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TRANSFORMATIONS ON TENSOR SPACES

ROY WESTWICK

In this paper we consider those linear transformations
from one tensor product of vector spaces to another which
carry nonzero decomposable tensors into nonzero decomposable
tensors. We obtain a general decomposition theorem for such
transformations. If we suppose further that the transformation
maps the space into itself then we have a complete structure
theorem in the following two cases: (1) the transformation
is onto, and (2) the field is algebraically closed and the tensor
space is a product of finite dimensional vector spaces. The
main results are contained in Theorems 3.5 and 3.8 which
state that the transformation T: Ux ® <g) Un -> IΛ ® <g) Un

has the form T(xx (§)• «(g) xn) = Γi(flJΛ(i))® ® Tn(xπ(n)) where
Ti. Uπa) -> Ui are nonsingular and π is a permutation. Case
(2) generalizes a theorem of Marcus and Moyls.

Let F be a field and {Ua:aeA} be a finite set of vector spaces
over F. Let (U,t) = (<g)(Ua:aeA),t) be a tensor product. Then U
is a vector space over F, t: Π (Ua: a e A) —> U is multilinear and, for
any vector space V over F and multilinear map /: Π (Ua: a e A) —> V,
there is a unique linear transformation g: U —*V such that g ί = / .
The decomposable tensors of U are defined to be the vectors
t(J[ (ua: a e A)), denoted by ®(uα: a e A), where ua e Ua for aeA.

The proofs of the main theorems are based on the purely combi-
natorial results of the following section.

2* Adjacency preserving functions* In this section we define
the adjacency preserving functions and find a decomposition theorem
for them.

Let A be a nonempty finite set and for each aeA let Sa be a
nonempty set. If J is a nonempty subset of A we let pj denote
the projection of Π (Sa: aeA) onto Π (Sα: aeJ). If J — {α} we write pa

for pj.

For each J Q A we define an equivalence relation, denoted by
ΞΞ(mod J), on ΐ[(Sa: ae A) by setting x = y (mod J) if and only if
ί>a(ώ) = Pa(v) for all α e A\J. If X g Π (Sa: a e A) is a nonempty subset
of equivalent elements relative to Ξ(mod J) then we call X a J-subset.
If J = {α} is a singleton we use α-subset for J-subset. We note the
following

2.1. LEMMA. A subset X s Π (Sα: α e i ) is <m equivalence class
relative to ~ (mod J) i/ cmd ô î / ΐ/ ^(X) = Π (Sa: ae J) and pa(X)
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is a singleton for each a e A\J.

The equivalence classes will be called maximal J-subsets.
On the set of subsets of ΐ[(Sa: ae A) we define, for each J gΞ A,

the relation ad j (mod J) by setting Xadj Y (mod J) if and only if X
and Y are J-subsets and for precisely one aeA\J we have pa(X) Φ
Pa(Y). If %, y£ Π (Sa: ae A) and {x} adj {y} (mod ψ) then we say that
x and y are adjacent. The relation adj (mod J) is symmetric but
neither reflexive non transitive.

2.2. LEMMA. Let / g A and let X and Y be distinct maximal
J-subsets of ΐi(Sa: ae A). Then there is a finite sequence Xu ,Xn

of maximal J-subsets such that X = Xu Y = Xn, and X{ adj Xί.κ(mod J)
for i = 1, , n — 1.

Proof. Let a19 •• ,α Λ be the distinct elements of A\J for which
pH(X) Φ Pai(Y). Then the maximal J-subsets X{ for which Pαi(X, ) =
paj(Y) for j <: i and pa.(Xi) = paj(X) for j > i will suffice.

2.3. DEFINITION. A function from one cartesian product of sets
into another is an adjacency preserving function if and only if the
images of adjacent elements are adjacent.

2.4. LEMMA. Let f: Π (Sa: α e i ) - > Π C#&: beB) be an adjacency
preserving function. For each ae A let Sa contain at least three
elements. Then there is a function o\ A—> B such that for any c e A
and any maximal c-subset X of Jl(Sa: aeA), f(X) is a σ(c)-subset
of Π (Rb: beB).

