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PRODUCTS OF POSITIVE DEFINITE MATRICES. I

C. S. BALLANTINE

For each positive integer n, this paper gives necessary and
sufficient conditions (nasc) on a 2 x 2 real matrix S (of positive
determinant) that S be a product of n positive definite real
(symmetric 2 x 2 ) matrices. Also, when S is the product of
(real 2 x 2 ) positive definite matrices Pi, P2, •> P%> it is shown
that PlfP2," ,Pn, and S must satisfy a condition which
roughly speaking measures by how much (depending on S)
Pu Pz, - , Pn must collectively differ from scalar matrices.

For n = 1 or 2, the abovementioned nasc are known. For n = 3,

the nasc on

S-[e d
is (besides that ad — be > 0) that

(e — b)2 > A(ad — be) whenever a + d ^ 0 .

Thus S is here, in a sense, bounded away from the set of negative
definite matrices, but its characteristic values may be both negative,
since (α + d) and (ad — be) may be chosen arbitrarily (except of course
that ad — be must be positive) and independently. For n = 4, the
nasc on S is (besides that ad — be be positive) just that S not be a
negative scalar matrix. For n ^ 5, the nasc is just that ad — be be
positive.

These results are extensions of [1, Th. 1] and are obtained,
without much additional effort, from the mechanism used in [1,1. c],

2. Main results* We follow the notation of [1], Let

~a b~
( 1 ) Γ = J- ( 1 / 2 ) S = , ad — be — 1 ,

e d

where A = det S (note the slight change in notation from the pre-
vious section). We call T the unimodular part of S. Let

(2) p - [(a + df + (c - δ)2]1/2 = [(α - d)2 + (c + d)2 + 4]1'2 ,

( 3 ) ζ = i pβ*' = i [(α + d) + ί(c - 6)] (I /9 I ̂  π) ,

(4) 2 - [(α + d) + φ - δ)]-1 [(α - d) + i(c + b)] ,

( 5 ) ^ = 2 argtanh | s | = 2 argcosh ( —
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(since p = 2 (1 - | z |2)~(1/2)).
We shall mean by an "n-gonal arc" a polygonal curve which may

or may not be closed and which has at most n sides. For any kind
of arc we call the segment from its terminal point to its initial point
(so directed, if the arc is directed) the chord of the arc and its length
the chordlength of the arc. For a rectiίiable arc we define the area
of the arc to be the algebraic area of the closed curve consisting of
the arc plus its chord. We define functions Fn(A, p) and F(A, p)
geometrically in terms of plane hyperbolic geometry as follows:
Fn(A, p) is, for given A and p, the minimum arclength of w-gonal
arcs of area A and chordlength p; and F(A, p) is, for given A and
p, the minimum arclength of rectifiable arcs of area A and chordlength
p. It is known that, given A and p for which at least one w-gonal
arc has area A and chordlength p, there is, up to congruence, exactly
one w-gonal arc of area A, chordlength p, and arclength Fn(A, p),
namely, the simple regular w-gonal arc (if p = 0 this is just a closed
regular polygon of exactly n sides, and if p > 0 this is a simple poly-
gonal arc of exactly n sides which are all equal and which include
equal angles) of area A and chordlength p. Similarly, it is known
that, given p ^ 0 and A, there is, up to congruence, exactly one
rectifiable arc of area A, chordlength p, and arclength F(A, p), namely,
the simple circular arc of area A and chordlength p. Clearly

F%(A, P) > F(A, p)

for every n, and

Fn(A, P)— F(A, p ) a s ? ι - c .

Now, F(A, p) is defined for all p ^ 0 and all real A (and we have
F(— A, p) = F(A, p) and likewise for Fn), but the domain of Fn is
somewhat more restricted, as given by the following result from
hyperbolic geometry.

LEMMA 1. Let n be a positive integer, p be a nonnegative real
number, and A a real number. Then there exists an n-gonal arc of
area A and chordlength p (i. e., Fn(A, p) is defined) if and only if

A\<(n — 2)π + 2 arccos sech

ivhen n > 2, and when n — 2 and p > 0; and A — 0 otherwise (i.e.,
when n = 1, and when n — 2 and p = 0).

The proof of this lemma proceeds by standard arguments of
hyperbolic geometry, once we notice that the right side of the ine-
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quality (6) is, for n — 2, just the area of an infinite isosceles "triangle"
of base p (here "isosceles" means the base angles are equal).

The analytic formulas for Fn and F are rather complicated and
are not given in standard references. We give them for reference at
the end of this article.

