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A GENERALIZATION OF THE BORSUK-
WHITEHEAD-HANNER THEOREM

D. M. Hyman

Let A and B be metric spaces and let /: A — B be a map.
Suppose that X and Y are ANR’s containing A and B, respec-
tively, as closed subsets, and consider f to be a map from A
into Y. One of the results of this paper is that the question
as to whether or not the adjunction space X |J;Y is an ab-
solute neighborhood extensor for metric pairs (or ANR if
X U/Yis metrizable) depends only on f and not on X and Y; that
is, if X U, Y is an ANE (metric) and if X and Y are replaced
by ANR’s X’ and Y, respectively, then X' J; Y’ is an ANE
(metric). This result is a consequence of the main theorem:
Let B be a strong neighborhood deformation retract of a
space Y and suppose that both B and ¥ — B are ANE (metric).
If Y — B has a certain type of covering, then Y is an ANE
(metric). This generalizes the known result that if Y is metri-
zable, then Y is an ANR.

By a pair (X, A) we shall mean a space X together with a closed
subset A. If a space Y has the property that for every metric pair
(X, A), each map f: A— Y has a neighborhood extension, then Y is
called an absolute neighborhood extensor for metric pairs (abbreviated
ANE). In particular, a space is an ANR if and only if it is a
metrizable ANE [2].

Let (X, A) be a pair, and let /: A — Y be a map. It is well known
[4, p. 178] that if X, A and Y are ANR’s, then the adjunction space
X U;Y is an ANR provided that it is metrizable, This result was
essentially proved in successive stages by Borsuk [1], Whitehead [7],
and Hanner [3]. Our purpose is to generalize this theorem.

The author wishes to thank Professors James Dugundji and
A. H. Kruse for many valuable suggestions.

2. The main theorem. Let (Y, B) be a pair. Generalizing the
notion of a canonical cover [2], we say that a collection {V,} of open
subsets of Y is a semi-canonical cover of (Y, B)if (1) U.V.=Y — B
and (2) for each be B and each neighborhood U of b there is a neigh-
borhood W of b such that V,c U whenever V, meets W.* If a
semi-canonical cover exists for a pair (Y, B), we call (Y, B) a semi-
canonical pair.

For later use, we establish the following simple property of semi-

1 A semi-canonical cover differs from a canonical cover only in that a semi-
canonical cover is not required to be locally finite.
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canonical covers,

LEMMA 2.1, Suppose that {V,} is a semi-canonical cover for a
pair (Y, B). Let {x,} and {y,} be two mnets in Y — B, and suppose
that for each v, x, and vy, lie in a common element V, of {V.}. Then
{x,} converges to a point be B if and only if {y,} converges to b.

Proof. Suppose that {x,} converges to b. Let U be any neigh-
borhood of b, and let W be a neighborhood of b such that V,cU
whenever V, N W = . Since {x,} is eventually in W, the sets {V,}
eventually lie in U, and since y, ¢ V,, it follows that {y,} converges
to b. The converse is proved similarly.

REmArk. If {V,} is a semi-canonical cover of (Y, B) and if for
each ye¢ Y — B an element—ecall it V,—of {V,} containing ¥ is chosen,
then the collection {V,}, ye¢ Y — B, is a semi-canonical cover of (Y, B).

A closed subset BCY is called a strong neighborhood deformation
retract of Y if there exists a neighborhood W of B and a homotopy
h: W x I —Y such that &, is the inclusion, %, is a retraction of W
onto B, and h(b,t) = b for all be B,tecl. h is called a strong defor-
mation retraction of W onto B.

We now establish the main theorem.

THEOREM 2.2. Let (Y, B) be a semi-canonical pair such that B
is a strong mneighborhood deformation retract of Y. If both B and
Y — B are ANE, then Y is an ANE,

Proof. By hypothesis, there exists a strong deformation retraction
h: W x I —Y onto B, Let {V,},yeY — B, be a semi-canonical cover
for (Y, B) as in the remark above.

To prove that Y is an ANE it is sufficient to show that for any
metric pair (X, A), each map f: A — W has a neighborhood extension
F.U-—Y. For from this it follows first that F|F(W): FY(W)—
W is a neighborhood extension of f, so that W is an ANE; and then
Y, being the union of the open ANE subspaces W and Y — B, is
itself an ANE [4, p. 44]. Given (X, A) and f: A— W, we proceed to
construct F.

