GALOIS COHOMOLOGY OF ABELIAN GROUPS ## DALTON TARWATER Normal and separable algebraic extensions of abelian groups have been defined in a manner similar to that of the field theory. In this paper it is shown that if N is a normal algebraic extension of the torsion group $K = \sum K_p$, where the p-components K_p of K are cyclic or divisible, and if G is the group of K-automorphisms of N, then there is a family $\{G_B\}_{E\in X}$ of subgroups of G such that $\{G, \{G_B\}_{E\in X}, N\}$ is a field formation. All groups mentioned are abelian. If K is a subgroup of E, then $A_K(E)$ denotes the group of K-automorphisms of E. If S is a subgroup of the automorphism group A(E) of E, then E^S is the subgroup of E fixed by E. E is an algebraic extension of E if every $e \in E$ satisfies an equation E is a normal extension of E in an algebraic closure E of (minimal divisible group containing) E if every E-automorphism of E induces an automorphism of E and E is a separable extension of E if for every E is a field formation of E if it satisfies: AXIOM I. For each Galois extension F/E, $$H^{1}(F/E) = H^{1}(G_{E}/G_{E}, F) = 0$$. The following are proved in [6]: I (THEOREM 8). Let N be a normal and separable extension of K in D and let $E(\neq N)$ be an extension of K in N. E is a normal extension of K if and only if $A_E(N)$ is a normal subgroup of $A_K(N)$ and then $$A_{\scriptscriptstyle K}(E)\cong A_{\scriptscriptstyle K}(N)/A_{\scriptscriptstyle E}(N)$$. II (THEOREM 11). If G' is a closed subgroup of G (in the topology defined below) and $E = N^{G'}$, then $G' = A_E(N)$. We now state the III THEOREM. Let $K = \sum K_p$ be a torsion group such that K_2 is divisible or trivial and for a prime $p \geq 3$, K_p is divisible or cyclic. If N is a normal extension of K in an algebraic closure D of K, if $G = A_K(N)$, and if X is the class of groups E such that $K \subseteq E \subseteq N$ and $G_E = A_E(N)$ is of finite index in G, then $\{G, \{G_E\}_{E \in X}, N\}$ is a field formation. *Proof.* Since K is a torsion group, it follows (page 54 of [6]) that N is a separable extension of K. G is the complete direct product of the groups $A_{K_p}(N_p)$ which are abelian, being cyclic if N_p is cyclic or being isomorphic to a subgroup of the multiplicative group of p-adic units of $N_p = D_p \cong Z(p^\infty)$ and K_p is cyclic. Let \mathscr{L} be the class of groups L such that $K \subseteq L \subseteq N$ and if K_p is cyclic while $N_p = D_p$ then L_p is cyclic. Topologize G by taking as a filter base for the neighborhoods of 0 all groups $G_L = A_L(N)$ with $L \in \mathscr{L}$. Every member of X is in \mathscr{L} . For if $E \in X$, then by I, $G/G_E \cong A_K(E) \cong \pi A_{K_p}(E_p)$ is a finite group. So $E_p = K_p$ for almost all primes p and if $E_p \neq K_p$ then E_p is cyclic (otherwise $A_{K_p}(E_p)$ is of the power of the continuum). Hence $E \in \mathscr{L}$. We have - A. If E and E' are in X, then $G_E \cap G_{E'} = G_{E+E'}$ and E+E' is in X. - B. If $E \in X$ and $G_E \subseteq G' \subseteq G$, then $G' = G_{E'}$, where $E' = N^{G'} \in X$. *Proof of B.