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MATRIX SUMMABILITY OVER CERTAIN CLASSES OF
SEQUENCES ORDERED WITH RESPECT TO

RATE OF CONVERGENCE

DAVID F. DAWSON

Let Co denote the set of all complex null sequences, and
let So denote the set of all sequences in Co which have at
most a finite number of zero terms. If a = {ap} e So and
b = {bp} e So, we say that a converges faster than b, a < b,
provided lim av\bp — 0. We say that a and b converge at
the same rate, a ~b, provided 0 < lim inf | ap\bP | and
lim sup I aPlbp \ < oo. If aeS0, let [a] = {x e So: x ~ a}. Let
Eo = {[x]: xeSo}. If [a], [b]eE0, then we say that [a] is less
than [6], [a] <' [6], provided a < b. We note that Eo is partially
ordered with respect to g'. In this paper we study matrix
summability over subsets of >S0 and over elements of Eo, Open
intervals in So will be denoted by (α, b), (a, —), and (—,6),
where (α, —) = {xe So: a < x} and (—, 6) = {x e SQ: x < b}. Some
of our results characterize, for matrices, maximal summability
intervals in So. Such intervals are of the form (—, 6), never
of the form (—, b] = {x e So: either x < b or x ~ 6}.

Notational conveniences used are as follows. If A = (apq) is a
matrix and b is a sequence such that for each positive integer p,
the series ΣΓ=i α * Λ converges, then A(δ) will denote the sequence
{ΣΓ=ι αpg }̂Γ=i We will use Ab to denote the matrix (apqbq). If each of a
and δ is a sequence, then ab will be used to denote the sequence {apbp}.

Playing a basic role throughout the paper are the two classical
Silverman-Toeplitz (abbreviated S — T) conditions which are necessary
and sufficient for a matrix A to be convergence preserving over
(abbreviated c.p.o.) Co. These conditions are

( 1 ) {αpff}~=1 converges, q = 1, 2, 3, ,
and

( 2 ) there exists K such that ΣΓ=i I αOT | < JSΓ, p = 1, 2, 3, .
We note that the S — T conditions are necessary and sufficient for a
matrix A to be c.p.o. SQ.

REMARK 1. A matrix sums every sequence in some interval ( —, b)
if and only if it has convergent columns.

REMARK 2. If the matrix A is c.p.o. [b] and c is a sequence such
that lim cp/bp = 0, then A(c) is convergent.

REMARK 2'. If A is c.p.o. [6], then A is c.p.o. (-,£>].
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REMARK 3. If A is c.p.o. (α, —), then A is c.p.o. CQ.

LEMMA. Suppose K and L are countable subsets of So such that
if xe K and y e L, then x < y. Then there exists z e So such that if
xe K and y e L, then x < z < y.

Proof. Our proof will be for the case that both K and L are
infinite sets. Let K = {α(1), α(2), α(3), •} and L = {δ(1), δ(2), δ(3), •}.
Let {np}^ be an increasing sequence of positive integers such that if
i > np, then

a\
U)

>2p , 3, t =

Define

c4 = δί1', i = 1, 2,

Ci = (l/p)min[\bV

,n2

np < i ^ np+1, p = 2, 3, 4, .

Let r be a positive integer. If p > r and q is a positive integer
such that np < q <: np+1, then we have | bq

r)/cq | ^ p, and, since cg =
I bq

t] \jp for some t e {1, 2, , p}, we have | cg/αg

r) | > 2p/p. Thus
α ( r ) < c < δ ( r ). This completes the proof.

THEOREM 1. // A is c.p.o. [δ], then there exists br e So such that
b < δ' and A is c.p.o. [δ'].

Proof. Since A is c.p.o. [δ], then by Remarks 1 and 2', A has
convergent columns. Let aq = lim^co αp g. By Remark 2, A sums
every null sequence x such that lim xp/bp = 0. Thus A6 sums every
null sequence. Therefore from (2) of the S — T conditions there
exists M such that if n is a positive integer, then Σ?=i I α ?̂>̂ 2> I < M.
Clearly ΣΓ-i i α «^! = ̂  Let C = (cpq) be the matrix defined by
cPq = Upqbq — dqbq. Let JD = (dpq) be the matrix defined by dpq = αgδg.

