$$(\ 4\) \qquad \qquad \left\{ rac{n}{2} rac{\Gamma^2\!\!\left(rac{n}{2}
ight)}{\Gamma^2\!\!\left(rac{n+1}{2}
ight)} \!-\!1
ight\} \sigma^2 \!> rac{\sigma^2}{2n} \, rac{4n+9}{4n+8} \, ,$$

for
$$n = 1, 2, \dots$$
.

For n = 2m, (4) may be written as:

$$(\,5\,) \qquad \qquad rac{arGamma^2(m+1)}{arGamma^2\Big(m+rac{1}{2}\Big)} > m + rac{1}{4} + rac{1}{32m+32}$$

for $m = 1, 2, \cdots$.

and for n = 2m + 1, (4) may be written as:

(6)
$$\frac{\Gamma^{2}(m+1)}{\Gamma^{2}(m+\frac{1}{2})} < \frac{\left(m+\frac{1}{2}\right)^{2}}{m+\frac{3}{4}+\frac{1}{32m+48}}$$

for $m = 1, 2, \cdots$.

Thus (5) and (6) taken together prove

(7)

$$\left\{m+rac{1}{4}+rac{1}{32m+32}
ight\}^{^{1/2}}<rac{arGam(m+1)}{arGam(m+rac{1}{2})}<\left\{rac{\left(m+rac{1}{2}
ight)^2}{m+rac{3}{4}+rac{1}{32m+48}}
ight\}^{^{1/2}}$$
 ,

which also agrees with the result of Boyd [1]. Equation (3) of [2] has to be replaced by equation (7) of this note.

References

 A. V. Boyd, Note on a paper by Uppuluri, Pacific J. Math. 22 (1967), 9-10.
 V. R. Rao Uppuluri, On a stronger version of Wallis' formula, Pacific J. Math. 19 (1966), 183-187.

Correction to

MAPPINGS AND SPACES

TAKESI ISIWATA

Volume 20 (1967), 455-480

 $(A \Longrightarrow B: A \text{ should read } B)$ in containing $y_n \Longrightarrow$ containing y_n in

p. 459 line 26

p. 465 first line
$$\sim X \Longrightarrow \upsilon X$$

line 19 $\mathfrak{M} \Longrightarrow \mathscr{M}$
p. 468 line 2 $s_n - b_n a_n - t_n \Longrightarrow s_n - b_n > a_n - t_n$
p. 470 line 24 $g \Longrightarrow g_n,$
 $g_n \Longrightarrow g$
p. 475 line 10 $\mathscr{L}_{\mathcal{F}X} \varphi^{-1}(y) \Longrightarrow \mathscr{L}_X \varphi^{-1}(y)$
line 21 $\{z_n ; X_n \in A_n\} \Longrightarrow \{z_n ; z_n \in A_n\}$
p. 478 line 9 $\varphi(F) \Longrightarrow \overline{\varphi(F)}$

Correction to

PROPERTIES OF DIFFERENTIAL FORMS IN *n* REAL VARIABLES

H. B. MANN, JOSEPHINE MITCHELL and LOWELL SCHOENFELD

Volume 21 (1967), 525-529

Note Added in Proof. In the fifth line of the proof of the Lemma, in place of requiring that $1 \leq q \leq p \leq k$, we should have stipulated that $1 \leq q \leq p$ and $q \leq k$. In the statement of Theorem 1, the parenthetical remark should be deleted. Finally, in the fourth line of the proof of this theorem, a better reference is Corollary 4.1.2 on p. 101 of Hörmander.

The university affiliations of the three authors are as follows:

Mann-University of Wisconsin and

The Mathematics Research Center, Mitchell—The Pennsylvania State University. Schoenfeld—The Pennsylvania State University.

Correction to

AN INTEGRAL INEQUALITY WITH APPLICATIONS TO THE DIRICHLET PROBLEM

JAMES CALVERT

Volume 22 (1967), 19-29

Theorem 1.1 is incorrect as stated. It is correct if the functions $a_{ik}, f_i(i = 1, \dots, n)$ are real or the function u is real. I am indebted to Professor R. K. Juberg for pointing this out.