GENERALIZED SEMIGROUP KERNELS

RONALD FULP

This paper is concerned with the problem of generalizing the notion of a kernel of a semigroup. Various kernels are introduced and their mutual relationships are investigated. Conditions are found on a semigroup which are necessary and sufficient in order that certain of its kernels be trivial.

The "generalized" kernels we introduce here have properties which are reminiscent of the notion of a radical. Our results, however, are quite different from certain of the investigations along these lines (see, for example, [3] and [13]). Our work is more closely related to that of Schwartz [10], [11], and [12]. We refer to [2] for definitions not explicitly given.

1. Mutually annihilating sums and kernels. The following definition seems to be due to Ljapin [6]. If S is a semigroup, then S is said to be a mutually annihilating sum of semigroups $\{S_{\lambda}\}_{\lambda \in A}$ if and only if S is (isomorphic to) a semigroup with zero such that if 0 is the zero of S, then

- (i) for λ in Λ , S_{λ} is a subsemigroup of S with contains 0,
- (ii) each member of S is in S_{λ} for some λ in Λ , and
- (iii) for λ and γ in Λ , $\lambda \neq \gamma$, $S_{\lambda} \cap S_{\lambda} = \{0\} = S_{\lambda} S_{\gamma}$.

We shall be concerned with semigroups S which are mutually annihilating sums of semigroups each of which has some one fixed semigroup property P (to say that P is a semigroup property means that P is a property such that if one of two isomorphic semigroups has property P, then so does the other). There is a rather obvious connection between mutually annihilating sums and subdirect sums which we make explicit in the lemma below.

We use the concept of a subdirect sum as in the theory of rings, *i.e.*, to say that S is a subdirect sum of semigroups $\{T_{\mu}\}_{\mu\in a}$ means that S is (isomorphic to) a subsemigroup of the direct product $\Pi_{\mu\in a}T_{\mu}$ such that if for some $\nu \in \Omega$, π_{ν} is the projection of $\Pi_{\mu\in a}T_{\mu}$ onto T_{ν} , then the homomorphism $\pi_{\nu}|S$ is onto T_{ν} . The following lemma is not difficult to prove.

LEMMA 1.1 If S is a semigroup with zero, then S is a mutually annihilating sum of semigroups each having property P if and only if there is a collection $\{T_{\mu}\}_{\mu \in \mathcal{G}}$ of semigroups such that

(1) for each $\mu \in \Omega$, T_{μ} is a semigroup with zero which has property P, and

RONALD FULP

(2) S is a subdirect sum of the collection $\{T_{\mu}\}_{\mu \in g}$ such that each member of S, when viewed as a member of $\Pi_{\mu \in g} T_{\mu}$, has at most one nonzero component.

Let K_P denote the set $\{I | I \text{ is an ideal and } S/I \text{ has property } P\}$.

THEOREM 1.2. Suppose P is a semigroup property, S is a semigroup, and J is an ideal of S. Then S/J is a mutually annihilating sum of semigroups each having property P if and only if there is a subset K of K_P such that (i) J is the K-kernel of S, and (ii) if I and I' are distinct members of K, then $S = I \cup I'$.

Proof. Assume K is a subset of K_P such that (i) and (ii) of the theorem are true. It is clear from (i) that S/J is, in a natural way, a subdirect sum of the collection $\{S/I | I \in K\}$. Property (ii) implies that each member of the subdirect sum has no more than one nonzero component. It then follows from (i) and the lemma that S/J is a mutually annihilating sum of semigroups each having property P.

Now assume J is an ideal of S and S/J is a mutually annihilating sum of a collection $\{S_{\lambda}\}_{\lambda \in A}$, where, for each λ in Λ , S_{λ} is a semigroup having property P. Let φ denote the natural homomorphism from S onto S/J. For each $\lambda \in \Lambda$, let I_{λ} denote the set of all x in S such that either $\varphi(x)$ is zero or $\varphi(x)$ is not in S. If $K = \{I_{\lambda} | \lambda \in \Lambda\}$, then K satisfies (i) and (ii) of the theorem.

