MATRIX SUMMABILITY OVER CERTAIN CLASSES OF SEQUENCES ORDERED WITH RESPECT TO RATE OF CONVERGENCE

DAVID F. DAWSON

Let C_0 denote the set of all complex null sequences, and let S_0 denote the set of all sequences in C_0 which have at most a finite number of zero terms. If $a = \{a_p\} \in S_0$ and $b = \{b_p\} \in S_0$, we say that a converges faster than b, a < b, provided $\lim a_p/b_p = 0$. We say that a and b converge at the same rate, $a \sim b$, provided $0 < \liminf |a_p/b_p|$ and $\limsup |a_p/b_p| < \infty. \quad \text{If} \ a \in S_0, \ \text{let} \ [a] = \{x \in S_0: x \thicksim a\}. \quad \text{Let}$ $E_0 = \{ [x] : x \in S_0 \}$. If $[a], [b] \in E_0$, then we say that [a] is less than [b], [a] < '[b], provided a < b. We note that E_0 is partially ordered with respect to $\leq '$. In this paper we study matrix summability over subsets of S_0 and over elements of E_0 . Open intervals in S_0 will be denoted by (a, b), (a, -), and (-, b),where $(a, -) = \{x \in S_0 : a < x\}$ and $(-, b) = \{x \in S_0 : x < b\}$. Some of our results characterize, for matrices, maximal summability intervals in S_0 . Such intervals are of the form (-, b), never of the form $(-, b] = \{x \in S_0: \text{ either } x < b \text{ or } x \sim b\}.$

Notational conveniences used are as follows. If $A = (a_{pq})$ is a matrix and b is a sequence such that for each positive integer p, the series $\sum_{q=1}^{\infty} a_{pq}b_q$ converges, then A(b) will denote the sequence $\{\sum_{q=1}^{\infty} a_{pq}b_q\}_{p=1}^{\infty}$. We will use A_b to denote the matrix $(a_{pq}b_q)$. If each of a and b is a sequence, then ab will be used to denote the sequence $\{a_pb_p\}$.

Playing a basic role throughout the paper are the two classical Silverman-Toeplitz (abbreviated S - T) conditions which are necessary and sufficient for a matrix A to be convergence preserving over (abbreviated c.p.o.) C_0 . These conditions are

(1) $\{a_{pq}\}_{p=1}^{\infty}$ converges, $q=1,2,3,\cdots$, and

(2) there exists K such that $\sum_{q=1}^{\infty} |a_{pq}| < K, p = 1, 2, 3, \cdots$. We note that the S - T conditions are necessary and sufficient for a matrix A to be c.p.o. S_0 .

REMARK 1. A matrix sums every sequence in some interval (-, b) if and only if it has convergent columns.

REMARK 2. If the matrix A is c.p.o. [b] and c is a sequence such that $\lim c_p/b_p = 0$, then A(c) is convergent.

REMARK 2'. If A is c.p.o. [b], then A is c.p.o. (-, b].

DAVID F. DAWSON

REMARK 3. If A is c.p.o. (a, -), then A is c.p.o. C_0 .

LEMMA. Suppose K and L are countable subsets of S_0 such that if $x \in K$ and $y \in L$, then x < y. Then there exists $z \in S_0$ such that if $x \in K$ and $y \in L$, then x < z < y.

Proof. Our proof will be for the case that both K and L are infinite sets. Let $K = \{a^{(1)}, a^{(2)}, a^{(3)}, \cdots\}$ and $L = \{b^{(1)}, b^{(2)}, b^{(3)}, \cdots\}$. Let $\{n_p\}_{p=1}^{\infty}$ be an increasing sequence of positive integers such that if $i > n_p$, then

$$\Big| \, rac{b_i^{(j)}}{a_i^{(t)}} \, \Big| > 2^p \;, \qquad j,\,t=1,\,2,\,\cdots,\,p \;.$$