* G' is of finite index and is closed in the topology on G. An application of II completes the proof. - C. For $E \in X$, every conjugate of G_E equals G_E . - D. For each $x \in N$, $\Gamma(x) = \{\gamma(x) \mid \gamma \in G\}$ is one of the G_E with $E \in X$. Proof of D. $\{K, x\}$, the group generated by K and x, is in X. For if $\gamma' \in \gamma G_{\{K, x\}}$ then $\gamma'(x) = \gamma(x)$; but there are only finitely many members of $\Gamma(x)$ since there are only finitely many elements of N which are not in K and have the same order as x. So $G_{\{K, x\}}$ is of finite index. Also, $G_{\{K, x\}} \subseteq \Gamma(x) \subseteq G$. So by $B, \Gamma(x)$ is one of the G_E with $E \in X$. Statements A thru D establish that $\{G, \{G_E\}_{E \in X}, N\}$ is a formation [5]. It remains to be proved that if $G_F \subseteq G_E$ for E and F in X, then $H^1(F/E) = H^1(A_E(F), F) = 0$. The proof will be established first for cyclic p-groups $(p \neq 2)$. The following lemma will facilitate this proof. The proof of the lemma will be found below. LEMMA. If p is an odd prime and $M = \sum (1 + p^m)^i$, $i = 0, 1, \dots$, $p^{n-m} - 1$, where $n > m \ge 1$, then p^{n-m} is an exact divisor of M. Now let F_p by cyclic of order p^n and algebraic over its subgroup E_p of order p^m , $m \ge 1$. If $t \in A_{E_p}(F_p)$ is defined by $t(x) = (1 + p^m)x$, then t generates $A_{E_p}(F_p)$. By Theorem 7.1 of [4], $$H^{\mbox{\tiny 1}}(A_{E_p}\!(F_{\mbox{\tiny p}}),\,F_{\mbox{\tiny p}})\cong\{f\!\in\!F_{\mbox{\tiny p}}\,|\,M\!f=0\}\!/\!\{(t-1)\!f\,|\,f\!\in\!F_{\mbox{\tiny p}}\}$$, where $Mf = \sum (1 + p^m)^i f$, $i = 0, 1, \dots, p^{n-m} - 1$, and $(t - 1)f = p^m f$. From the lemma, Mf = 0 implies $f = p^m f'$ for some $f' \in F_p$. Thus $H^1(A_{E_p}(F_p), F_p) = 0$, concluding the primary cyclic case. To complete the proof of the theorem, let E and F be in X such that $G_F \subseteq G_E$, i.e., F/E is a Galois extension. Then by Theorem 10.1 of [2] $$H^{1}(F/E)_{p}=H^{1}(A_{E_{p}}(F_{p}), F_{p})=0$$ for each prime p and therefore $H^1(F/E)=0$. $\{G,\{G_E\}_{E\in X},N\}$ is a field formation. *Proof of lemma* (suggested by A. A. Gioia). The series defining M is geometric so $p^mM = (1 + p^m)^{p^{n-m}} - 1$. By Theorem 4-5 of [3], p^n divides the right hand side of this equation. If p^{n+1} also divides p^mM , then Theorem 4-5 of [3]—which requires $p \neq 2$ —can be applied again to yield: $$1 + p^m \equiv 1 \bmod p^{n+1-(n-m)}$$ which is false. The lemma is proved. ## REFERENCES - 1. E. Artin and J. Tate, Class Field Theory, Harvard, 1961. - 2. H. Cartan and S. Eilenberg, *Homological Algebra*, Princeton University Press, Princeton, 1956. - 3. W. J. Le Veque, Topics in Number Theory, Vol. I, Addison-Wesley, Reading, 1956. - 4. S. MacLane, Homology, Springer-Verlag, Berlin, 1963. - 5. J. P. Serre, Corps Locaux, Hermann, Paris, 1962. - 6. D. Tarwater, Galois theory of abelian groups, Math. Zeit. 95 (1967), 50-59, Received February 20, 1967. Partly supported by NFS Grant GP-2214. WESTERN MICHIGAN UNIVERSITY KALAMAZOO, MICHIGAN AND NORTH TEXAS STATE UNIVERSITY