= C + D. We wish to show that the sequenceThen

( * ) Σ

converges to zero. We note that (*) is bounded. Suppose (*) has a
subsequence which converges to μ > 0. Note that each column of C
converges to zero. Let nγ be a positive integer such that

Σl d , β — <^/8.
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Let kx be a positive integer such that Σ£=i I GnιV I > 7μ/8. Let Nλ > %
be an integer such that if q > JVi, then Σί=i I cgp I < j"/8 Let w2 > ΛΓj.
be an integer such that

Σ I
p = l

Let yk2 > Â  be an integer such that ΣP=I I ^2ί> I > 7μ/8. Let JV2 > w2

be an integer such that if q > AΓ2, then Σϊ=i I c ^ I < A*/8. Continue
the process to obtain increasing sequences {np}p*=ι and {kp}p*=1 of positive
integers. Define tpq = | cM |/cOT if cpq Φ 0, ίpff = 1 if cpq = 0. Define

^ = l , p = 1, 2, . . . , k, ,

sp - (-iγ+*tnqP, V i < P ^ feff, 9 = 2, 3, 4, .

Suppose g is a positive even integer. Then

v Cn pSp

- Λ/4 -f

c,βPβ, + Σ

Σ μ

- Σ ^

+ μβ +

Similarly, if g is a positive odd integer, then

Σ<
p = l

- μ < δμ/S

Thus C(s) is divergent. But Ab(s) is convergent since Ab(s) = A(bs)
and δsG [6]. Clearly D(s) is convergent. Hence C(s) is convergent
since C(s) = Ab(s) — D(s). Therefore we have a contradiction. Thus
(*) converges to zero since the assumption to the contrary leads to a
contradiction.

Let jx be a positive integer such that if q > j \ , then Σ~=11 cM | <

<K,n = 1, 2, 3,
< 1/4, w = 1, 2,

1/4. Let ϋΓ be a number such that Σ?=
Let ii be a positive integer such that ΣΓ=ή+i I cnP

j \ . Let i 2 > j t be an integer such that if q > i2, then X^=1 [ cgp | < 1/42.
Let ί2 > ij. be an integer such that Σ?=;2+i I cnP I < 1/42, w = 1, 2, , i2.
Continue the process to obtain increasing sequences {iJJU and {%}"=,!
of positive integers. Define
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en = 1, n = 1, 2, ••-, ix ,

βw = 2*, i, < ra ^ i t + 1, ί - 1,2, 3, . . . .

Consider the matrix Ce. If q is a positive integer, then

Σ
p=i

Σ
p = l

Σ Σ

274'

Let {rp} be an increasing sequence of positive integers such that

αA! < i/4 .

Define

fp =

Then

= 1 , 2 , -*-,rι ,

q<p^ r f f+1, g = 1, 2, 3,

Σ = Σ I «ΛΛ I + Σ

< ΛΓ + Σ 2V4"
9 = 1

Let flrp = min [ep, fp], p = 1, 2, 3, . Then
6 < bg. If % is a positive integer, then

as p . Thus

Σ \a h a < V i c Σ I α p

^ Σ I cnpep I + Σ I «
p=i p=i

Therefore the matrix Abg sums every null sequence. Thus if b<b'<bg,
then A is c.p.o. [6']. The existence of a sequence 6' such that
b <b' <bg follows from the lemma. This completes the proof of
the theorem.
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REMARK 4. We note that the matrix A, defined by apq = 1 if
p Φ g, apq — 2P~1 if p — g, has a maximal interval ( —, b) over which
it is convergence preserving. For example b = {l/^™1}.