REMARK 1.3. In case S has a zero and J is zero, the theorem asserts that S is a mutually annihilating sum of semigroups each of which has property P if and only if there is a subset K of K_P such that (i) $\cap K = 0$ and (ii) if I and I' are in K, $I \neq I'$, then $S = I \cup I'$.

For each semigroup S, let $\mathcal{M} = \mathcal{M}_s$ denote the set of all maximal ideals of S. The following corollaries are immediate applications of Remark 1.3.

COROLLARY 1.4. Assume S is a semigroup with zero. Then $\cap \mathscr{M} = 0$ if and only if S is a mutually annihilating sum of semigroups each of which either is a null semigroup of order two or is a 0-simple semigroup.

COROLLARY 1.5. If S is a semigroup and J is the \mathcal{M} -kernel of S, then the \mathcal{M} -kernel of S/J is zero.

The \mathcal{M} -kernel of a semigroup determines, to some extent, which maximal ideals are prime (an ideal J of a semigroup S is said to be prime if and only if either J = S or the complement of J is a subsemigroup of S).

THEOREM 1.6. Suppose S is a semigroup which has a maximal ideal. If J denotes the \mathscr{M} -kernel of S, then each maximal ideal of S is prime if and only if there is a collection $\{S_{\alpha}\}_{\alpha \in A}$ of simple subsemigroups of S such that

- (1) $S = J \cup \bigcup_{\alpha \in A} S_{\alpha}$,
- (2) for $\alpha \in \Lambda$, $\beta \in \Lambda$, $\alpha \neq \beta$, $S_{\alpha} \cap S_{\beta}$ is void and $S_{\alpha}S_{\beta} \subseteq J$, and
- (3) for each $\alpha \in \Lambda$, $J \cap S_{\alpha}$ is void.

Proof. First assume that each maximal ideal of S is prime and that J is the \mathscr{M} -kernel of S. From previous arguments, it is known that S/J is isomorphic to a mutually annihilating sum of semigroups each of which is isomorphic to S/M for some $M \in \mathscr{M}$. Since S/M is a simple semigroup with zero for each $M \in \mathscr{M}$ (recall that M is prime), it follows that there is a collection $\{S_{\alpha}\}_{\alpha \in A}$ of simple semigroups such that S/J is a mutually annihilating sum of $\{S_{\alpha}^{\circ} | \alpha \in A\}$. For each $\alpha \in A$, we identify S_{α} with the subsemigroup T_{α} of S such that

$$(T_{\alpha} \cup J)/J = S_{\alpha}$$

and $T_{\alpha} \cap J$ is void. Then the collection $\{S_{\alpha}\}_{\alpha \in I}$ satisfies (1), (2), and (3) of the theorem.

Assume, on the other hand, that $\{S_{\alpha}\}_{\alpha \in A}$ is a collection of simple subsemigroups of S such that (1), (2), and (3) hold where J denotes the *M*-kernel of S. Then each maximal ideal of S is of the form

$$J\cup \bigcup_{lpha\in A\setminus\{eta\}}S_{lpha}$$

for some $\beta \in \Lambda$. Thus each maximal ideal of S is prime.

2. The \mathscr{P} -kernel of a semigroup. We now turn our attention to a different kind of kernel of a semigroup. Let \mathscr{P} denote the set of all prime ideals of S. We now characterize the \mathscr{P} -kernel of S. First we need some notation and definitions.

To say that S is a band means that S is an idempotent semigroup. S is said to be a rectangular band if and only if S is a band and $a \ b \ a = a$ for all a and b in S. Rectangular bands may be characterized as semigroups of the form $X \times Y$ where X and Y are arbitrary sets and where the operation on $X \times Y$ is defined by

$$(x, y)(x', y') = (x, y')$$

for x, x' in X and y, y' in Y (see, for example, [4] or [7]).

