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APPLICATION OF INFINITARY LANGUAGES
TO METRIC SPACES

RALPH KOPPERMAN

We attempt to lay the groundwork for applying the
recently-developed theory of models for the infinitary languages
Llε to analysis. It will be shown that within one of these
languages, axioms may be written whose class of models is
precisely the metric spaces. We show that two complete
separable metric spaces are elementarily equivalent in this
language if and only if they are isomorphic and obtain an
elimination of quantifiers for such spaces. A method is
developed for transferring results on metric spaces to struc-
tures with metrics whose relations are closed under the metric
topology. This class includes Banach Spaces.

When not otherwise indicated, definitions, notations, and model-
theoretic results used in this paper may be found in [5],

The paper will be divided into three sections, as follows: I. Axio-
matization of metric spaces, II. Theorems on metric systems, and III.
Metric algebraic systems. Model-theoretic results will be introduced
as needed.

I* Axiomatizatίon of metric spaces* Our method of axiomati-
zation of metric spaces is chosen in order to make their definition
possible with one sentence in L™lCϋ (for the definition of Lκβ, ωlf and
ω, see [5]). We begin with a definition of the rational numbers:

DEFINITION 1.1. Q = <Q, +, , 0,1, < > , a structure of type
q — <3, 3, 0, 0, 2> will be called a rational number system if and
only if:

(1) Q is an ordered field (see [9, pp. 77, 5]).

(2) (Vvo)(O<vo-+Vi<ω\/j<ω(Vo a+ . . . + 1 ) = 1 + . . . +1)).
j factors i factors

THEOREM 1.2. Each rational number system is isomorphic to the
rational numbers.

Proof. Each ordered field contains an isomorphic copy of the
rational numbers, and by axiom 2, each positive (thus each negative)
element of our field is the ratio of two "integers".

DEFINITION 1.3. A structure SI = <A, M,Q, + , , 0,1, <, d> of
type m = <1,1, 3, 3, 0, 0, 2, 3,> is a metric system if and only if
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+, , 0, 1, < > is a rational number system, and +, , < apply
only to members of Q, and:

(1) (wo)((M(vo) V Q(v0)) A ( Ί M(v0) V Ί Q(vQ)))
(2) (wβ)(d(vβ)-+M(v0) A M(vλ) A 0 <v2)
(3) (Vv/4)(d(vβ) Av2<vd-+ d(v0, vu vs))
(4) (Vvβ)(lvB)(d(vβ) -> v3 < v2 A d(v0, vu vd))
(5) (Vv/2)(lv2)(M(v0) A M(vλ) - d(vβ))
(6) (Vvβ)(d(vβ) — d(vu vQ, v2))
(7) (Vv/b)(d(vβ) A d(vl9 vs, vA) -> d(v0, vi9 v2 + v,))
(8) (Vi;/2)(3O(M(O Λ M(vx) A Ί (v0 = vx) — 0< v2 A Ί d(vβ))
(9) (Vvβ)(M(v0) Λ v o ^ ! Λ θ < i ; 2 - d(W3)).
The general idea of these axioms is to identify each real number

with the set of rationals greater than it. Axioms 1 to 4 simply pre-
pare the groundwork for the above interpretation. Axiom 5 says
that to each pair of points there corresponds a distance. Axiom 6
gives the symmetry of distance, 7 gives the triangle inequality, 8
yields the fact that any pair of distinct points differ by a positive
distance, and 9 says that the distance from a point to itself is 0. To
formalize the above discussion, we have the following representation
theorem for metric systems:

THEOREM 1.4. (a) Let SI = <A, M, Q, +, , 0,1, <, d> be a metric
system. Then SI* = <7kf, my is a metric space, where m(xy y) =
inf {qjζx, y, qyed} (for each pair x, y e M). This metric space is called
the associated space of the metric system 31.

(b) Let ^= <Λf, my be a metric space. Then the associated
system ^ f * = ζM U Q, M, Q, +, , 0, 1, <, d> of ^/f is a metric
system, where Q together with its relations and constants ( +, , 0, 1, <)
is the rational numbers, our union M[jQ is disjoint, and

d = {<x, y, qy/m(x, y)<qeQ} .