Let A,=f"'(B),A,=4A—A,and X,=X— A,. Then f(4)CY —B,
and since Y — B is an ANE, there is a neighborhood G, of A4, in X,
and a map ¢.: G,—Y — B such that ¢,| A, = /| A,. Let d be a metric
on X. For each ac A, let G, be the set of points « in G, such that

(1) d(z, A) > 1/2d(a, A,),

(2) d(z,a)<d(a, A),
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(3) e g(Vou), and

(4) weg™(W).
Let G,=U{G.|ec 4;}. G,isopenin X, and contains A,. Let G be a
neighborhood of A, in X, such that its closure K (in X)) is contained in
G,, and let A: X;—[0, 1] be a map such that M(4,) =0 and MX, — G) =1.
Define ¢,: K U A,— Y by

g(%) = h(g(®), M))  if ze K,
= f() if xeA,.

é, is well-defined and extends f. Furthermore, ¢, is clearly continuous
except possibly at those points of 4, which are limit points of K—A,.
To prove its continuity at these points also, we suppose a € A4, is the
limit of a sequence {z,} in K — A, and show that {¢.(z,)} converges
to ¢y,(a). For each n, choose a,c A, such that x,eG,. Since {z,}
converges to ac A4,, it follows from (1) that {d(a,, A)} — 0, and from
(2) that d{(z., a,)} — 0. Therefore {a,} converges to a¢. Since {¢(a,)} =
{f(@,)} converges to f(a), we find by (3) and 2.1 that {¢,(«,)} converges
to f(a). Given a neighborhood V of f(a) in Y, there is a neighborhood
V, of f(a) such that h(V; x I)C V. Since {¢,(%,)} converges to f(a),
{g(2,)} is eventually in V,, and by the definition of ¢, {¢.(x,)} is
eventually in V. Therefore ¢, is continuous at a, and hence is con-
tinuous on K U 4,.

Since A =1 on the boundary (in X;) of G, and since % maps
W x 1 into B, it follows that ¢, maps the boundary (in X) of K U A4,
into B. Since B is an ANE, it follows that ¢, has an extension
F: U —Y for some open set U in X, and the proof is complete.

3. Applications. In order to apply Theorem 2.2, it is necessary
to have on hand some semi-canonical pairs. For this purpose we
establish.

LEMMA 3.1. Every metric pair (Y, B) is semi-canonical.

Proof. As in [2], for each ye Y — B let V, be the open ¢/2 ball
centered at y, where ¢ is the distance from y to B under some fixed
metric for Y. The collection {V,} is a semi-canonical cover for (Y, B).

Combining 3.1 and 2.2, we obtain the following result, which
was first proved in [5]:

THEOREM 3.2. (Kruse-Liebnitz). Let (Y, B) be a metric pair such
that B is a strong meighborhood deformation vetract of Y. If B
and Y — B are ANR’s, then Y is an ANR.

Given a metric space A, let ANR(A) denote the class of all ANR’s
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that contain A as a closed subset. Let f be a map from A into an
ANR Y. Our next result (3.5) states that either the adjunction space
X U;Y is an ANE for every Xe ANR(A4) or for no X e ANR(A).
Therefore, given an X e ANR(A), the question of whether or not
X U;Y is an ANE depends only on the map f, and not on the choice
of X.

To obtain this result from 2.2, some additional information con-
cerning semi-canonical covers and strong neighborhood deformation
retractions will be needed. The necessary facts are supplied by the
following lemmas.

For any pair (X, A) and map f: A—Y, let X + Y denote the
disjoint union of X and Y, and let p: X + Y — X U, Y be the natural
projection.

LEMMmA 3.3, Let (X, A) be a pair and let f:A—Y be a map.
If {V,} is a semi-canonical cover for (X +Y,A+7Y), then {p(V,)}
18 a semi-canonical cover for (X U,;Y, n(Y)).

Proof. Since p maps X — A homeomorphically onto X |J,Y —
p(Y), it follows that each p(V,) is open and U.»(V.) =X U,;Y —
p(Y). Let yep(Y) and let U be a neighborhood of y. Since {V,}
is semi-canonical, for each xz e p~ (U N p(Y)) there is a neighborhood
W,cp(U) such that V,cp™(U) whenever V,NW,= @. Let
W =U{W,lecp™(U N oY)

From our construction it is clear that y € (W) and that »(V,) c U
whenever p(V,) N (W) # @. It remains to show that p(W) is open.
Since p is an identification, it is sufficient to show that W is saturated,
that is, W = p=(S) for some Sc X |J,;Y. From our construction we
have W N p7(p(Y)) = p7(U) N p7(p(Y)) = (U N n(Y)). Moreover,
since p is one-to-one on (X + Y) — p~*(p(Y)) it follows that W —
p{(p(Y)) is saturated. Since W is the union of the saturated sets
Wnp (oY) and W — p~Y(p(Y)), W itself is saturated, and the
lemma is proved.

LEmmA 3.4. Let X and Y be ANR’s, and let f: A— Y be a map,
where A is a closed subset of X. Then X U;Y 4s an ANE f and

only if p(Y) is a strong mneighborhood deformaiion retract of
XU,Y.