We assume, from this point on, that S is any semigroup, that E is the maximal semilattice homomorphic image of S, and that η is

the natual homomorphism from S onto E. Define a relation φ on S by $(a, b) \in \varphi$ if and only if there exists $x \in S^1$, $y \in S^1$, $c \in S$, $d \in S$, and positive integers m and n such that a = x c y, b = x d y, and $c^m = d^n$. Clifford has observed, [1], that if φ^t is the transitive closure of φ , then S/φ^t is the maximal band homomorphic image of S. He also noted that the maximal semilattice homomorphic image of S/φ^t is the maximal semilattice homomorphic image of S. Each φ^t -congruence class of S will be called an archimedean component of S. This definition, which agrees with the usual one in case S is commutative, has not been used before in case S is not commutative. Clifford's observation may be rephrased, "any semigroup is a semilattice union of semigroups each of which is a rectangular band of archimedean components of S".

The following theorem is due to Petrich (see [8] and [9]).

THEOREM 2.1. (Petrich) In order that P be a prime ideal of the semigroup S it is necessary and sufficient that there exists a prime ideal Q of E such that $P = \bigcup_{e \in Q} \eta^{-1}(e)$.

The following corollary is immediate.

COROLLARY 2.2. The \mathscr{P} -kernel of the semigroup S is precisely the inverse image of the \mathscr{P} -kernel of E under η (even in case either is void).

LEMMA 2.3. If E is a semilattice, then the \mathscr{P} -kernel of E is void in case E contains no zero element and otherwise is the zero of E.

Proof. Suppose z is in the \mathscr{P} -kernel of E. If z were not a zero of E, then $\{x \in E \mid x \geq z\}$ would be a prime ideal of E which does not contain z.

The next theorem follows immediately from previous results.

THEOREM 2.4. The \mathscr{P} -kernel of the semigroup S is void in case E does not contain a zero and otherwise is the inverse image of the zero of E under η .

COROLLARY 2.5. If the semigroup S contains a zero, then the \mathscr{P} -kernel of S is zero if and only if the equations a c b = 0 and $c^n = d^m$ imply a d b = 0 for $a \in S^1$, $b \in S^1$, $c \in S$, $d \in S$, and positive integers m and n. Note that in case S is commutative the latter

condition merely asserts that 0 is the only nilpotent member of S.

PROOF. By Theorem 2.4 the \mathscr{P} -kernel of S is $\eta^{-1}(z)$ where z is the zero of E. Since $\eta^{-1}(z)$ contains the zero of S, it must contain only one archimedean component of S. Thus the \mathscr{P} -kernel of any semigroup with zero is precisely the archimedean component containing the zero. The corollary now follows from the way φ was defined.

The following corollaries are evident.

COROLLARY 2.6. The following statements are equivalent:

- (1) the maximal semilattice homomorphic image of S is trivial,
- (2) the \mathcal{P} -kernel of S is S, and
- (3) S is a rectangular band of its archimedean components.

COROLLARY 2.7. The maximal band image of a semigroup is a rectangular band if and only if the maximal semilattice image is trivial.

Finally we consider an application to semilattice theory. To say that F is a face of a semilattice E means that F is a (nonvoid) subsemigroup of E such that either F is E or the complement of F in E is a prime ideal of E. A prime ideal P of E is principal if and only if it is of the form $\{x \in E \mid e \leq x\}$ for some $e \in E$ (in this case eis called the generator of P).

THEOREM 2.7. If E is a semilattice, then each proper face of E is finite if and only if

- (1) each proper prime ideal of E is principal,
- (2) each ascending chain in E is finite, and

(3) each nonzero element of E is covered by at most a finite number of elements of E.

Proof. First assume each proper face of E is finite. If P is a proper prime ideal of E, then P is principal and has as generator the product of all elements of E not in P. It is equally clear that (2) and (3) follow.