Proof. Consider the completion R of Q. If x,y e M, by 5
{q/ζx, y, qye d) is nonempty, and by 2, all its elements are positive
(thus 0 is a lower bound). Thus m(x, y) exists. It remains to be
shown that m is a metric. To show the triangle inequality we note
that axiom 7 gives us the fact that if ζx,y, qyed and ζy, z,ryed,
then ζx, z, q + r)e( ί . Thus

inf {#/<£, y, qyed} + inf {r/ζy, z, ryed} ^ inf {s/ζx, z, s)ed} ,

in other words m(x, z) ^ m(x, y) + m(y, z). The other laws are checked
with similar case. This shows (a), and under the assumptions of (b),
axioms 1, •••, 9 for metric systems can easily be shown.

LEMMA 1.5. (a) If SI, S3 are metric spaces or metric systems and
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21 = 35, then 21* = 35* (where for metric spaces, isomorphism =
isometry).

(b) If % is a metric space or a metric system, 21 = (SI*)*.
(c) For metric systems 21, 35, 21 e Iso Sub (35) if and only if

21* = (£ for some subspace (£ of 35*, (We write 21 e Iso Sub (35) if
and only if 21 = & for some i ^ c 33, 21 e Iso Sube(33) if and only if
21G Iso Sub (33) and card (21) < e.)

The proof is routine, though somewhat long, and left to the
reader. We will now say that a metric system has property P if and
only if its associated space has that property. We will also say that
a metric system and a metric subsystem of it have property Q if and
only if the associated space and subspace have that property (for
example, the subspace may be dense). Often we will want to translate
these properties into our first-order infinitary language. A proof
similar to that of Theorem 17, [6] (with Q in place of 21, and ωxω
in place of εε) shows that completeness cannot be characterized by a
single sentence in L™l0). It is clear, however, that complete metric
systems are precisely those which satisfy the following sentence in

LZiωi: Ct = (Vv/ω)((Wω) 0 < <yω-> V«»A«i<»Ai<*< w d(^, vk, vj)

-> ((lvω+1)(Vvω+2) 0 < vω+2-+ (yi<ωAi<o<cod(vω+u vjy vw+2)))) ,

since this sentence simply says that each sequence (v/ω) which is
cauchy (i.e., such that for each v there is an i < ω such that for each
finite j , k such that j and k are greater than i, vά and vk are "closer
together" than vω) there is a limit (vω+1). It is also clear that separable
metric systems are simply those satisfying Sep, where

Sep = (lv/ω)(Vvω)(Wω+1)(M(vω) A 0 < vω+1—\/i<ωd(vωJ vi9 vω+1)) .

Thus most of our future dealings with metric systems will take place
in /,»„,.

II• Theorems on metric systems*

THEOREM 2.1. Let 21<ω i, ωi 35 and let 21 or 35 be separable. Then

21 = 35. (For definition of < ω i , ωχ see [5], Definition 2.2).

Proof. Assume 21 is separable. Let (£ = < {n0, nu •}, ml > be

a dense countable subspace of 21*, Then 21 t= D[n0, •••], where

D = (Wω)(Wω+1)(M(vω) Λ 0 < vω+1-*yi<ωd(vω, vi9 vω+1)) .

Thus (£ is dense in 35*, since by our assumption, 35 [= D[n0, •].
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Now let beM', where S3 = <5, M\ •>. Since (£ is dense in S3*,
there is a sequence wίo, w^, of the n/s approaching b. Thus
» t= ( S v J ^ K , , . . . ] , whereL = (Vvn+1)(O<vω+1-*yi<ω Ai<i<»d(vω,v,.,vω+1)).
Thus 21 \= (3vω)L[nio, •], but since SI* is a subspace of S3* and limits
are unique in metric spaces 21* = S3*. If 21 = ζA, M, •> this implies
that M — Mr, so A — B, thus 2ί = S3. This proves the theorem in the
first case, but if S3 is separable, then 21 must also be, from which the
theorem must follow in the second case.

It can be shown similarly that if 2I<ω i,ω iS3 and 21 is dense in S3,
then 2ί— S3. The following definition and results may be found in
Tarski.

DEFINITION 2.2. Let 21 be a structure of type t, Dom(ί) = ε < π,
and let a be a well-ordering of A. Then

Desα(2ΐ) = (AF)Λ(AF')Λ ( Λ W Λ F>)) Λ (Λ«p>ai(Λ *"*)) ,

where

F = {Vi = Vj/di = a3) U {Vi = c ja, = c3) U {c{ = Cj/c, = c3),

Ff = { Ί Vi = Vj/di Φdj} U {Ί Vi = cJcLi Φ c3) \J {1 c, = c./c, Φ cd},

Fp = {Rp(x'j/t(p))lb'j/t(p)eRp,

where b3 . = ak if xjm = vk and b3. = ck iΐx3. = ck} and

F\ = Π B,p(χ j/t(p)) b'j/t(p) £ Rp, b defined as for Fp} .