Proof. Suppose that X |J;Y is an ANE. Since Y is an ANR,
f has an extension F: U — Y, where U is some neighborhood of A4 in
X. Defineamap ¢: X x {0JUAXxTUTU x {l - XU,Y by
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9(z, 0) = p() if veX;
9(a, t) = p(a) ifacd, 0=t=<1;
9(x, 1) = pF(x) if e U.

Since X |J;Y is an ANE, g has an extension G: V— X U;Y, for
some open subset V of X x I. Let W be a neighborhood of 4 in X
such that W x I cV. The map 2:p(W +Y) x I - X J;Y defined
by

Mz, t) = G(p| X)7(2), ¢) if zep(W), 0=t=1,

=2z if zep(Y), 0=t

is the desired deformation.
The converse is an immediate consequence of 3.3 and 2.2.
We now obtain the main result of this section.

THEOREM 3.5. Let f be a map from an arbitrary metric space
A into an ANR Y. If X,U;Y is an ANE for some X, e ANR(4),
then X U;Y is an ANE for every X e ANR(A).

Proof. Given Xe ANR(4), let p: X+ Y—-XU,;Y and ¢: X+ ¥Y—
XoUsY be the natural projections. To prove that X |J,Y is an
ANE it is sufficient, by 3.4, to show that p(Y) is a strong neighbor-
hood deformation retract of X UJ,Y.

Since X is an ANR, there exists a neighborhood G of A in X,
and a map ¢: G— X such that ¢|A is the identity map. By 3.4,
there is a neighborhood W of ¢(Y) in X, J;Y and a strong deforma-
tion retraction kA of W onto ¢(Y) over ¢(G + Y). Since ¢ (W) N X,
is open in X, ¢ (W) N X, is an ANR; therefore there exists a neigh-
borhood U of A in X and a map +: U — ¢ (W) N X, such that v | A
is the identity map. Since U is open in X, U is an ANR; and it
follows that there exists a neighborhood V of A in U and a deforma-
tion j: V x I — U such that j(a,t) = a, for all acA4,0<¢t =<1, and
such that j, = ¢4y|V. Letting ¢ + 1,:G +Y — X +Y be the map
defined by ¢ and the identity on Y, define a map k: p(V +Y) x I —
X UsY by

k(z) = piu(p| X)7'(2) if zep(V), 0=t=1/2,
= p(p + 1p)q o aqy(p | X)7(2)  if zep(V), 12=t=1,
=z ifzep(Y),0=5¢t<1.

It is easily verified that %k is a strong deformation retraction of
p(V +Y) onto p(Y), and the proof is complete.

An application of 8.5 gives a direct generalization of the BWH
theorem:
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COROLLARY 3.6. Let (X, A) be a paitr, and let f:A—Y be a
map. If X, A and Y are ANR’s, then X J;Y is an ANE.

Proof. This result can be obtained as a consequence of 3.3 and
2.2, but it also follows quite simply from 3.5: Taking X, = 4, we
see that X, ;Y is an ANR, since it is homeomorphic to Y. There-
fore by 3.5, X ;Y is an ANE.

If we take Y in 3.5 to be a single point, we obtain

COROLLARY 3.7. If A is a metric space, then either X/A is an
ANE for every X e ANR(A) or for no Xe ANR(A).

If A is a compact subset of a metric space X, then X/A is
metrizable [6]. Therefore we have from 3.7

COROLLARY 3.8. If A is a compact metric space, then either
X/A is an ANR for every X e ANR(A) or for no X e ANR(A).

We have seen that for a map f: A— Y, the question of whether
or not X |J,;Y is an ANE is independent of the choice of X ¢ ANR(A4).
Our final result, which slightly generalizes 3.5, shows that this ques-
tion is also independent of Y. Precisely, we have

THEOREM 3.9. Let A and B be metric spaces and let f: A— B
be a map. FHither X ;Y ts an ANE for every X e ANR(A) and
Y ¢ ANR(B) or for no Xe ANR(A) and Y ¢ ANR(B).

REMARK. For Y e ANR(B), we consider f to be not only a map
from A into B but also from A into Y. This justifies the symbol
X U,Y.

Proof of Theorem. Suppose that X |J,;Y, is an ANE for some
X e ANR(A) and some Y, ANR(B). In view of 3.5, we need only to
show that if Y e ANR(B) then X {J,Y is an ANE.

Since Y is an ANR, there is a neighborhood U of B in Y, and
a map ¢: U —Y such that ¢(b) = b for all be B.

Letting p» X +Y—-XU,;Y and ¢: X +U—-XJ;U be the
natural projections, define a map v: X U, U— XU;Y by

¥(z) = p(q| X)7'(2) if zeq(X),
= pé(q | U)"(2) if zeq(U).
X U;Uis open in X J,Y,, and therefore X J,U is an ANE. By

3.4 there is a strong deformation retraction # of an open set W onto
q(U) in X U, U. Define a homotopy k.;: (W)U p(Y)— X U,Y by
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ky(2) = yhyp™(2)  if ze (W),
=2z if zep(Y).