Now assume (1), (2), and (3) are true. Let F denote any proper face of E. Then $E \setminus F$ is a proper prime ideal and thus is principal. Let e denote the generator of $E \setminus F$. Then $x \in F$ if and only if $x \ge e$. Define a sequence A of subsets of E inductively by

(i) $x \in A_1$ if and only if $x \in E$ and x covers e, and (ii) if k is a positive integer, $x \in A_{k+1}$ if and only if $x \in E$ and x covers some member of A_k .

For each positive integer i, A_i is finite. One can show that there is a positive integer n such that A_n is void by assuming otherwise and by constructing an infinite ascending chain in E. Thus

$$F = igcup_{i=1}^n A_i$$

and F is finite. The theorem follows.

If \mathcal{J} is any collection of ideals of a semigroup $S, S/(\cap \mathcal{J})$ is always a subdirect sum of the collection $\{S/T \mid T \in \mathcal{J}\}$. In case S = E is a semilattice the intersection of the collection of all prime ideals of Eis void or is a zero of E. Thus one obtains the following corollary of Theorem 2.7.

COROLLARY 2.8. Assume E is a semilattice such that

(1) each proper prime ideal of E is principal,

(2) each ascending chain in E is finite, and

(3) each nonzero element of E is covered by at most a finite number of elements of E.

Then E is a subdirect sum of the collection $\{F^{\circ} | F \text{ is a finite face of } E\}$.

3. Relationships among various kernels. As in the previous section S denotes any semigroup, E its maximal semilattice homomorphic image, and η the natural homomorphism from S onto E. Throughout this section K_T will denote the intersection of all ideals of the semigroup T and will be called the kernel of T. If N denotes the void set, we define $K_N = N$. Likewise P_T and M_T will denote the \mathscr{P} and \mathscr{M} kernels of T respectively.

THEOREM 3.1. If A is an ideal of the semigroup S, then $K_A = K_S$. Thus we have

$$K_S = K_{P_S} = K_{M_S} \, .$$

Proof. Let A denote any ideal of S. If K_s is not void, then for each ideal J of A

$$K_{S} = K_{S}JK_{S}K_{S} \subseteq K_{S}JK_{S}$$

Thus $K_s J K_s$ is an ideal of K_s . Since K_s is simple,

$$K_{\scriptscriptstyle S} = K_{\scriptscriptstyle S} J K_{\scriptscriptstyle S} {\,\subseteq\,} A J A {\,\subseteq\,} J$$
 .

Thus $K_{s} \subseteq K_{A}$.

Conversely, if K_A is not void, then K_S is equal to the intersection

of the collection \mathscr{H} where $J \in \mathscr{H}$ if and only if $J = I \cap A$ for some ideal J of S. But each such J is an ideal of A, thus $K_S \subseteq K_A$.

It follows that $K_s = K_A$ for each ideal A of S. Clearly if P_s or M_s is void so is K_s . The theorem follows.

COROLLARY 3.2. If S is a semigroup, then the kernel of S is the same as the kernel of P_s and thus is the kernel of a rectangular band of archimedean components of S.

In order to obtain the relationship between the \mathscr{M} -kernel, M_s , and the \mathscr{P} -kernel, P_s , we need more information about the maximal ideals of S. The next theorem provides such information and has some interest in its own right. First we need another definition. An ideal I of $\eta^{-1}(e)$, for $e \in E$, is said to be induced by S if and only if $I \cup (S \setminus \eta^{-1}(e))$ is an ideal of S. It is easy to see that an ideal I of $\eta^{-1}(e)$ is induced by S if and only if

(1) $f_1 \in E \setminus \{e\}, f_2 \in E \setminus \{e\}$, and $f_1 f_2 = e$ imply $\eta^{-1}(f_1) \eta^{-1}(f_2) \subseteq I$ and (2) $f \in E$ and f > e imply $\eta^{-1}(f) I \subseteq I$ and $I \eta^{-1}(f) \subseteq I$.

