MATRIX SUMMABILITY OVER CERTAIN CLASSES OF SEQUENCES ORDERED WITH RESPECT TO RATE OF CONVERGENCE

David F. Dawson

Let C_{0} denote the set of all complex null sequences, and let S_{0} denote the set of all sequences in C_{0} which have at most a finite number of zero terms. If $a=\left\{a_{p}\right\} \in S_{0}$ and $b=\left\{b_{p}\right\} \in S_{0}$, we say that a converges faster than $b, a<b$, provided $\lim a_{p} / b_{p}=0$. We say that a and b converge at the same rate, $a \sim b$, provided $0<\liminf \left|a_{p} / b_{p}\right|$ and $\limsup \left|a_{p}\right| b_{p} \mid<\infty$. If $a \in S_{0}$, let $[a]=\left\{x \in S_{0}: x \sim a\right\}$. Let $E_{0}=\left\{[x]: x \in S_{0}\right\}$. If $[a],[b] \in E_{0}$, then we say that $[a]$ is less than $[b],[a]<^{\prime}[b]$, provided $a<b$. We note that E_{0} is partially ordered with respect to \leqq^{\prime}. In this paper we study matrix summability over subsets of S_{0} and over elements of E_{0}. Open intervals in S_{0} will be denoted by $(a, b),(a,-)$, and $(-, b)$, where $(a,-)=\left\{x \in S_{0}: a<x\right\}$ and $(-, b)=\left\{x \in S_{0}: x<b\right\}$. Some of our results characterize, for matrices, maximal summability intervals in S_{0}. Such intervals are of the form (,$- b$), never of the form $(-, b]=\left\{x \in S_{0}\right.$: either $x<b$ or $\left.x \sim b\right\}$.

Notational conveniences used are as follows. If $A=\left(a_{p q}\right)$ is a matrix and b is a sequence such that for each positive integer p, the series $\sum_{q=1}^{\infty} a_{p q} b_{q}$ converges, then $A(b)$ will denote the sequence $\left\{\sum_{q=1}^{\infty} a_{p q} b_{q}\right\}_{p=1}^{\infty}$. We will use A_{b} to denote the matrix $\left(a_{p q} b_{q}\right)$. If each of a and b is a sequence, then $a b$ will be used to denote the sequence $\left\{a_{p} b_{p}\right\}$.

Playing a basic role throughout the paper are the two classical Silverman-Toeplitz (abbreviated $S-T$) conditions which are necessary and sufficient for a matrix A to be convergence preserving over (abbreviated c.p.o.) C_{0}. These conditions are
(1) $\left\{a_{p q}\right\}_{p=1}^{\infty}$ converges, $q=1,2,3, \cdots$, and
(2) there exists K such that $\sum_{q=1}^{\infty}\left|a_{p q}\right|<K, p=1,2,3, \cdots$. We note that the $S-T$ conditions are necessary and sufficient for a $\operatorname{matrix} A$ to be c.p.o. S_{0}.

Remark 1. A matrix sums every sequence in some interval $(-, b)$ if and only if it has convergent columns.

Remark 2. If the matrix A is c.p.o. [b] and c is a sequence such that $\lim c_{p} / b_{p}=0$, then $A(c)$ is convergent.

Remark 2^{\prime}. If A is c.p.o. [b], then A is c.p.o. $(-, b]$.

Remark 3. If A is c.p.o. $(a,-)$, then A is c.p.o. C_{0}.

Lemma. Suppose K and L are countable subsets of S_{0} such that if $x \in K$ and $y \in L$, then $x<y$. Then there exists $z \in S_{0}$ such that if $x \in K$ and $y \in L$, then $x<z<y$.

Proof. Our proof will be for the case that both K and L are infinite sets. Let $K=\left\{a^{(1)}, a^{(2)}, a^{(3)}, \cdots\right\}$ and $L=\left\{b^{(1)}, b^{(2)}, b^{(3)}, \cdots\right\}$. Let $\left\{n_{p}\right\}_{p=1}^{\infty}$ be an increasing sequence of positive integers such that if $i>n_{p}$, then

$$
\left|\frac{b_{i}^{(j)}}{a_{i}^{(t)}}\right|>2^{p}, \quad j, t=1,2, \cdots, p .
$$