COROLLARY 2.3. Let 2ί be a structure of type t. Then 21 e Iso
Sub (S3) if and only if S3 f= (3 X)Des (21), where X =

Note that if c(A) < π, then Des(2I) and (3X)Des (21) are both
formulas (the latter a sentence) of Lf

rr.

DEFINITION 2.4. Let K be a countable metric system, c a mapping
from ω one-one onto C. Then let

vω)(V vω+1)(Όesc(&) A (M(vω) Λ 0 < vωΛ1

Note that 21 is dense in S3 for some 21 = (£ if and only if

S3 N Dcc(&) .

Thus Dec should be viewed as a method of expressing within L™iα)1 the
fact that a countable space is dense in another space. If it is unne-
cessary to distinguish our well-ordering c, we simply write Dc((£) in
place of Dce(&).
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LEMMA 2.5. If % is a metric system, 2ί |= Sep if and only if for
some countable metric system (£, SI = Dc(&).

The proof is left to the reader.

THEOREM 2.6. Let % be a complete separable metric system, 93
a metric system. Then 21 ΞΞωi>ωi93 if and only if 21 = 93. (A defini-
tion of = π,ε is found in 2.1, [5].)

Proof. Let ζK, Jt) be a dense countable subspace of 2ί*, where

Then 21 \= Dc(ζK, &>*) Λ Ct, so 93 h Dc«ίΓ, &>*) Λ Ct. By the remark
following Definition 2.4, 3) is dense in 33 for some S) = (K, &>. Thus
up to isomorphism, ζK, ky is dense in 33* and 21*, two complete metric
spaces. It is well-known in the theory of metric spaces that if two
complete spaces have the same dense subspace (up to isometry), then
the spaces are isometric. Thus by Lemma 1.5, a, 2ί = 93.

We are going on to eliminate quantifiers for complete separable
metric systems. First we make the notation B(S) for all the boolean
combinations of a set of formulas S (see Definition 5.1, [6]), and
restate Theorem 5.2 of that paper.

THEOREM 2.7. Let S be a consistent set of sentences (i.e., one
with models) in Lf

πε, E a set of sentences in Lίε such that there is
a set B'(E) with the property that for each ψ e B(E) there is a ή> e Bf(E)
with S \= φ+->φf. For any consistent set of sentences TczLl,, S c T,
assume there is an AczE such that Tc Tπε(S U A) (and S U A con-
sistent). Then for any sentence φ e L\t there is a θ e B(E) such that
S\= φ~θ.

LEMMA 2.8. Let S c L*πε be a consistent set of sentences, E c Lίε

a set of sentences such that (1) for any models 2ί, 93 of S, if 21 1= θ,
93 |= θ, θ e E, then 2t Ξ „, ε93, and (2) for any model 2ί of S there is a θ e E
such that 21 |= θ. Then (a) if TaL*πe is a consistent set of sentences
and Sc T, then there is aθeE such that Tcz T*ε(S U {#}) and S U {θ}
is consistent, (b) if φ e B(E), S\= φ «-> V A for some AczE, and (c) for
any sentence ζ e L\ε there is a φe B(E) such that S \= ζ «-> φ.

Proof, (a) If 21 is a model of T, then 21 is a model of S, so
there is a θ e E such that 2ί t= θ. Now suppose 93 is a model of S
such that 93 |= θ. Then 21 =π,eϊ8, so 93 |= T. Thus Γ c Tπε(S U
(b) φ = y/iei Kiejβu, θiό zEov-} θiά e E for each i, j . Let φi = A i 6
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be a disjunct. If for some i, j , θi3 e E, we assert that either

S t= φi <-* θij

or S \= ~] φi. To show this, assume not S h^ ; <-* θi5. Clearly,
S μ ^ θij , thus not S μ θiά — φi9 But then by (1), S N 0<, ~-> Ί ^ ,
therefore S N Ίφt. If for each i, η θi3 eE9φi = Λ e^ Ί ( Ί 0,,-).
Thus by (2) S N & «- V E - {̂ ί5 /j e J J . Thus in any of ' the above
cases S |= φ <-> V keκ5θk, with each #.; G E'. Thus

and eliminating repetitions, S 1= ̂  -̂> V^J which is condition (b) (note
that while V ^ m a y n o ^ be in L\t, it will be in L\,t for some π' ^ π,
and all our statements have meaning in that language), (c) This is
immediate for (a) and (b) and Theorem 2.7, using

B'(E) = {V A/AcE} .