Proof. Let ce A and let X be a maximal c-subset of Π (Sa: a e A).
Then f(X) is a d-subset of J[(Rb:beB) for some deB, where d
depends on c and X. For, let xx and x2 be distinct elements of X
and let d e B be that element of B for which pd(f(x$) =£ Pdifi^)).
Then, for any x e X, pd(f(x)) differs from at least one of the pd{f(xι))
and so pb(f(x)) is independent of x e l f o r b Φ d. Therefore f(X) is
a d-subset. We let σ(c, X) = d. We show that σ(c, X) is independent
of the maximal c-subset X. Suppose the contrary. Then, from
Lemma 2.2 it follows easily that there is a pair of maximal c-subsets
X and Y for which Xadj Γ(mod{c}) and σ(c, X) = dγ Φ d2 = σ(c, Y).
Let c' be the unique element of A for which pc,(X) Φ pc,{Y). Let
q: X —> Y be defined on each x e X by pa(Q(%)) = pa(%) i£ a Φ C and

PΛQ(X)) — Vc{Y) T h e n q is o n e - t o - o n e , o n t o , a n d for e a c h xeX t h e
p a i r x a n d q(x) a r e a d j a c e n t . S i n c e Sc h a s a t l e a s t t h r e e e l e m e n t s
t h e r e a r e a t l e a s t t w o e l e m e n t s xeX s u c h t h a t pdχ{f{x)) Φ P
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and of these, at least one for which pd2(f(Q(x))) Φ pd2(f(X)). Now,
for any x e X satisfying both of these inequalities, f(x) and f(q(x))
are not adjacent, contrary to the hypothesis on /. Therefore er(c, X)
is independent of the c-subset X and so σ(c) = σ(c, X) is a well defined
function satisfying the conclusion of the lemma.

2.5. THEOREM. Let f:]J(Sa:a e A)—>ΐ[(Rb:b e B) be an adjacency
preserving function and suppose that each Sa contains at least three
elements. Then there is a partition of A into subsets Au , Ak

and distinct elements bu ,bk of B such that for each i = 1, , k
there is a function /<: Π (Sα: aeAi)—^Rb. satisfying pbi-f = frPAi

Furthermore, the image of Π (Sa: ae A) under f is the set Π (Q&: be B)
where Qb is the image of J[ (Sa: ae A) under (pb f).

Proof. Let σ be given as in Lemma 2.4. Let {bly , bk] — σ(A)
and let Ai = σ~\b%). Then Au , Ak is a partition of A. Let / be
one of the A{ and b the corresponding b{. Let X be a maximal
J-subset of Π (Sa: a e A). We define fx: Π (Sa: aeJ)->Rb by

Then fx is well defined since (pj \ X) is a one-to-one function from
X onto Y[(Sa: ae J). We prove that fx = fγ for any two maximal
J-subsets X and Y. Suppose the contrary. Then, from Lemma 2.2,
it follows that we can choose maximal J-subsets X and Y such that
X adj F(mod J) and fx Φ fγ. Let af e A\J be that element for which
PAX) Φ Pa>(Y). Choose s e Π (Sa: aeJ) such that fx(s) Φ fγ(s). Let
x = (p,j i X)~[(s) and y = (pj \ Y)~ι(s). Then xe X and y e Y are a pair
of adjacent elements of Π (Sa: a e A). If we let br = σ(a') then V φb
since a' & J = σ~](b). Therefore, f(x) and f(y) are adjacent and V
is the only element of B for which pb.(f(x)) Φ pb>(f(y)). But pb(f(x)) =
fx(x) Φ fγ(s) = Pb(f(v)), & contradiction.

For each i we set f{ — fx where X is any maximal ^-subset of
Π (Sa: ae A). Then, if xej[ (Sa: ae A), we choose a maximal Ac

subset X containing x and note that

If b$σ(A) then the image of J[(Sa:aeA) under (pb-f) consists
of one element of Rb. In fact, suppose x and y are adjacent elements
of Π (Sa: a e A). Then f(x) and f(y) are adjacent and the element
breB for which ph,(f(x)) Φ pΛf{y)) is in σ{A). Then (pb-f)(x) =
(pb f)(v).