Define

$$egin{aligned} c_i &= b_i^{\scriptscriptstyle(1)}, \, i = 1, 2, \, \cdots, \, n_2 \;, \ c_i &= (1/p) \min \left[\mid b_i^{\scriptscriptstyle(1)} \mid, \mid b_i^{\scriptscriptstyle(2)} \mid, \, \cdots, \mid b_i^{\scriptscriptstyle(p)} \mid
ight] \;, \ n_p < i \leq n_{p+1}, \, p = 2, 3, 4, \, \cdots \,. \end{aligned}$$

Let r be a positive integer. If p > r and q is a positive integer such that $n_p < q \leq n_{p+1}$, then we have $|b_q^{(r)}/c_q| \geq p$, and, since $c_q = |b_q^{(t)}|/p$ for some $t \in \{1, 2, \dots, p\}$, we have $|c_q/a_q^{(r)}| > 2^p/p$. Thus $a^{(r)} < c < b^{(r)}$. This completes the proof.

THEOREM 1. If A is c.p.o. [b], then there exists $b' \in S_0$ such that b < b' and A is c.p.o. [b'].

Proof. Since A is c.p.o. [b], then by Remarks 1 and 2', A has convergent columns. Let $a_q = \lim_{p\to\infty} a_{pq}$. By Remark 2, A sums every null sequence x such that $\lim_{p\to\infty} a_{pq}$. By Remark 2, A sums every null sequence. Therefore from (2) of the S - T conditions there exists M such that if n is a positive integer, then $\sum_{p=1}^{\infty} |a_{np}b_p| < M$. Clearly $\sum_{q=1}^{\infty} |a_qb_q| \leq M$. Let $C = (c_{pq})$ be the matrix defined by $c_{pq} = a_{pq}b_q - a_qb_q$. Let $D = (d_{pq})$ be the matrix defined by $d_{pq} = a_qb_q$. Then $A_b = C + D$. We wish to show that the sequence

(*)
$$\left\{\sum_{p=1}^{\infty} |a_{np}b_{p} - a_{p}b_{p}|\right\}_{n=1}^{\infty}$$

converges to zero. We note that (*) is bounded. Suppose (*) has a subsequence which converges to $\mu > 0$. Note that each column of C converges to zero. Let n_1 be a positive integer such that

$$\left|\sum\limits_{p=1}^{\infty}|c_{n_1p}|-\mu
ight|<\mu/8$$
 .

Let k_1 be a positive integer such that $\sum_{p=1}^{k_1} |c_{n_1p}| > 7\mu/8$. Let $N_1 > n_1$ be an integer such that if $q > N_1$, then $\sum_{p=1}^{k_1} |c_{qp}| < \mu/8$. Let $n_2 > N_1$ be an integer such that

$$\Big|\sum\limits_{p=1}^{\infty} |\, c_{n_2 p}\,| - \mu\,\Big| < \mu/8$$
 .

Let $k_2 > k_1$ be an integer such that $\sum_{p=1}^{k_2} |c_{n_2p}| > 7\mu/8$. Let $N_2 > n_2$ be an integer such that if $q > N_2$, then $\sum_{p=1}^{k_2} |c_{qp}| < \mu/8$. Continue the process to obtain increasing sequences $\{n_p\}_{p=1}^{\infty}$ and $\{k_p\}_{p=1}^{\infty}$ of positive integers. Define $t_{pq} = |c_{pq}|/c_{pq}$ if $c_{pq} \neq 0$, $t_{pq} = 1$ if $c_{pq} = 0$. Define

$$egin{aligned} s_p &= 1,\,p \,= 1,\,2,\,\cdots,\,k_1 \ , \ s_p &= (-1)^{q+1} t_{n_q p},\,k_{q-1}$$