THEOREM 2.9. Let φeL™i0)ί be a sentence. Then if Σ is the
conjunction of the axioms for a metric system together with Sep and
Ct, (i.e., is an axiom for complete separable metric systems) then
Σ \= φ <-> θ for some θ e B(E), where E = {Dc(©)/K a countable metric
system}.

Proof. Let S = {Σ}. Then S is a consistent set of sentences in
L%iωi. E is also a set of sentences in L%l<Ol, and S, E satisfy condi-
tions (1) (by the proof of Theorem 2.6) and (2) (by Lemma 2.5) of
Lemma 2.8. Thus our conclusion follows from (c) of that lemma.

To eliminate quantifiers for all formulas in L™lβ)1 for the theory
of complete separable metric spaces, we shall need the following:

DEFINITION 2.10. Let t be a type, i an ordinal. Then t*ί is the
type defined by t = ί*i/Dom(f) and if j < i, then t*i(Dom(t) + j) = 0.

DEFINITION 2.11. Let (£ = <(C, K, •> be a countable metric system,

Then if c is a mapping of ω one-one onto C, DCC((£, D) is the sentence
of Lf^ defined as follows:

£, D) - (

A (M(vω) A 0 <vω+1 -> \fi<ωd(vi9 vω, vω

If distinguishing c is unnecessary, we again leave it out and
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write Z)C((£, D) in place of DCe(&, D). DC(&, D) should be considered
as Dc(&) with some constants added.

THEOREM 2.12. Let SI, 33 be m * ω-structures such that 3I/m, 33/m
are complete separable metric systems. If 51 1= DC(K, JD) and
33 N Z)C(<£, D), then 2t = 33.

Proof. Let C = {c0, cx, •••}, where (£ is dense in 2I/m. Let

θ = DCC{&, D) ,

where c = <c0, c l f •••> Suppose S3 t= 0. Then there is a sequence
{δΛ/w < ω} satisfying θ without the existential quantifier. The map
/: & —> K' such that /(cn) = 6W is an isomorphism because of Des ((£).
In particular, it is an isomorphism from (£ to (£' preserving constants.
Since (£ is dense in Sl/m, E' is dense in 33/m, thus this isomorphism
can be extended to an isomorphism from §1 to 33.

COROLLARY 2.13. Let θ e L™SX be a sentence. Then Σ |= θ *- ^,
where φ e B{H), H — {DCC(&, D)/K countable, DaC, and c a map from
a) one-one onto C}.

Proof. Clearly S = {2Ί is a consistent set of sentences in L™*^,
and J ϊ is also a set of sentences in L™™χ. By Theorem 2.12, condition
(1) of Lemma 2.8 is satisfied. Condition (2) follows from the fact that
any separable metric space with a countable number of constants has
a countable dense subsystem containing those constants. If D is that
set of constants, and (£ is that system, then © |= J5CC(S, D) for any
mapping of ω one-one onto C. Thus our Corollary follows from (c)
of that lemma.

We now need the concept of substitution for free occurrences of
variable and for constants in a formula. Intuitively, by

we mean the formula obtained by substituting ^ for x, at each free
occurrence of xi or constant xiy and leaving unchanged other terms in
θ. Somewhat more formally, we consider the function f: V[j C —> V[j C
(see Definition 1.1, [5]) such that for each ieIff(Xi) = yif and if
^ G 7 U C , i ί ί , f ( X i ) = x{, and:

DEFINITION 2.14. Sbfθ is the formula defined inductively as
follows:

(1) Sbjix, = Xj) = f{x{) = f(χs),
(2) If je(VU Crp\ then Sbf(Pp(χoj)) = Pp(foXoj),
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(3) S&Λ-π θ) = -, S&A
(4) Sbf(VX) = V{Sbfθ/θeX},
(5) Sb,(AX) = A{Sbfθ/θeX},
(6) Sδ/v TF)0 = (V W)Sbf,θ, where /'(a) = /(α) f o r x e F U C - W,

f'(x) = x if x e W,
(7) Sbf(lW)θ = (*W)Sbf,θ.
We also define Sb({yji e I}, {xji e I})θ — Sbfθ with / as constructed

in the last sentence before our definition.
An immediate consequence of the definition is the fact that if

§1 1= Sb({yi/ί e I}, {xji G I})(θ —• φ) and none of the ^ occur in θ, then
§1 1= θ —> Sbdyji e I}, {xjί e I})φ. Also, if a sentence θ \= φ and none
of the Xi occur in 0, then θ (= Sb({yi/i e I}, {̂ /ΐ e

THEOREM 2.15, 1/ FeL™lWl is a formula, then Σ \= F+-+Θ for
some θeB(E'), where φeE' if and only if

W ί G ω}, {eji G ω}) 2?C(K, D),

with E, J5 as w Definition 2.11, J9 = {ê /i G ω}.