THEOREM 3.3. If M is a subset of the semigroup S, then M is a maximal ideal of S if and only if there exists $e \in E$ such that either

(1) e is a maximal element of E such that $\eta^{-1}(e)$ is simple and $M = \bigcup_{f \in E \setminus \{e\}} \eta^{-1}(f)$, or

(1) there is a maximal ideal M_e of $\eta^{-1}(e)$ such that M_e is induced by S and $M = M_e \cup \bigcup_{f \in E \setminus \{e\}} \eta^{-1}(f)$.

Proof. Suppose M is a maximal ideal of S and that $a \in S \setminus M$. Let e denote $\eta(a)$. First we show that $\eta^{-1}(f) \subseteq M$ for all $f \in E \setminus \{e\}$. Consider $F = \{x \in E \mid x \ngeq e\}$. The set $M \cup \eta^{-1}(F)$ is a proper ideal of S. Since M is maximal, $\eta^{-1}(F) \subseteq M$. Thus if $f \in E$ such that $\eta^{-1}(f) \not\subseteq M$, then $e \leq f$. Suppose there exists $f_0 \in E$ such that

$$\eta^{-1}(f_0) \not\subseteq M$$

such that $f_0 > e$. If $F_0 = \{x \in E \mid x \not\geq f_0\}$, then $M \cup \eta^{-1}(F_0)$ is a proper ideal of S. Thus $\eta^{-1}(F_0) \subseteq M$. But $f_0 > e$ implies that $e \in F_0$ and that $\eta^{-1}(e) \supseteq M$, contrary to the choice of $e \in E$. It follows that $\eta^{-1}(f) \subseteq M$ for each $f \neq e$.

We now show that if $M \cap \eta^{-1}(e)$ is not void, then $M_e = M \cap \eta^{-1}(e)$ is a maximal ideal of $\eta^{-1}(e)$ which is induced by S. Suppose there is an ideal J of $\eta^{-1}(e)$ such that $M_e \subset J \subset \eta^{-1}(e)$. Then $M \cup J$ is an ideal of S such that $M \subset M \cup J \subset S$. Thus no such J exists and M_e is a maximal ideal of $\eta^{-1}(e)$. Clearly M_e is induced by S.

RONALD FULP

Similar reasoning shows that if $M \cap \eta^{-1}(e)$ is void, then e is maximal in E and that $\eta^{-1}(e)$ is simple.

The proof of the other half of the theorem is easy and is omitted.

LEMMA 3.4. The *M*-kernel of a semigroup is never void.

Proof. Assume the \mathscr{M} -kernel of some semigroup S is void. Then the \mathscr{M} -kernel of S° is zero and thus S° is a mutually annihilating sum of semigroups each of which either is a null semigroup of order two or is a simple semigroup with zero. Since 0 is a prime ideal of S° , S° must be a simple semigroup with zero. Thus S is simple and the \mathscr{M} -kernel of S is S contrary to the assumption that the \mathscr{M} -kernel of S is void.

THEOREM 3.5. In order that the \mathscr{M} -kernel of S be a subset of the \mathscr{P} -kernel of S it is necessary and sufficient that E contain a zero z and that for each $e \in E \setminus \{z\}$, e is maximal in E and $\eta^{-1}(e)$ is simple.

REMARK. We do not require in the previous theorem that E contain elements other than z.

