$$
\begin{equation*}
\left\{\frac{n}{2} \frac{\Gamma^{2}\left(\frac{n}{2}\right)}{\Gamma^{2}\left(\frac{n+1}{2}\right)}-1\right\} \sigma^{2}>\frac{\sigma^{2}}{2 n} \frac{4 n+9}{4 n+8} \tag{4}
\end{equation*}
$$

$$
\text { for } n=1,2, \cdots
$$

For $n=2 m$, (4) may be written as:

$$
\begin{equation*}
\frac{\Gamma^{2}(m+1)}{\Gamma^{2}\left(m+\frac{1}{2}\right)}>m+\frac{1}{4}+\frac{1}{32 m+32} \tag{5}
\end{equation*}
$$

for $m=1,2, \cdots$.
and for $n=2 m+1$, (4) may be written as:

$$
\begin{equation*}
\frac{\Gamma^{2}(m+1)}{\Gamma^{2}\left(m+\frac{1}{2}\right)}<\frac{\left(m+\frac{1}{2}\right)^{2}}{m+\frac{3}{4}+\frac{1}{32 m+48}} \tag{6}
\end{equation*}
$$

for $m=1,2, \cdots$.
Thus (5) and (6) taken together prove

$$
\begin{equation*}
\left\{m+\frac{1}{4}+\frac{1}{32 m+32}\right\}^{1 / 2}<\frac{\Gamma(m+1)}{\Gamma\left(m+\frac{1}{2}\right)}<\left\{\frac{\left(m+\frac{1}{2}\right)^{2}}{m+\frac{3}{4}+\frac{1}{32 m+48}}\right\}^{1 / 2} \tag{7}
\end{equation*}
$$

which also agrees with the result of Boyd [1]. Equation (3) of [2] has to be replaced by equation (7) of this note.

## References

1. A. V. Boyd, Note on a paper by Uppuluri, Pacific J. Math. 22 (1967), 9-10.
2. V. R. Rao Uppuluri, On a stronger version of Wallis' formula, Pacific J. Math. 19 (1966), 183-187.

Correction to

## MAPPINGS AND SPACES

## Takesi Isiwata

Volume 20 (1967), 455-480
$(A \Longrightarrow B: A$ should read $B)$
p. 459 line 26 in containing $y_{n} \Longrightarrow$ containing $y_{n}$ in


Correction to

# PROPERTIES OF DIFFERENTIAL FORMS <br> IN $n$ REAL VARIABLES 

H. B. Mann, Josephine Mitchell and Lowell Schoenfeld

Volume 21 (1967), 525-529
Note Added in Proof. In the fifth line of the proof of the Lemma, in place of requiring that $1 \leqq q \leqq p \leqq k$, we should have stipulated that $1 \leqq q \leqq p$ and $q \leqq k$. In the statement of Theorem 1 , the parenthetical remark should be deleted. Finally, in the fourth line of the proof of this theorem, a better reference is Corollary 4.1.2 on p. 101 of Hörmander.

The university affiliations of the three authors are as follows:
Mann-University of Wisconsin and
The Mathematics Research Center,
Mitchell-The Pennsylvania State University.
Schoenfeld-The Pennsylvania State University.

Correction to

## AN INTEGRAL INEQUALITY WITH APPLICATIONS TO THE DIRICHLET PROBLEM

James Calvert

Volume 22 (1967), 19-29
Theorem 1.1 is incorrect as stated. It is correct if the functions $a_{i k}, f_{i}(i=1, \cdots, n)$ are real or the function $u$ is real. I am indebted to Professor R. K. Juberg for pointing this out.