Proof. We can always put JP7 in an equivalent form Ff such that
{Vi/i G ω} is the set of free variables of F'. Thus we lose no generality
in assuming {vji e ω} is the set of free variables of F. Now consider
the sentence φ = Sb({ejί G ω}, {v{/i e ω}) Fe L™Sλ. For some θ G B(H),
Σ (= φ <-+ θ. Since Σ contains no reference to the ei9 we also have
Σ N Sb({Vi/i G ω}, {eji e ώ))(φ -> 0), thus Σ\= F^ Sbϋvji e ω},{β,/ί e ω})θ.
But by (3), (4), and (5) of Definition 2.14, Sb({Vi/i e ω}, {e{\ e ω})θ e B{Ef).

Thus we have an elimination of quantifiers in the theory of
complete separable metric systems for all formulas of L™ωi. This
elimination does not always take place within that language. We shall
proceed to universal equivalence for complete metric systems. Using
Corollary 2.3, Tarski has shown that two structures are universally
equivalent in L\π (in symbols 2t Ξ Ξ ^ S S ) if and only if Iso Subr((£) =
Iso Subπ(33). Thus if we allow U= Γ7?iωi, we have the fact that
3ί ΞΞ Ό 33 if and only if Iso Subωi (21) = Iso Subωi(23) for any two metric
systems.

DEFINITION 2.16. Let K be a class of complete metric systems.
Then SC(K) = {33/for some 21 e K, S3 c SI and S3 is a seperable complete
metric system}. ISC(K) - {®/® = 33 for some 33 e SC(K)}.

= ISC(2I).

THEOREM 2.17. Let 2ί, 33 be complete metric systems.
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if and only if ISC(2ί) = JSC(SB).

Proof. Assume first that Iso Subωi(2I) = Iso Subωi(33) (i.e., that
21^33). Let KGlSC(2ί). Since K is separable and complete there is
a countable SB c 21 such that 5) is dense in an isomorphic copy of
(£. By our assumption, there is a countable K c 33 such that (£ ~ ©.
Since S3 is complete, the completion of (£ is contained in 93 (by pre-
vious remarks, this is isomorphic to (£). Thus JSC(2I) c ISC(33).
Similarly, JSC(33) c /SC(2I).

Conversely, assume ISC(3l) = JSC(3S). Let £ e Iso Subωi(2I). Since
2t is complete, the completion of an isomorphic copy of (£ is contained
in 21, thus another isomorphic copy of its completion is contained in S3.
Thus an isomorphic copy of K is contained in S8. This shows that
Iso Subωi(2I) c Iso Subωi(33), and the reverse inclusion is shown similarly.

COROLLARY 2.18. Let 21, S3 be complete separable metric systems.
Then 31 = #33 if and only if for some © c 33, 21 = (£ and for some
35 c 21, 3 3 - 3).

Universal equivalence, even for complete separable spaces, is not
as strong as elementary equivalence. The following example, when
formalized, provides a counterexample. Let

where R is the real numbers. Define m(f, g) = \/Σχ=1{f{i) — g{i))2.
Then m can be shown to be a metric on N. Let

Then S(zN and the following isometry takes N into S. Let F: N —> S

by F{fm - f(i -1) , i > 1 and F(/)(l) = 0.
If 33 is the metric system associated with N, 21 that associated

with JS, then 2ί, 33 are complete and separable, 2t c 33, and 33 ^ K c 21,
but not 2ί s 33. If we take S' = {/e ΛΓ//(O) e Q} (Q the set of rationale),
we have an example (using S',N) of a sepable complete metric system
universally equivalent to a separable incomplete system. There are
also examples of separable systems universally equivalent to insepar-
able systems.