Proof. Assume $M_s \subseteq P_s$. Since M_s is not void, neither is P_s ; thus there is a zero z in E and $P_s = \eta^{-1}(z)$. Assume $e \in E \setminus \{z\}$. We show that e is maximal in E and that $\eta^{-1}(e)$ is simple. To do this it suffices, by Theorem 3.3, to show that $\bigcup_{f \in E \setminus \{e\}} \eta^{-1}(f)$ is a maximal ideal of S. Assume $\bigcup_{f \in E \setminus \{e\}} \eta^{-1}(f)$ is not a maximal ideal of S. Since $M_s \subseteq P_s, x \in \eta^{-1}(e)$ implies that there exists a maximal ideal M_x of Ssuch that $x \notin M_x$. Since $\bigcup_{f \in E \setminus \{e\}} \eta^{-1}(f)$ is not a maximal ideal of S, Theorem 3.3 implies that there exists a maximal ideal N_x of $\eta^{-1}(e)$ such that $M_x = N_x \cup \bigcup_{f \in E \setminus \{e\}} \eta^{-1}(f)$. Since for each $x \in \eta^{-1}(e), x \notin N_x$, we have that $\bigcap_{x \in \eta^{-1}(e)} N_x$ is void. But $\bigcap_{x \in \eta^{-1}(e)} N_x$ contains the \mathcal{M} kernel of $\eta^{-1}(e)$ which, by the lemma, is not void. We have established the necessity of the condition.

Now assume E has a zero and that if $e \in E \setminus \{z\}$, then e is maximal in E and $\eta^{-1}(e)$ is simple. If E contains no element other than z, then $M_S \subseteq S = \eta^{-1}(z) = P_S$. Assume E contains elements other than z. For each $e \in E \setminus \{z\}$ it is easy to see that $\bigcup_{f \in E \setminus \{e\}} \eta^{-1}(f)$ is a maximal ideal of S. Thus $\bigcap_{e \in E \setminus \{z\}} [\bigcup_{f \in E \setminus \{e\}} \eta^{-1}(f)] = \eta^{-1}(z)$ contains $\bigcap \mathscr{M}$ and $M_S \subseteq \eta^{-1}(z) = P_S$. The theorem follows.

COROLLARY 3.6. If E has a zero z and $\eta^{-1}(z)$ is simple, then the following statements are equivalent:

- (1) $M_s = P_s$, and
- (2) whenever $e \in E \setminus \{z\}$, e is maximal in E and $\eta^{-1}(e)$ is simple.

100

GENERALIZED SEMIGROUP KERNELS

References

1. A. H. Clifford, Review of [14], Math. Reviews 17 (1956), 584.

2. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Math. Surveys No. 7, Amer. Math. Soc., Providence, R. I., 1961.

3. H.-J. Hoehnke, Über des untere und obere Radical einer Halbgruppe, Math. Zeitschr. **89** (1965), 300-311.

4. N. Kimura, The structure of idempotent semigroups I., Pacific J. Math. 8 (1958), 257-275.

5. G. Lallement and M. Petrich, Some results concerning completely 0-simple semigroups, Bull. Amer. Math. Soc. 70 (1964), 777-778.

6. E. S. Ljapin, Normal complexes of associative systems, Izn, Acad. Nauk SSSR Ser. Mat. 14 (1950), 179-192. (Russian)

7. D. McLean, Idempotent semigroups, Amer. Math. Monthly 61 (1954), 110-113.

8. M. Petrich, The maximal semilattice decomposition of a semigroup, Bull. Amer. Math. Soc. **69** (1963), 342-344.

9. ____, The maximal semilattice decomposition of a semigroup, Math. Zeitschr. 85 (1964), 68-82.

10. S. Schwarz, On dual semigroups, Czech. Math. J. 10 (1960), 201-230.

11. ——, On maximal ideals in the theory of semigroups I, Czech. Math. J. 3 (1953), 139-153.

_____, 12. On maximal ideals in the theory of semigroups II, Czech. Math. J. 3 (1953), 365-383.

13. H. Seidel, Über das Radikal einer Halbgruppe, Math. Nachr. 29 (1965), 255-263.

14. M. Yamada, On the greatest semilattice decomposition of a semigroup, Ködai Math. Sem. Rep. 7 (1955), 59-62.

Received June 15, 1966 and in revised form May 5, 1967. The author wishes to acknowledge support by NASA, Grant NGR-44-005-037.

UNIVERSITY OF HOUSTON