It is clear that f(U(Sa:aeA)^Jl(Qb'beB). To show that we
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have equality, suppose that xeΐl (Qb: b e B). Choose yh e Π (Sa: aeA)
such that (pb-f)(yb) = pb(x). Choose ye]J (Sa: aeA) such that pA.(y) =
VAiiVb) for i = 1, , k. This can be done since the sets Al9 , Ak

are pairwise disjoint. If b£σ(A) then (pb-f)(y)=pb(x) since the
image is independent of y. For δ< we have (ph. f)(y) = fAi{pAi(y)) =
fAtiPAtiVbi)) = Vbi{f{yκ)) = P*,(aO. Therefore /(]/) - a?, and this completes
the proof.

3* The preservers of decomposable tensors* In this section
we require the

3.1. LEMMA. Le£ Z7 = (g) (Ϊ7α: αe A) 6β α tensor product where
the Ua are vector spaces over a field F. Let xa, x

f

a e Ua for α e i .
Then

(1) 0 (xa: a e A) — 0 i/ and only if xa = 0 /or some α e i .
(2) If x — ® (xa' aeA) and xf — 0 (cĉ : α e i ) are nonzero de-

composable tensors then,
(a) <V> = <#'> i/ and only if <#α> = <χ> /or α e ̂ 4.
(b) x + x' is a decomposable tensor if and only if ζxay —

<vθ for all except possibly one aeA.

Proof. The statements (1) and (2)(a) are elementary properties
of U. The sufficiency of the condition in (2)(b) is clear. We prove
the necessity of this condition by the following indirect argument.
Suppose x + xr = ®{ya\aeA) where <xδ> Φ <V6> and <#c> Φ ζx'cy for
a pair of indicies b and c. We may suppose that ζyby Φ (xby. We
define a function /: Π (Ua: a e A) —•> F as follows. For each α e i w e
choose a linear functional fae Jίf(Ua, F) such that

(1) fa(xa) Φ 0 for all aeA,
(2) /60/6) = fM) = 0,

and set f(u) = J[(fa(pa(u)):aeA). Then / is multilinear and it
induces a linear transformation /': (g) (J7O: α e A) —• F. But 0 = /'(T/) =
f'(x + xr) - f'(x) + Z'(x') = /'(x) Φ 0, which is impossible.

Throughout the rest of this section we let U — ® (Ua: a e A) and
W = ζξ) (Wb: b e B) where the Ua and Wb are vector spaces over a
field i*7. We also assume that άim(Ua) ^ 2 and that A, B are finite
sets. We let T: U —>W be a linear transformation mapping nonzero
decomposable tensors into nonzero decomposable tensors.

Let Sa and Rb be the sets of one dimensional subspaces of Ua and
Wb respectively. We define a function /: Π (Sa: a e A) —> Π (Rb' be B)
as follows. Let xa e Ua be nonzero and let T(® (»β: a e A)) = ®(2/6:6 6 £).
Let ^ e Π ( S α : α G 4 ) and yeJ[(Rb:beB) such that pα(&) = <α;α> and
P&(2/) = <J/δ>. We set /(x) = y and note that by the above lemma, /
is well defined. We prove next the
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3.2. LEMMA. The function f above is an adjacency preserving
function.

Proof. Let u,u' eJl (S«: a e A) be adjacent and choose xa, x'a e ua

such that pa(u) = <£α>, pa(v>') = <X>. Let x — 0 ($β: α e A) and &' =
0 « : α e A). Then, by (2)(b) of Lemma 3.1, x 4- x* is a decomposable
tensor and by (2)(a) we have that <#> Φ <#'>. Let j/ = Γ(a?) =
0 (y6: δ G J5) and #' = T(x') = 0 (#J: 6 e 5). Then # + y' is a decompo-
sable tensor. Let w,w'eΐ[(Rb:beB) be such that pb{w) = <j/6> and
Pb(w') — <\Vb} Then w and w' are either adjacent or equal. If they
were equal then y — ey' for some ee F, from which we get T(x — ex') = 0,
a contradiction since x — ex' is a nonzero decomposable tensor for all
eeF.

3.3. DEFINITION. For each A! ^ A and α; e Π (Ua: & € A') we define
a multilinear function Nx: Y[ (Ua: a e A') —> U by setting JVx(w) =
0 (va: a e A) where va = pa(x) for a £ A' and va = pa(u) for αeA ' . We
let Mx: 0 (Z7α: a e A') —+ U be the linear transformation induced by Nx.