Ill* Metric algebraic systems* The theory of Banach Algebras
(see Naimark) has been one of the most important in analysis during the
past twenty years. The theories of metric groups (see Montgomery-
Zippin), Banach Spaces (see Dunford-Schwartz), normed spaces (see
Day), and many others have been essential to functional analysis.
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Measure theory can, in many respects, be reduced to the theory of
certain metric Boolean algebras, c.f. [4, pp. 165-174], All these
theories contain a common feature: they are theories of algebraic
structures with metric topologies. Most of them share a second fea-
ture: they are defined in terms of a norm rather than a metric. A
metric, however, can easily be defined by allowing m(α, b) = || a — b | |.
In this section we will extend the results obtained for metric spaces
to algebraic structures with metric topologies.

DEFINITION 3.1. A metric algebraic system is a structure

3ί = <A,M,Q, + , 0 , 1 , <,d,Rpyp<0

with o ^ 0) and:

(al) §I/m is a metric system.
(a2) If o = t(p), we have: M(cp). If 0 < t(p), we have:

(a3) (V v/t(p))(lv2t{p))(V t(p)/v/2t(p))(Rp(v/t(p))

V -i [0 < vmp) A (RMP)M2t(p))

Λ (Λi<t(P)Φi, vt{p)+i1 v2t{p))))]) .

(For notation used here see [5], discussion following Def. 1.1.)

In the above axioms, (a2) simply restricts the relations (and constants)
to the metric space, while (a3) closes all the relations (for the defini-
tion of a closed relation extend Dunford-Schwartz, p. 57, Def. 3 in
the obvious manner). Since continuous operations are closed as rela-
tions, it is clear that metric topological groups, etc. can be considered
by use of the above axioms. Banach Spaces can also be considered,
despite the fact that they are defined by use of two metric spaces,
rather than one. We simply work with the disjoint union of the
universes of the metric spaces involved, and define a metric on that
set by setting it equal to the appropriate of the two existing metrics
for two elements of the same set, and setting it equal to 1 otherwise.
Both sets now become closed and we proceed with the axiomatization
in the obvious manner. The remaining systems mentioned at the
beginning of this section can similarly be axiomatized as metric alge-
braic systems.

DEFINITION 3.2. Let 51 be a metric algebraic system, and let W
be a predicate defined in terms of the relations of §I/m. Then Sί is
said to have the property W if and only if 2ί/m satisfies W.
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In the above definition, W could define the property of being
separable, complete, etc. Note here that any substructure of a metric
algebraic system is itself a metric algebraic system, provided it re-
mains a metric system.

DEFINITION 3.3. Let A' c Rp. Then A! is dense in Rp if and only
if for any <α0, , at{p)_^ e Rp and any q > 0, there is an

\d 0, , d t(p)-l/ £ A

such that for each j < t(p), ζa3 , a'jy qye d. A metric algebraic sub-
system E of a metric algebraic system 21 is called dense in 21 if and
only if K/m is dense in Sl/m and the restriction of each Rp to C is
dense in Rp.

Thus a subset of a relation is called dense here if and only if it
is dense in the product topology. The above definition is the "correct"
one for density of subsystems, as shown by the following fact: we
can now make Definition, Theorem, Lemma, or Corollary 3.x(x ^ 4)
from the corresponding Definition, Theorem, Lemma, or Corrollary 2.x
by making the following alterations (where necessary) in their texts:
change "metric system" to "metric algebraic system of type t" and
change "m" (the type of metric systems) to "<". The proofs must be
altered somewhat, although only one (done below) creates any problem
in the new setting. Finally, the meaning of the words has been
changed somewhat. Our new DCC(E, D), for example, now refers to
all the relations in our system, rather then only the metric relations. A
separable Banach Space, for example, is determined by the relation of
vector sum (as well as norm, i.e., our metric) and scalar product on
a dense countable subset.

LEMMA 3.5. (Corresponding to Lemma 2.5). // 31 is a metric
algebraic system of type t, 21 |= Sep if and only if for some countable
metric algebraic system of type t, (£, SI (= Dc(K).

Proof. First note that if Np is any countable subset of At{p\
then there is a countable CpaA such that Np c Cp

t{p) (for example,
let Cp be the collection of all points which are any coordinate for any
point of Np). Since the domain o of t is countable, we can take
C = \JP<OCP U Q, and let K be C together with the restrictions of all
the relations of 31. Then (£ is clearly countable and 31 t= Z>c((£).

A remark left implicit in § II is that two separable complete sys-
tems are isomorphic if and only if they contain isomorphic dense sub-
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systems. This remains true here only because our relations are
required to be closed.
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