Suppose q is a positive even integer. Then

$$\begin{split} \left| \sum_{p=1}^{\infty} c_{n_q p} s_p - (-\mu) \right| \\ &= \left| \sum_{p=1}^{k_q - 1} c_{n_q p} s_p + \sum_{p=k_q - 1 + 1}^{k_q} c_{n_q p} s_p + \sum_{p=k_q + 1}^{\infty} c_{n_q p} s_p + \mu \right| \\ &\leq \sum_{p=1}^{k_q - 1} |c_{n_q p}| + \sum_{p=k_q + 1}^{\infty} |c_{n_q p}| + \left| \sum_{p=k_q - 1 + 1}^{k_q} c_{n_q p} s_p + \mu \right| \\ &< \mu/8 + \mu/4 + \left| - \sum_{p=k_q - 1 + 1}^{k_q} |c_{n_q p}| + \mu \right| \\ &< \mu/8 + \mu/4 + \mu/4 . \end{split}$$

Similarly, if q is a positive odd integer, then

$$\left|\sum\limits_{p=1}^{\infty}c_{n_{q}p}s_{p}-\mu
ight|<5\mu/8$$
 .

Thus C(s) is divergent. But $A_b(s)$ is convergent since $A_b(s) = A(bs)$ and $bs \in [b]$. Clearly D(s) is convergent. Hence C(s) is convergent since $C(s) = A_b(s) - D(s)$. Therefore we have a contradiction. Thus (*) converges to zero since the assumption to the contrary leads to a contradiction.

Let j_1 be a positive integer such that if $q > j_1$, then $\sum_{p=1}^{\infty} |c_{pq}| < 1/4$. Let K be a number such that $\sum_{p=i_1+1}^{\infty} |c_{np}| < K, n = 1, 2, 3, \cdots$. Let i_1 be a positive integer such that $\sum_{p=i_1+1}^{\infty} |c_{np}| < 1/4, n = 1, 2, \cdots$, j_1 . Let $j_2 > j_1$ be an integer such that if $q > j_2$, then $\sum_{p=1}^{\infty} |c_{qp}| < 1/4^2$. Let $i_2 > i_1$ be an integer such that $\sum_{p=i_2+1}^{\infty} |c_{np}| < 1/4^2, n = 1, 2, \cdots, j_2$. Continue the process to obtain increasing sequences $\{j_p\}_{p=1}^{\infty}$ and $\{i_p\}_{p=1}^{\infty}$ of positive integers. Define

53

$$egin{aligned} &e_n = 1,\, n = 1,\, 2,\, \cdots,\, i_1 \ , \ &e_n = 2^t,\, i_t < n \leq i_{t+1},\, t = 1,\, 2,\, 3,\, \cdots \,. \end{aligned}$$

Consider the matrix C_{e} . If q is a positive integer, then

$$egin{aligned} &\sum_{p=1}^{\infty} \mid c_{qp} e_p \mid = \sum_{p=1}^{i_1} \mid c_{qp} e_p \mid + \sum_{t=1}^{\infty} \left(\sum_{p=i_t+1}^{i_{t+1}} \mid c_{qp} e_p \mid
ight) \ &< K + \sum_{t=1}^{\infty} \left(2^t \cdot \sum_{p=i_t+1}^{i_{t+1}} \mid c_{qp} \mid
ight) \ &\leq K + \sum_{t=1}^{\infty} 2^t / 4^t \ &= K + 1 \;. \end{aligned}$$

Let $\{r_p\}$ be an increasing sequence of positive integers such that

$$\sum_{p=r_n+1}^{\infty} |\, a_p b_p\,| < 1/4^n$$
 .

Define

$$egin{aligned} &f_p = 1,\, p = 1,\, 2,\, \cdots,\, r_1 \ , \ &f_p = 2^q,\, r_q$$

Then

$$egin{aligned} &\sum_{p=1}^\infty |\, a_p b_p f_p\,| &= \sum_{p=1}^{r_1} |\, a_p b_p f_p\,| + \sum_{q=1}^\infty \left(\sum_{p=r_q+1}^{r_q+1} |\, a_p b_p f_p\,|
ight) \ &\leq M + \sum_{q=1}^\infty \left(2^q \cdot \sum_{p=r_q+1}^{r_q+1} |\, a_p b_p\,|
ight) \ &< M + \sum_{q=1}^\infty 2^q / 4^q \;. \end{aligned}$$