It follows from the equation v(W) U p(Y) = p((q| X)"(W)+Y) that
(W)U p(Y) is an open subset of X |J;Y, and it is easily verified
that k& is a strong deformation retraction of (W)U p(Y) onto p(Y).
The result now follows from 3.4.

4. Results for AR’s. In this section we establish results for
AR’s and AE’s analogous to Theorems 2.2 and 3.9. A space Y is
called an absolute extensor for metric pairs (abbreviated AE) if for
every metrie pair (X, A) each map f: A — Y has an extension F: X — Y,
A link between AE’s and ANE’s is provided by the following

LemmA 4.1. If Y is an ANE and if Y can be deformed into an
AE subspace, then Y is an AE.

Proof. Let BCY be an AE and let 2: Y x I —Y be a deforma-
tion such that ~,(Y) < B. Suppose that (X, A) is a metric pair and
let f: A—Y be a map. Since Y is an ANE, there is a neighborhood
U of Ain X and an extension F: U —Y of f. Let g: X —[0,1] be
a map such that g(4) =0 and ¢g(X — U) =1. Since B is an AE,
there is a map G: X — U — B such that G|bdry U = A, F|bdry U.
Define a map ¢: X —Y by

$(@) = WF (@), g(@) if e,

¢ extends f, and the lemma is proved.
We now establish the analog of 2.2,

THEOREM 4.2. Let (Y, B) be a semi-canonical pair such that B
1S a strong deformation retract of Y. If B is an AEand if Y — B
s an ANE, then Y is an AE.

Proof. By 2.2, Y is an ANE. Since by hypothesis Y is defor-
mable into B, Y is an AE by 4.1.

In order to obtain the analog of 3.9, we will need the analog of
3.4.

LEMMA 4.3. Let X and Y be AR’s, and let f: A—Y be a map,
where A is a closed subset of X. Then X ;Y 1s an AE if and
only +f p(Y) 4s a strong deformation retract of X U,Y.
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Proof. Suppose that X J;Y is an AE. Since Y is an AR, f
has an extension F: X — Y. Since X |J,Y is an AE, the map

X x{OUAXTUX x{I}—-XUY
f

defined by

g(x, 0)=n(x) it veX,
9(a, t)=p(a) ifacd, 0=5t=1,
g(x, )=pF(x) if ve X,

has an extension G: X x I - X ;Y. The map m: X U;Y x I —
X U;Y defined by

h(z, 1) = G((p| X)(2), t)  if zep(X), O
=z if zep(Y), O

is the desired deformation.

Conversely, if p(Y) is a strong deformation retract of X |, 7,
then X |J,Y is an ANE by 3.4 and an AE by 4.1.

We now establish the analog of 3.9.

THEOREM 4.4. Let A and B be metric spaces and let f: A— B
be a map. Either X U;Y s an AE for every Xe AR(A) and
Y e AR(B) or for mo Xe AR(A) and Y e AR(B).

Proof. Suppose X,UJ;Y, is an AE for some X,ecAR(A) and
Y,e AR(B), and suppose X e AR(4) and Yec AR(B). Let p: X +Y —
XU;Y and ¢: X, + Y,— X, U, Y, be the natural projections.

By 3.9, XU,Y is an ANE; to prove that it is an AE it is
sufficient, by 4.3, to show that X |J,Y can be deformed into p(Y).
Since X and X, are AR’s, there are maps ¢: X — X, and ¢, X, — X,
each extending the identity on A, and a deformation j, on X leaving
A pointwise fixed and such that j, = ¢,6. Similarly, there are maps
i1 Y —Y, and 4 Y,— Y, each extending the identity on B, and a
deformation %, on Y leaving B pointwise fixed and such that &, = .
By 4.3, there is a strong deformation retraction h, of X, ;Y, onto
q(Y,). Define a deformation g, on X |J,Y by

942) = pja(p | X)7(R) if zep(X), 0=t=<1/2,
= pko(p | Y)7(?) if zep(Y), 0<t<1/2,
= p(Bo + Vo)q heaqe(p | X)7(z)  if zep(X), 12=1=1,
= p(go + Vg gy (p | Y)(2)  if zep(Y), l2=t=1,

where ¢, + +rg: X, + ¥Y,— X + Y is the map defined by ¢, and . ¢
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deforms X {J;Y into p(Y), and the proof is complete.
By taking B to be a single point, we obtain

COROLLARY 4.5. If A is a metric space, then either X/A s an
AE for every X e AR(A) or for no Xe AR(A).

COROLLARY 4.6. If A is a compact metric space, then either
X/A is an AR for every X e AR(A) or for no X e AR(A).
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