Define

$$
\begin{aligned}
& c_{i}=b_{i}^{(1)}, i=1,2, \cdots, n_{2}, \\
& c_{i}=(1 / p) \min \left[\left|b_{i}^{(1)}\right|,\left|b_{i}^{(2)}\right|, \cdots,\left|b_{i}^{(p)}\right|\right] \\
& \quad n_{p}<i \leqq n_{p+1}, p=2,3,4, \cdots
\end{aligned}
$$

Let r be a positive integer. If $p>r$ and q is a positive integer such that $n_{p}<q \leqq n_{p+1}$, then we have $\left|b_{q}^{(r)} / c_{q}\right| \geqq p$, and, since $c_{q}=$ $\left|b_{q}^{(t)}\right| / p$ for some $t \in\{1,2, \cdots, p\}$, we have $\left|c_{q} / a_{q}^{(r)}\right|>2^{p} / p$. Thus $a^{(r)}<c<b^{(r)}$. This completes the proof.

Theorem 1. If A is c.p.o. [b], then there exists $b^{\prime} \in S_{0}$ such that $b<b^{\prime}$ and A is c.p.o. [$\left.b^{\prime}\right]$.

Proof. Since A is c.p.o. [b], then by Remarks 1 and 2', A has convergent columns. Let $a_{q}=\lim _{p \rightarrow \infty} a_{p q}$. By Remark 2, A sums every null sequence x such that $\lim x_{p} / b_{p}=0$. Thus A_{b} sums every null sequence. Therefore from (2) of the $S-T$ conditions there exists M such that if n is a positive integer, then $\sum_{p=1}^{\infty}\left|a_{n_{p}} b_{p}\right|<M$. Clearly $\sum_{q=1}^{\infty}\left|a_{q} b_{q}\right| \leqq M$. Let $C=\left(c_{p q}\right)$ be the matrix defined by $c_{p q}=a_{p q} b_{q}-a_{q} b_{q}$. Let $D=\left(d_{p q}\right)$ be the matrix defined by $d_{p q}=a_{q} b_{q}$. Then $A_{b}=C+D$. We wish to show that the sequence

$$
\begin{equation*}
\left\{\sum_{p=1}^{\infty}\left|a_{n p} b_{p}-a_{p} b_{p}\right|\right\}_{n=1}^{\infty} \tag{*}
\end{equation*}
$$

converges to zero. We note that (*) is bounded. Suppose (*) has a subsequence which converges to $\mu>0$. Note that each column of C converges to zero. Let n_{1} be a positive integer such that

$$
\left|\sum_{p=1}^{\infty}\right| c_{n_{1} p}|-\mu|<\mu / 8
$$

Let k_{1} be a positive integer such that $\sum_{p=1}^{k_{1}}\left|c_{n_{1} p}\right|>7 \mu / 8$. Let $N_{1}>n_{1}$ be an integer such that if $q>N_{1}$, then $\sum_{p=1}^{k_{1}}\left|c_{q p}\right|<\mu / 8$. Let $n_{2}>N_{1}$ be an integer such that

$$
\left|\sum_{p=1}^{\infty}\right| c_{n_{2} p}|-\mu|<\mu / 8 .
$$

Let $k_{2}>k_{1}$ be an integer such that $\sum_{p=1}^{k_{2}}\left|c_{n_{2} p}\right|>7 \mu / 8$. Let $N_{2}>n_{2}$ be an integer such that if $q>N_{2}$, then $\sum_{p=1}^{k_{2}}\left|c_{q p}\right|<\mu / 8$. Continue the process to obtain increasing sequences $\left\{n_{p}\right\}_{p=1}^{\infty}$ and $\left\{k_{p}\right\}_{p=1}^{\infty}$ of positive integers. Define $t_{p q}=\left|c_{p q}\right| / c_{p q}$ if $c_{p q} \neq 0, t_{p q}=1$ if $c_{p q}=0$. Define

$$
\begin{aligned}
& s_{p}=1, p=1,2, \cdots, k_{1} \\
& s_{p}=(-1)^{q+1} t_{n_{q^{p}}}, k_{q-1}<p \leqq k_{q}, q=2,3,4, \cdots
\end{aligned}
$$