We are now in position to state and prove our main result.

THEOREM 1. Let Ply P2, , Pn be real (symmetric) 2 x 2 positive

definite matrices and let

( 7 ) S = P I I . . . P 1 P 1 .

For each j , 1 ^ j ^ n, let X3 be the larger eigenvalue of Pj9 Let
Δ = det S. Then Fn(2β, p) is defined, and

(8 ) Πi=i λj ^ A e^(2'θ'p) > A e F ( 2 ^ ,

where Fn and F are defined above and β and p are defined by
(1), (2), (3), and (5). On the other hand, given S such that A > 0
and Fn(2β, p) is defined, there exist real positive definite matrices
Pu Pz, i Pn such that (7) holds and (8) holds with equality in the
first inequality.

REMARKS. Combining Lemma 1 with the last part of Theorem 1
and (2), (3), and (5), we get the nasc stated in the summary that the
factorization (7) be possible: if n = 1, then β = 0 so c = b and
a + d ^ 2, that is, T (and hence S) is positive definite (this case is
trivial, but we include it for the sake of completeness); if n — 2, then
β = 0 if p = 0 and if p > 0 then

I β I < arccos —
V p

that is, a + d = p cos β > 2 or else T = I, and these are just the
cases where T (and likewise S) is diagonable with positive character-
istic values; if n = 3, then

\β\<(E) + arccos fi-
2/ \,2/ \p>

which is equivalent to the condition (always p ^ 2)

I c — δ| = p sin | β | > 2 whenever α + d = p cos β ^ 0

if w = 4, then | /3 | < π + arccos (2/p), which precludes only the case
p = 2, I /3 I — π, that is, the case T = —I; if w ^ 5, then /3 and p
are unrestricted (aside from | β \ ̂  π, p ^ 2).

Theorem 1 is derived (i.e., proved) in the same way Theorem 2.4
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of [1] is derived, using the fact, shown in [1], that the factorization
(7) (which induces the factorization

T = Qn QA ,

where Qd is the unimodular part of P3 , j = 1, 2, , n) corresponds
under (4) to an w-gonal arc (in the Poincare hyperbolic metric) in the
unit disc of the z-plane. As shown in [1], the area of this arc is 2/3
and its chordlength is 2 argcosh (p/2), i.e., is the number p given by
(5). The unimodular case of (8) is thus derived as in the cited
theorem, and the general case follows trivially from the unimodular
case.

3* Geometric interpretation* In [1] it is mentioned that a + d
and c — b (hence ζ, given by (3)) form a complete system of rotation-
similarity invariants of T. We may thus expect to get a clearer
picture of the situation by considering in more detail the correspondence
between polygonal arcs in the £-plane and their images in the ζ-plane.
It is clear that these ζ-curves are excluded from the unit disc (| ζ | ^ 1
since p ^ 2) and all start at ζ = 1 (corresponding to T — /), so all
the 2-curves start at z = 0. One sees that positive definite T cor-
respond to those ζ which are real and ;> 1, negative definite T cor-
respond to ζ which are real and <£ — 1, T = — I corresponds to ζ =
— 1, the matrix T of a rotation by the angle β corresponds to ζ =
eiβ (and to 2 = 0, for all β), T has distinct positive characteristic
values if and only if Re ζ > 1, T has both characteristic values = 1
if and only if Re ζ = 1, both characteristic values are nonreal if and
only if | Re ζ | < 1, and both are negative if and only if Re ζ ^ — 1.

The ζ-arcs corresponding to polygonal 2-arcs are piecewise analytic
arcs. Each piece, when extended indefinitely in both directions, is an
analytic curve which is asymptotic to two rays from the origin making
an angle > 0 and < ττ/2 (one sees this by noting that β — arg ζ and
2/3 is the area of the corresponding geodesic in the 2-plane), except
for those which lie entirely on one ray through the origin (the ex-
tensions of radial pieces). These latter are analytic except where they
meet the unit circle; they come in from co y "bounce" off the unit
circle, and go back to oo along the same ray. One sees that, through
a given point in the ζ-plane exterior to the unit circle, and in a given
nonradial direction at that point, there is one and only one of these
analytic curves, and the nonradial pieces cut each ray from the origin
at most once. It is also clear that the nonradial pieces do not meet
the unit circle at all. (All this can be seen without any detailed
calculation. One might suspect from the above properties that each
analytic curve which extends a nonradial piece is a branch of a hyper-
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bola with center at ζ = 0. Calculation shows that this is indeed the
case and that further the semi-transverse axis a and the semi-con-
jugate axis b of each such hyperbola satisfy α2 — b2 = 1. Thus one
sees that also the extension of each radial piece is one branch of a
degenerate hyperbola with center at ζ = 0 and with a = 1 and δ = 0,
the limiting case of the nonradial hyperbolas.)

