0,0)ef. Let
NV M), ={k|kk7ecE, and kn =m for some neN, and me M,}
and (NAM),=N,NM, Then {(NV M),|lacd} is the kernel
normal system of pV o and {(N AN M), |aed} is the kernel normal
system of o N o.

Proof. It is immediate that {(N A M), |a € J} is the kernel normal
system of o N o since for each ec E,, e(oN o) =epNeoc = N, N M,.

If ec E,, then ep = [E,]Jo = N, and eo = [E,Jo0 = M,. Since the
0-classes are sublattices of 4(S),ec E, implies that e(o Vv o) =
[E.J(o VV 0). Lemma 6.3 shows that [[E,]e]lo = [[E.]lo]e and hence
Lemma 6.2 implies that [E,](0 \VV 0) = [[E.]plo = [N.]Jo = (N V M),.
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