Suppose q is a positive even integer. Then

$$
\begin{aligned}
& \left|\sum_{p=1}^{\infty} c_{n_{q} p} s_{p}-(-\mu)\right| \\
& \quad=\left|\sum_{p=1}^{k_{q-1}-1} c_{n_{q} p} s_{p}+\sum_{p=k_{q-1}+1}^{k_{q}} c_{n_{q^{p}} p} s_{p}+\sum_{p=k_{q}+1}^{\infty} c_{n_{q} p} s_{p}+\mu\right| \\
& \quad \leqq \sum_{p=1}^{k_{q}=1}\left|c_{n_{q} p}\right|+\sum_{p=k_{q}+1}^{\infty}\left|c_{n_{q} p}\right|+\left|\sum_{p=k_{q-1}+1}^{k_{q}} c_{n_{q^{p}} p} s_{p}+\mu\right| \\
& \quad<\mu / 8+\mu / 4+\left|-\sum_{p=k_{q-1}+1}^{k_{q}}\right| c_{n_{q} p}|+\mu| \\
& \quad<\mu / 8+\mu / 4+\mu / 4 .
\end{aligned}
$$

Similarly, if q is a positive odd integer, then

$$
\left|\sum_{p=1}^{\infty} c_{n_{q^{p}}} s_{p}-\mu\right|<5 \mu / 8 .
$$

Thus $C(s)$ is divergent. But $A_{b}(s)$ is convergent since $A_{b}(s)=A(b s)$ and $b s \in[b]$. Clearly $D(s)$ is convergent. Hence $C(s)$ is convergent since $C(s)=A_{b}(s)-D(s)$. Therefore we have a contradiction. Thus (*) converges to zero since the assumption to the contrary leads to a contradiction.

Let j_{1} be a positive integer such that if $q>j_{1}$, then $\sum_{p=1}^{\infty}\left|c_{p q}\right|<$ $1 / 4$. Let K be a number such that $\sum_{p=1}^{\infty}\left|c_{n p}\right|<K, n=1,2,3, \cdots$. Let i_{1} be a positive integer such that $\sum_{p=i_{1}+1}^{\infty}\left|c_{n p}\right|<1 / 4, n=1,2, \cdots$, j_{1}. Let $j_{2}>j_{1}$ be an integer such that if $q>j_{2}$, then $\sum_{p=1}^{\infty}\left|c_{q p}\right|<1 / 4^{2}$. Let $i_{2}>i_{1}$ be an integer such that $\sum_{p=i_{2}+1}^{\infty}\left|c_{n p}\right|<1 / 4^{2}, n=1,2, \cdots, j_{2}$. Continue the process to obtain increasing sequences $\left\{j_{p}\right\}_{p=1}^{\infty}$ and $\left\{i_{p}\right\}_{p=1}^{\infty}$ of positive integers. Define

$$
\begin{aligned}
& e_{n}=1, n=1,2, \cdots, i_{1} \\
& e_{n}=2^{t}, i_{t}<n \leqq i_{t+1}, t=1,2,3, \cdots
\end{aligned}
$$

Consider the matrix C_{e}. If q is a positive integer, then

$$
\begin{aligned}
\sum_{p=1}^{\infty}\left|c_{q p} e_{p}\right| & =\sum_{p=1}^{i_{1}}\left|c_{q p} e_{p}\right|+\sum_{t=1}^{\infty}\left(\sum_{p=i_{t+1}}^{i_{t+1}}\left|c_{q p} e_{p}\right|\right) \\
& <K+\sum_{t=1}^{\infty}\left(2^{t} \cdot \sum_{p=i_{t+1}}^{i_{t+1}}\left|c_{q p}\right|\right) \\
& \leqq K+\sum_{t=1}^{\infty} 2^{t} / 4^{t} \\
& =K+1
\end{aligned}
$$

Let $\left\{r_{p}\right\}$ be an increasing sequence of positive integers such that

$$
\sum_{p=r_{n}+1}^{\infty}\left|a_{p} b_{p}\right|<1 / 4^{n}
$$

Define

$$
\begin{aligned}
& f_{p}=1, p=1,2, \cdots, r_{1} \\
& f_{p}=2^{q}, r_{q}<p \leqq r_{q+1}, q=1,2,3, \cdots
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{p=1}^{\infty}\left|a_{p} b_{p} f_{p}\right| & =\sum_{p=1}^{r_{1}}\left|a_{p} b_{p} f_{p}\right|+\sum_{q=1}^{\infty}\left(\sum_{p=r_{q}+1}^{r_{q+1}}\left|a_{p} b_{p} f_{p}\right|\right) \\
& \leqq M+\sum_{q=1}^{\infty}\left(2^{q} \cdot \sum_{p=r_{q}+1}^{r_{q+1}}\left|a_{p} b_{p}\right|\right) \\
& <M+\sum_{q=1}^{\infty} 2^{q} / 4^{q} .
\end{aligned}
$$