Since dim(Ua) ^ 2, each Sa contains at least three elements, and
therefore we can apply Lemma 2.4 to obtain the function σ: A —> B
satisfying the conclusions of that lemma. Let σ(A) = {6lf •••,&*} and
Ai = σ-1(bi). Let V, - 0 (Ua: ae At), ^ = 0 ( 7 * ^ = 1,.-.,*;) and
let φ\ U —> F be the canonical isomorphism.

3.4. THEOREM. Tλ,e decomposable tensor preserver T has the
form My-iT, 0 0 Tk)*φ where

(1) 1/eΠ (WV. 6 ί σ(A)), or My is deleted if σ{A) = β,
(2) Ti'.Vi—>Wb{ is a linear transformation mapping nonzero

decomposable tensors of V{ into nonzero vectors of Wb..

Proof. Let XieJ[(Ua:a,$ A{) be chosen for i = 1, , k. Consider
T-MH:Vi-»W. For each veVi, Mx.{v) = 0 (va: a e A) where <vα>
does not depend on v whenever a £ Aim Therefore, since (pb f)(s), for
s G Π (Sa: a e A), does not depend on the coordinates of s in AXσ^φ),
there are fixed wh e Wb for each beB, b Φb{, such that the image
of Vi under T-Mx. has the form {0 (w'b: b e B): w'h = wb for b Φ 6<
and w'6.e TΓ/J, where TΓ^ is a subspace of TΓ6ί. Then T MH induces
a linear transformation Γ<: F* -* 1^6. defined by Γ^t;) = ^'δ. where
T Mx.(v) = ®(w'b:beB), w[ = w6 for' 6 ^ b,. If ^ e l K ^ : ^ ^ ) is
another element and T : F, —> TF*tf is induced as above by T-Mx,.f then
for each decomposable tensor xe V{ there is a Cj. G .F7 such that T^x) =
cxT((x). It then follows easily that there is a c G ί7 such that Γ< = cΓ/.

By Theorem 2.5 the image of Π (Sα: αeA) under / is Π(Q&: &e£)
where Qb Q Rb can be given explicitly. For each b&σ(A), Qb consists
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of one element and we let Qb = <j/6)>. Let y ej[ (Wh: b g σ(A)) where
Pb(v) = Vh, and let T = My-(TX (g) <g) Tk)-φ. If x e U is a de-
composable tensor then T(x) = exT'(x) for some exeF, and therefore
it follows that T = eT' on all of U for some eeF.

3.5. THEOREM. A decomposable tensor preserve of U onto itself
has the form (g) (Ta: ae A) where Ta: Ua—> Uσ{a) is an onto nonsingular
linear transformation and σ: A —> A is a permutation.

Proof. Let /: Jl(Sa:aeA)—> Π (Sa: a e A) be the adjacency
preserving function induced by the decomposable tensor preserver and
let σ: A —> A be the function induced by / . Then the image of
Π (Sα: a e A) under / has the form Π (Qa' aεA) and therefore the
image of U is spanned by elements (g) (ua: a e A) where ua belongs to
the smallest subspace of Ua which contains all the subspaces making
up Qa. Since dim(Z7α) ^ 2 and the tensor preserver is assumed to be
onto, no Qa can consist of only one element. Therefore σ is a
permutation. The theorem now follows from Theorem 3.4. That Ta

is onto and nonsingular is clear.

3.6. DEFINITION. If V is a vector space over a field F and if
J5f(V) is the vector space of linear transformations of V into itself,
then a subspace of J*f(V) is called a nonsingular subspace if each of
its nonzero elements is a nonsingular linear transformation.