Let $g_p = \min [e_p, f_p], p = 1, 2, 3, \cdots$. Then $g_p \to \infty$ as $p \to \infty$. Thus b < bg. If n is a positive integer, then

$$egin{aligned} &\sum\limits_{p=1}^{\infty} |a_{np}b_{p}g_{p}| &\leq \sum\limits_{p=1}^{\infty} |c_{np}g_{p}| + \sum\limits_{p=1}^{\infty} |a_{p}b_{p}g_{p}| \ &\leq \sum\limits_{p=1}^{\infty} |c_{np}e_{p}| + \sum\limits_{p=1}^{\infty} |a_{p}b_{p}f_{p}| \ &< K+1+M+1 \;. \end{aligned}$$

Therefore the matrix A_{bg} sums every null sequence. Thus if b < b' < bg, then A is c.p.o. [b']. The existence of a sequence b' such that b < b' < bg follows from the lemma. This completes the proof of the theorem.

REMARK 4. We note that the matrix A, defined by $a_{pq} = 1$ if $p \neq q$, $a_{pq} = 2^{p-1}$ if p = q, has a maximal interval (-, b) over which it is convergence preserving. For example $b = \{1/2^{p-1}\}$.

On the other hand, the matrix A, defined by $a_{pq} = 0$ if q > p, $a_{pq} = 1$ if $p \ge q$, has no such maximal interval. This is easily shown by supposing that (-, b) is a maximal summability interval for A. Then A_b is c.p.o. C_0 and hence satisfies the S - T conditions. Thus $\sum_{p=1}^{\infty} |b_p|$ converges. It is easy to find $c \in S_0$ such that b < c and $\sum_{p=1}^{\infty} |c_p|$ converges. Thus A_c satisfies the S - T conditions and hence is c.p.o. C_0 . Therefore A is c.p.o. (-, c).

It is easy to show that if there exist numbers r and R such that $0 < r < |a_{pq}| < R, p, q = 1, 2, 3, \cdots$, then $A = (a_{pq})$ has no maximal summability interval. The proof will be omitted.

REMARK 5. Let Δ be a chain in S_0 unbounded above. If $a \in \Delta$, let $a' = \{a_1, 1/2, a_2, 1/4, a_3, 1/8, \cdots\}$. Let $\Delta' = \{a': a \in \Delta\}$. Then Δ' is a chain in S_0 which is unbounded above. Let $A = (a_{pq})$ be defined by $a_{pq} = 1/2^n$ if q = 2n - 1, $a_{pq} = 1$ if q is an even integer. Clearly if $a' \in \Delta'$, then A is c.p.o. [a']. But A is not c.p.o. C_0 .

THEOREM 2. If A is c.p.o. each of the sets $[b^{(1)}], [b^{(2)}], [b^{(3)}], \cdots$, then there exists $d \in S_0$ such that $b^{(p)} < d, p = 1, 2, 3, \cdots$, and A is c.p.o. [d].

Proof. By Theorem 1 we can find $t^{(n)}$ in S_0 such that $t^{(n)} > b^{(n)}$ and A is c.p.o. $[t^{(n)}], n = 1, 2, 3, \cdots$. If n is a positive integer, let $\alpha^{(n)} \in [t^{(n)}]$ such that $0 < \alpha_p^{(n)} < 1, p = 1, 2, 3, \cdots$. If n is a positive integer, let M_n be a number which exceeds $\sum_{q=1}^{\infty} |a_{pq}\alpha_q^{(n)}|, p = 1, 2, 3, \cdots$. If n is a positive integer, let

$$eta_p^{_{(n)}} = rac{lpha_p^{_{(n)}}}{2^n[M_n+1]} \ , \qquad p=1,\,2,\,3,\,\cdots \,.$$

If p is a positive integer, let $c_p = \sum_{n=1}^{\infty} \beta_p^{(n)}$. We wish to show that $c \in S_0$. Let $\mu > 0$, and let k be a positive integer such that $2^{-k} < \mu/2$. Let R be a positive integer such that if q > R, then $\beta_q^{(p)} < \mu/2^{k+1}$, $p = 1, 2, \dots, k$. Then if n > R, we have

$$c_n = \sum\limits_{p=1}^\infty eta_n^{(p)} = \sum\limits_{p=1}^k eta_n^{(p)} + \sum\limits_{p=k+1}^\infty eta_n^{(p)} < \mu/2 + 2^{-k} < \mu$$
 .