The mapping from the £-plane into the ζ-plane is a mapping of
arcs into arcs, and is not a single-valued mapping of points into points,
not even locally. But as one can see from the formulas in [1], the
mapping is locally conformal (when z Φ 0, i.e., when | ζ | > 1), in the
sense that the angle of a "corner" in a 2-arc is the same as the angle
of the corresponding corner in the image ζ-arc. One can further see
that radial pieces in the £-plane correspond to (and only to) radial
pieces in the ζ-plane.

Thus we see that a 1-gonal 2-arc (starting at z = 0 always) maps
onto a segment of the real ζ-axis, starting at ζ = 1 and going to the
right (i.e., outward). Thus the first piece of the image of a 2-gonal
2-arc is a segment lying radially outward from ζ = 1 and the terminal
point of the second piece may be any point to the right of the line
Re ζ = 1 (or may be the point ζ = 1), and only such a point. The
terminal point of the image of a 3-gonal 2-arc may be any point ζ
such that I ζ I ̂  1 and such that

I Im ζ I > 1 whenever Re ζ ^ 0 ,

and only such a point. Thus we see that the images of 3-gonal £~arcs
are bounded away from the negative real ζ-axis (hence the correspond-
ing Γ-arcs are bounded away from the set of negative definite sym-
metric matrices). The terminal point of the image of a 4-gonal £-arc
may be any ζ such that | ζ ( Ξ> 1 and ζ Φ — 1 (and only such ζ), and
the terminal point of the image of an ?ι-gonal arc with n Ξ> 5 may
be any ζ such that | ζ | >̂ 1.

4* Analytic formulas for Fn and F. Fn(A, p) is given implic-
itly by the system of equations

2na = Fn(A, p) ,

\A\ = n(π — 2a) — 2 arcsin cos a coth a tanh ( — ) ,

sίnh ( —) = (sinh a) Un.^ (sin a cosh a) ,

where (in order that the regular w-gonal arc be simple)

sin a cosh a ^ cos (—
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and where the principal branch (from — π/2 to π/2) of the arcsine
is taken, except when

sin a cosh a < cos — ,
2n

in which case the second branch (from π/2 to 3π/2) is taken. Un^
is the Chebyshev Polynomial of the Second Kind of degree n — 1.
(The geometric meaning of a is half the angle included between the
sides of the regular %-gonal arc.) Of course n, A, and p must satisfy
the condition given in Lemma 1. For some values of n, A, and p we
can give Fn(A, p) explicitly. For example, corresponding to a regular
closed polygon of n sides, n >̂ 3, we have, for \A\<(n — 2)π,

Fn{A, 0) = 2n argcosh [7cos — W * A l + ^ 1
LΛ nJ 2n J

(In [1] .FΛ(il, 0) was called Fn(A).) Corresponding to half of a regular
closed polygon of 2n sides (n Ξ> 2) we have in terms of A, for

- 2 ^ argcosh f f cos — ) sec | A | + π ) ,
\\ 2w/ 2w /

and in terms of p, for p ^ 0,

W - 7Γ + 2^ arctan (tan — cosh -£.V
V \ 2w 2/

= 2^argsinh (sin — sinh-@
V 2n 2

, |θ) is given implicitly by the system

s = F(A, p) ,

A — Λ:S — 2 arcsin ( Λ: t anh -^ )
V 2/

(10) v2 - Λ:2 - 1 ,

where A; is always real (v need not be real) and (so that the circular
arc be simple)

v2s2 ^ 4τr2 ,
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and where the principal branch of the arcsine is taken except when
vV > π2, in which case the second branch is taken. (The expression
on the right side of (9) is an even function of v, hence by (10) an
entire function of tc and s, and is real for real tc and s). The geo-
metric meaning of fc is the (constant) geodesic curvature of the cir-
cular arc. For some values of A and p we can give F(A, p) explicitly.
For example, corresponding to a full circle we have

F(A,0) = (A2 + 4τr |A |) 1 / 2 .

Corresponding to a semicircular arc we have in terms of A

, 4 a r g s i n h (lALJ1^ = (A2 + 2π\A | ) 1 / 2 ,

and in terms of p, for p ^ 0,

F(2π sinh2 Uλ, p) = π sinh (£λ .
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