3.7. THEOREM. Let k ^ 2 be an integer and let Wu , Wk be
vector spaces over a field F where 2 ^ dim (WΊ) ̂  ^ dim (Wk)< ~.
Then there is a linear transformation L: (x) (W*: i = 1, , k) —* Wk

mapping nonzero decomposable tensors into nonzero vectors if and
only if Jzf(Wk) contains a nonsingular subspace with dimension
equal to dim

Proof. Suppose that L exists. Let w{ e W{ for i — 1, , k — 2
be nonzero vectors. For each x e Wk_x we let

and note that ^ ^ is a subspace consisting of decomposable tensors.
Let Lx = (L I ^ ς ) and let Ix:Wk-> Wx be defined by

•ί*(2/) = wx (g) (g) ̂ ^_2 (g) a? (g)

for yeWk. Then L J . e ^ l f J is nonsingular for x Φ 0. Let
dim (TΓΛ-1) = ί and let {xL, ',xt} be a basis of Wk^. Then
{L^/^, , LxJXt} spans a nonsingular subspace of J5f(Wk). For,
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suppose Σ<=i aiLxJXi is singular. Choose y Φ 0 such that

Σ a>iL9J4y) = 0 .

Then, since Σ U a>iLHIH(y) = L(^1 (g) 0 wΛ_2 0 Σ U α Λ 02/)> w e

must have that Σ<=i α Λ = 0. Therefore aL = = α4 = 0.
Suppose that ^f(Wk) has a nonsingular subspace with dimension

£ = dim (WVi). We construct L inductively. Suppose that

has been defined such that nonzero decomposable tensors of
^ 2 ® ® ^ are mapped into nonzero vectors of Wk. Let s =
dim (WΊ) and let {Llt , Ls} be a basis of an s-dimensional nonsingular
subspace of Jέf(Wk). Such a basis exists since s = dim (WΊ) ^
dim (WVJ. Let K, , xs} be a basis of Wγ. Let JNΓ: ̂  <g) W, — ΐ^fc

be the linear transformation induced by the multilinear function
N: W1 x Wk-+Wk where ΛΓ(ΣU <*<&,, y) = Σί=i ^Lid/). Then #(α, T/) = 0
implies that x ~ 0 or 2/ = 0 and therefore iV(£ 0 y) = 0 if and only
if x 0 1/ = 0. Let /: T^ -> TFX be the identity and let L = JV ( J 0 Lo).
Then //(^ 0 0 f̂c) = iV(^! 0 L0(^2 0 0 wk)) = 0 implies that
w1 = 0 or L0(^2 0 0 wΛ) = 0. Therefore, either ^ = 0 or
^2 0 0 wk = 0, and in both cases wx 0 0 wΛ = 0. This
completes the proof.

3.8. THEOREM. Let F be algebraically closed and let T: U—> U
be a decomposable tensor preserver where dim (Ua) is finite for all
ae A. Then T = 0 (Ta: a e A) where Ta: Ua —> Uσ(a) is a nonsingular
linear transformation and σ: A—> A is a permutation satisfying
dim (Ua) = dim (Uσ{a)) for α e i .

Proof. We prove that σ is a permutation. By Theorem 3.4,
T = My'iT,^ 0 Γjfc)-̂  where the domain of T, is V, = 0(U t t : α e A,)
and Aί = o"\ai) for some α ^ e i . For each a e Ai? K contains a
subspace with dimension equal to dim (C/α) which consists of decompo-
sable tensors only. It follows that Uav which is the range space of
Vi under Ti9 has dimension at least as large as the maximum of the
dim(f7α) for aeAit Therefore, for each αeA, dim(Ua) ^ dim (Uσ{a)).
Suppose that σ is not one-to-one. Of those ae A for which σ~\σ(a))
consists of at least two elements, choose one, say 6, for which dim (Uh)
is maximal. Then dim (Ub) = dim (Uσ{b)). For, suppose that
dim (Ub) < dim (Uσib)). Then σ maps the set {a \ dim (Ua) > dim (Ub)} U {b}
into the set {a \ dim (Ua) > dim (Ϊ76)}, and consequently, there is a b' e A
for which σ~ι{σ(br)) has at least two elements and dim (J76,) > dim (Ub).
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This contradicts the choice of b. Now, σ(b) e σ(A) so that σ(b) = at
for some i and T{: Vi—+Ua.. By Theorem 3.7, J*f{Ua?) contains a
nonsingular subspace with dimension at least two. This is impossible
since F is assumed to be algebraically closed (for nonsingular C and
D, C — eD is singular for any eigenvalue e of D~ιC). Therefore σ is
a permutation and the theorem follows from Theorem 3.4.
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