Thus $c \in S_0$. If q is a positive integer, then, using the double sum theorem, we have

55

$$\begin{split} \sum_{p=1}^{\infty} | \, a_{qp} c_p \, | &= \sum_{p=1}^{\infty} | \, a_{qp} \, | \left(\sum_{n=1}^{\infty} \beta_p^{(n)} \right) \\ &= \sum_{p=1}^{\infty} \sum_{n=1}^{\infty} | \, a_{qp} \, | \, \beta_p^{(n)} \\ &= \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} | \, a_{qp} \, | \, \beta_p^{(n)} \\ &= \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} | \, a_{qp} \, | \, \cdot \frac{\alpha_p^{(n)}}{2^n [M_n + 1]} \\ &= \sum_{n=1}^{\infty} \frac{1}{2^n [M_n + 1]} \sum_{p=1}^{\infty} | \, a_{qp} \, | \, \alpha_p^{(n)} \\ &< \sum_{n=1}^{\infty} 2^{-n} \, . \end{split}$$

Thus A_c sums every null sequence. Therefore A sums every sequence $x \in S_0$ such that x < c. We note that if n is a positive integer, then $c_p/\beta_p^{(n)} > 1, p = 1, 2, 3, \cdots$. Thus if n is a positive integer, then

$$\lim_{p o\infty} \left| rac{c_p}{b_p^{(n)}}
ight| = \lim_{p o\infty} rac{c_p}{eta_p^{(n)}} \cdot rac{eta_p^{(n)}}{t_p^{(n)}} \cdot rac{t_p^{(n)}}{|b_p^{(n)}|} = \infty \; .$$

Hence $b^{(n)} < c, n = 1, 2, 3, \cdots$. By the lemma, there exists $d \in S_0$ such that $b^{(n)} < d < c, n = 1, 2, 3, \cdots$. A is c.p.o. [d] since d < c and A sums every sequence $x \in S_0$ such that x < c. This completes the proof of the theorem.

COROLLARY. Suppose M is a countable set of matrices and L is a countable subset of E_0 such that if $A \in M$ and $[b] \in L$, then A is c.p.o. [b]. Then there exists $[c] \in E_0$ such that if $A \in M$ and $[b] \in L$, then [b] <'[c] and A is c.p.o. [c].

Proof. The proof will be for the case that both M and L are infinite sets. Let $M = \{A^{(1)}, A^{(2)}, A^{(3)}, \cdots\}$ and $L = \{[b^{(1)}], [b^{(2)}], [b^{(3)}], \cdots\}$. By Theorem 2, if p is a positive integer, there exists $c^{(p)} \in S_0$ such that $b^{(n)} < c^{(p)}, n = 1, 2, 3, \cdots$, and $A^{(p)}$ is c.p.o. $[c^{(p)}]$. Let $L' = \{[c^{(1)}], [c^{(2)}], [c^{(3)}], \cdots\}$. By the lemma, there exists $c \in S_0$ such that if $b^{(s)} \in L$ and $c^{(t)} \in L'$, then $b^{(s)} < c < c^{(t)}$. If j is a positive integer, then by Remark 2', $A^{(j)}$ is c.p.o. [c] since $A^{(j)}$ is c.p.o. $[c^{(j)}]$ and $[c] \subset (-, c^{(j)}]$. This completes the proof.

Received January 31, 1967.

NORTH TEXAS STATE UNIVERSITY