Let $g_{p}=\min \left[e_{p}, f_{p}\right], p=1,2,3, \cdots$. Then $g_{p} \rightarrow \infty$ as $p \rightarrow \infty$. Thus $b<b g$. If n is a positive integer, then

$$
\begin{aligned}
\sum_{p=1}^{\infty}\left|a_{n p} b_{p} g_{p}\right| & \leqq \sum_{p=1}^{\infty}\left|c_{n_{p}} g_{p}\right|+\sum_{p=1}^{\infty}\left|a_{p} b_{p} g_{p}\right| \\
& \leqq \sum_{p=1}^{\infty}\left|c_{n p} e_{p}\right|+\sum_{p=1}^{\infty}\left|a_{p} b_{p} f_{p}\right| \\
& <K+1+M+1
\end{aligned}
$$

Therefore the matrix $A_{b g}$ sums every null sequence. Thus if $b<b^{\prime}<b g$, then A is c.p.o. [b^{\prime}]. The existence of a sequence b^{\prime} such that $b<b^{\prime}<b g$ follows from the lemma. This completes the proof of the theorem.

Remark 4. We note that the matrix A, defined by $a_{p q}=1$ if $p \neq q, a_{p q}=2^{p-1}$ if $p=q$, has a maximal interval $(-, b)$ over which it is convergence preserving. For example $b=\left\{1 / 2^{p-1}\right\}$.

On the other hand, the matrix A, defined by $a_{p q}=0$ if $q>p$, $a_{p q}=1$ if $p \geqq q$, has no such maximal interval. This is easily shown by supposing that $(-, b)$ is a maximal summability interval for A. Then A_{b} is c.p.o. C_{0} and hence satisfies the $S-T$ conditions. Thus $\sum_{p=1}^{\infty}\left|b_{p}\right|$ converges. It is easy to find $c \in S_{0}$ such that $b<c$ and $\sum_{p=1}^{\infty}\left|c_{p}\right|$ converges. Thus A_{c} satisfies the $S-T$ conditions and hence is c.p.o. C_{0}. Therefore A is c.p.o. $(-, c)$.

It is easy to show that if there exist numbers r and R such that $0<r<\left|a_{p q}\right|<R, p, q=1,2,3, \cdots$, then $A=\left(a_{p q}\right)$ has no maximal summability interval. The proof will be omitted.

Remark 5. Let Δ be a chain in S_{0} unbounded above. If $a \in \Delta$, let $a^{\prime}=\left\{a_{1}, 1 / 2, a_{2}, 1 / 4, a_{3}, 1 / 8, \cdots\right\}$. Let $\Delta^{\prime}=\left\{a^{\prime}: a \in \Delta\right\}$. Then Δ^{\prime} is a chain in S_{0} which is unbounded above. Let $A=\left(a_{p q}\right)$ be defined by $\alpha_{p q}=1 / 2^{n}$ if $q=2 n-1, a_{p q}=1$ if q is an even integer. Clearly if $a^{\prime} \in J^{\prime}$, then A is c.p.o. [a^{\prime}]. But A is not c.p.o. C_{0}.

THEOREM 2. If A is c.p.o. each of the sets $\left[b^{(1)}\right],\left[b^{(2)}\right],\left[b^{(3)}\right], \cdots$, then there exists $d \in S_{0}$ such that $b^{(p)}<d, p=1,2,3, \cdots$, and A is c.p.o. [d].

Proof. By Theorem 1 we can find $t^{(n)}$ in S_{0} such that $t^{(n)}>b^{(n)}$ and A is c.p.o. $\left[t^{(n)}\right], n=1,2,3, \cdots$. If n is a positive integer, let $\alpha^{(n)} \in\left[t^{(n)}\right]$ such that $0<\alpha_{p}^{(n)}<1, p=1,2,3, \cdots$. If n is a positive integer, let M_{n} be a number which exceeds $\sum_{q=1}^{\infty}\left|a_{p q} \alpha_{q}^{(n)}\right|, p=1,2,3, \cdots$. If n is a positive integer, let

$$
\beta_{p}^{(n)}=\frac{\alpha_{p}^{(n)}}{2^{n}\left[M_{n}+1\right]}, \quad p=1,2,3, \cdots
$$