On the other hand, the matrix A, defined by apq = 0 if g > p,
α M — 1 if p ^ q, has no such maximal interval. This is easily shown
by supposing that ( — ,b) is a maximal summability interval for A.
Then Ab is c.p.o. Co and hence satisfies the S — T conditions. Thus
Σ P U I &* I converges. It is easy to find c e So such that b < c and
ΣΓ=iI Cp I converges. Thus Ac satisfies the S — T conditions and
hence is c.p.o. Co. Therefore A is c.p.o. ( —,c).

It is easy to show that if there exist numbers r and R such
that 0 < r < I αPff I < 2Ϊ, j), g = 1, 2, 3, , then A = (<xM) has no maxi-
mal summability interval. The proof will be omitted.

REMARK 5. Let Δ be a chain in So unbounded above. If aeΔ,
let α' - {alf 1/2, α2,1/4, α3,1/8, •. •}. Let J ' = {α': α 6 J}. Then zl' is
a chain in So which is unbounded above. Let A = (αPβ) be defined
by apq ~ lβn if g = 2n — 1, αpg = 1 if q is an even integer. Clearly
if ar e Δ', then A is c.p.o. [α']. But A is not c.p.o. Co.

THEOREM 2. // A is c.p.o. each of the sets [δ(1)], [δ(2)], [6(3)], ,
ίfcew ίfcβrβ exists de SQ such that ¥p) < d, p — 1, 2, 3, , cmd A is
c.p.o. [d].

Proof. By Theorem 1 we can find t{n) in So such that t{n) > b{n)

and A is c.p.o. [ί ( Λ )], n = 1, 2, 3, . If % is a positive integer, let
α ( w ) e [ί(w)] such that 0 < a™ < 1, j> = 1, 2, 3, . If w is a positive
integer, let Mn be a number which exceeds Σ*= 11 apqa

(

q

n) \,p = 1,2,3, .
If 7i is a positive integer, let

β^ — av r> = 1 2 3

If p is a positive integer, let cp = Σ^=i/5pw). We wish to show that
c 6 So. Let μ > 0, and let fe be a positive integer such that 2~k < μ/2.
Let i? be a positive integer such that if q > R, then βq

v) < μ/2k+\
p = 1, 2, . ., fe. Then if n > iϋ, we have

c Λ = Σ Ά P ) - Σ ^ p ) + Σ Ά p ) < μ β + 2 ~ k < μ .
p = l p-l p=k+l

Thus c G So. If ? is a positive integer, then, using the double sum
theorem, we have
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= ΣΣ

y y
ib —1 p = l

— 2

Pp

a[

Ό

2n[Mn

Thus Ac sums every null sequence. Therefore A sums every sequence
x e So such that x < c. We note that if n is a positive integer, then

cP/βpn) > 1, P = 1> 2, 3, Thus if n is a positive integer, then

- l i mlim

Hence b{n) < c, n = 1, 2, 3, . By the lemma, there exists d e So

such that b{n) < d < c, n = 1, 2, 3, . A is c.p.o. [d] since d < c
and A sums every sequence xe So such that x < c. This completes
the proof of the theorem.

COROLLARY. Suppose M is a countable set of matrices and L is
a countable subset of Eo such that if Ae M and [δ] e L, then A is
c.p.o, [δ]. Then there exists [c] e Eo such that if Ae M and [δ] e L,
then [δ] <'[c] and A is c.p.o. [c].

Proof. The proof will be for the case that both M and L are
infinite sets. Let M={A{1\ A(2), A(3), .} and L = {[δ(1)], [δ(2)], [δ(3)], . . . } .
By Theorem 2, if p is a positive integer, there exists c{p) e SQ such
that b{n) < c!p\ n = 1,2, 3, ••., and A{p) is c.p.o. [c{p}]. Let U =
{[c(1)], [c(2)], [c(3)], . . . } . By the lemma, there exists ceS0 such that if
6(s) 6 L and c{t)eU, then δ(s) < c < c(t). If j is a positive integer,
then by Remark 2', A{j) is c.p.o. [c] since A{j) is c.p.o. [cU)] and
[c] c ( —, c{j)]. This completes the proof.
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