ERRATA

Correction to

A DESCRIPTION OF $\operatorname{MULT}_{i}\left(A^{1}, \ldots, A^{n}\right)$ BY GENERATORS AND RELATIONS

Thomas W. Hungerford

Volume 16 (1966), 61-76
The statement in the first sentence that \otimes always means \otimes_{R} is incorrect. The general rule for reading the paper is this: in any statement involving the tensor product of more than two modules or chain complexes, such as $A^{1} \otimes \cdots \otimes A^{n}$ or $K^{1} \otimes \cdots \otimes K^{r}, \otimes$ means \otimes_{R}. In any statement involving the tensor product of two finitely generated free complexes of length i (as in the definition of the generators), \otimes means \otimes_{z}. If this is kept in mind, the few exceptions will be clear in context.

In lines 4 and 8 on page 62 "bimodule" should read "module". In the definition of the generators, the complexes E^{r} for r odd [even] are complexes of length i of finitely generated free right [left] R-modules. $u(1)[u(n)]$ is a right [left] R-module map and $u(r, r+1)$ is a map of R-bimodules.

Correction to

ON A STRONGER VERSION OF WALLIS' FORMULA

V. R. Rao Uppuluri

Volume 19 (1966), 183-187
The note by Boyd [1] has led the author to go through the computations in finding the Bhattacharya bounds and the following corrections should be made in [2].

The results on page 186 of [2] should be corrected as follows:

$$
\begin{aligned}
& S_{1}=(Y-n) / \sigma \quad \text { where } Y=\sum_{i=1}^{n}\left(X_{i}^{2} / \sigma^{2}\right) \\
& S_{2}=\left\{(Y-n)^{2}-3(Y-n)-2 n\right\} / \sigma^{2} \\
& \lambda_{11}=2 n / \sigma^{2}, \quad \lambda_{12}=\lambda_{21}=2 n / \sigma^{3} \\
& \lambda_{22}=2 n(4 n+9) / \sigma^{4} . \\
& \sigma_{T}^{2}>L_{2} \text { implies: }
\end{aligned}
$$