If p is a positive integer, let $c_{p}=\sum_{n=1}^{\infty} \beta_{p}^{(n)}$. We wish to show that $c \in S_{0}$. Let $\mu>0$, and let k be a positive integer such that $2^{-k}<\mu / 2$. Let R be a positive integer such that if $q>R$, then $\beta_{q}^{(p)}<\mu / 2^{k+1}$, $p=1,2, \cdots, k$. Then if $n>R$, we have

$$
c_{n}=\sum_{p=1}^{\infty} \beta_{n}^{(p)}=\sum_{p=1}^{k} \beta_{n}^{(p)}+\sum_{p=k+1}^{\infty} \beta_{n}^{(p)}<\mu / 2+2^{-k}<\mu .
$$

Thus $c \in S_{0}$. If q is a positive integer, then, using the double sum theorem, we have

$$
\begin{aligned}
\sum_{p=1}^{\infty}\left|a_{q p} c_{p}\right| & =\sum_{p=1}^{\infty}\left|a_{q p}\right|\left(\sum_{n=1}^{\infty} \beta_{p}^{(n)}\right) \\
& =\sum_{p=1}^{\infty} \sum_{n=1}^{\infty}\left|a_{q p}\right| \beta_{p}^{(n)} \\
& =\sum_{n=1}^{\infty} \sum_{p=1}^{\infty}\left|a_{q p}\right| \beta_{p}^{(n)} \\
& =\sum_{n=1}^{\infty} \sum_{p=1}^{\infty}\left|a_{q p}\right| \cdot \frac{\alpha_{p}^{(n)}}{2^{n}\left[M_{n}+1\right]} \\
& =\sum_{n=1}^{\infty} \frac{1}{2^{n}\left[M_{n}+1\right]} \sum_{p=1}^{\infty}\left|a_{q p}\right| \alpha_{p}^{(n)} \\
& <\sum_{n=1}^{\infty} 2^{-n}
\end{aligned}
$$

Thus A_{c} sums every null sequence. Therefore A sums every sequence $x \in S_{0}$ such that $x<c$. We note that if n is a positive integer, then $c_{p} / \beta_{p}^{(n)}>1, p=1,2,3, \cdots$. Thus if n is a positive integer, then

$$
\lim _{p \rightarrow \infty}\left|\frac{c_{p}}{b_{p}^{(n)}}\right|=\lim _{p \rightarrow \infty} \frac{c_{p}}{\beta_{p}^{(n)}} \cdot \frac{\beta_{p}^{(n)}}{t_{p}^{(n)}} \cdot \frac{t_{p}^{(n)}}{\left|b_{p}^{(n)}\right|}=\infty
$$

Hence $b^{(n)}<c, n=1,2,3, \cdots$. By the lemma, there exists $d \in S_{0}$ such that $b^{(n)}<d<c, n=1,2,3, \cdots$. A is c.p.o. [d] since $d<c$ and A sums every sequence $x \in S_{0}$ such that $x<c$. This completes the proof of the theorem.

Corollary. Suppose M is a countable set of matrices and L is a countable subset of E_{0} such that if $A \in M$ and $[b] \in L$, then A is c.p.o. [b]. Then there exists $[c] \in E_{0}$ such that if $A \in M$ and $[b] \in L$, then $[b]<^{\prime}[c]$ and A is c.p.o. [c].

Proof. The proof will be for the case that both M and L are infinite sets. Let $M=\left\{A^{(1)}, A^{(2)}, A^{(3)}, \cdots\right\}$ and $L=\left\{\left[b^{(1)}\right],\left[b^{(2)}\right],\left[b^{(3)}\right], \cdots\right\}$. By Theorem 2, if p is a positive integer, there exists $c^{(p)} \in S_{0}$ such that $b^{(n)}<c^{(p)}, n=1,2,3, \cdots$, and $A^{(p)}$ is c.p.o. [$\left.c^{(p)}\right]$. Let $L^{\prime}=$ $\left\{\left[c^{(1)}\right],\left[c^{(2)}\right],\left[c^{(3)}\right], \cdots\right\}$. By the lemma, there exists $c \in S_{0}$ such that if $b^{(s)} \in L$ and $c^{(t)} \in L^{\prime}$, then $b^{(s)}<c<c^{(t)}$. If j is a positive integer, then by Remark 2^{\prime}, $A^{(j)}$ is c.p.o. [c] since $A^{(j)}$ is c.p.o. [$\left.c^{(j)}\right]$ and $[c] \subset\left(-, c^{(j)}\right]$. This completes the proof.

Received January 31, 1967.

