SOME PROPERTIES OF SEQUENCES, WITH AN APPLICATION TO NONCONTINUABLE POWER SERIES

F. W. Carroll

Abstract

For a real sequence $f=\{f(n)\}$ and positive integer N, let F^{N} denote the sequence of N-tuples $\{(f(n+1), \cdots, f(n+N))\}$. A functional equation method due to Kemperman is used to obtain a sufficient condition on s in order that s^{N} have an independent N-tuple among its cluster points. If a bounded s has the latter property, and if $g=r s$, where $r(n) \rightarrow \infty$ and $r(n+1) / r(n) \rightarrow 1$ as $n \rightarrow \infty$, then there is a subsequence S of the sequence of positive integers such that, for almost all real α, the restriction of αg^{N} to S is uniformly distributed $(\bmod 1)$ in the N-cube.

Let F be an analytic function whose Maclaurin series has bounded coefficients $\left\{a_{n}\right\}$ which satisfy the additional requirement

$$
\lim _{M \rightarrow \infty} \inf _{0 \leqq k<\infty} \sum_{n=k}^{k+M}\left|a_{n}\right|=\infty .
$$

If $a_{n}=\left|a_{n}\right| \exp \{2 \pi i f(n)\}$, then the density $(\bmod 1)$ of f^{N} for each N is sufficient in order that F have the unit circle as a natural boundary. Hence, a metric result for noncontinuable series is obtained from the results for sequences.

1. Notation. For x real, let $((x))=x-[x]$, and $e(x)=\exp (2 \pi i x)$. h_{1}, \cdots, h_{N} will denote an N-tuple of integers, not all of which are zero. The sequence of nonnegative integers will be denoted by Z, and subsequences of Z by S_{1}, S_{2}, etc. For a real sequence f, we denote by Δf the sequence $\{f(n+1)-f(n)\}$ and

$$
\Delta^{j+1} f=\Delta\left(\Delta^{j} f\right),(j=1,2, \cdots)
$$

2. The property (PN).

Definition. A bounded sequence s of real numbers will be said to have property (PN) if there is an independent N-tuple among the cluster points of s^{N}. In other words, s has property (PN) if there is a subsequence S of Z such that for every N-tuple h_{1}, \cdots, h_{N} of integers not all zero, there holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|h_{1} s(n+1)+\cdots+h_{N} s(n+N)\right|>0, \quad(n \in S) \tag{2.1}
\end{equation*}
$$

We shall be interested in sequences s of the following form:

$$
\begin{equation*}
s(n)=\varphi(\psi(n)) \tag{2.2}
\end{equation*}
$$

$$
(n \in Z)
$$

where φ is a function of period 1 with at most a nowhere dense set of points of discontinuity, and ψ has the property (QN).
(QN) There exists a subsequence S_{1} of Z such that
(i) $\Delta^{j} \psi(n)$ converges $(\bmod 1)$ for $n \rightarrow \infty$,

$$
\begin{equation*}
n \in S_{1} \quad(j=2, \cdots, N) \tag{2.3}
\end{equation*}
$$

(ii) $\left\{\left(\left((\psi(n)),((\Delta \psi(n))): n \in S_{1}\right\}\right.\right.$ is not nowhere dense.

Theorem 2.1. Let s be of the form (2.2), where φ and ψ have the properties listed above. Then either s has property (PN), or else φ agrees on some interval $I \subset[0,1]$ with a polynomial of degree N 2 at most.

Proof. Under the conditions on φ and ψ, it is possible to obtain a subsequence S_{2} of S_{1} and an open disk D in the plane such that
(i) $\lim _{n \rightarrow \infty} \Delta^{j} \psi(n)=\tau_{j} \quad(\bmod 1), \quad\left(n \in S_{2}\right), \quad(j=2, \cdots, N)$,
(ii) $\left\{\left(\left((\psi(n)),((\Delta \psi(n))): n \in S_{2}\right\}\right.\right.$ is dense in D,
(iii) for every $\left(\tau_{0}, \tau_{1}\right)$ in D, and
every $p, 1 \leqq p \leqq N$, the point

$$
\tau_{0}+p \tau_{1}+\sum_{j=2}^{p}\binom{p}{j} \tau_{j}
$$

is a point of continuity for φ.
For each $\left(\tau_{0}, \tau_{1}\right)$ in D, a subsequence $S_{3}=S_{3}\left(\tau_{0}, \tau_{1}\right)$ of S_{2} can be chosen so that the corresponding subsequence of (2.4 (ii)) converges to $\left(\tau_{0}, \tau_{1}\right)$. In this case, as $n \rightarrow \infty, n \in S_{3}$, one has for every h_{1}, \cdots, h_{N},

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{p=1}^{N} h_{p} s(n+p)= & \lim _{n \rightarrow \infty} \sum_{p=1}^{N} h_{p} \varphi(\psi(n) \\
& \left.+p \Delta \psi(n)+\sum_{j=2}^{p}\binom{p}{j} \Delta^{j} \psi(n)\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{p=1}^{N} h_{p} s(n+p)=\sum_{p=1}^{N} h_{p} \varphi\left(\tau_{0}+p \tau_{1}+\sum_{j=2}^{p}\binom{p}{j} \tau_{j}\right), \quad\left(n \in S_{3}\right) \tag{2.5}
\end{equation*}
$$

Suppose now that s does not have property (PN). Then for each $\left(\tau_{0}, \tau_{1}\right)$ in D, there is an N-tuple h_{1}, \cdots, h_{N} such that the right hand member of (2.5) is zero. Hence D is a countable union of closed sets

$$
F=F\left(h_{1}, \cdots, h_{N}\right)=\left\{\left(\tau_{0}, \tau_{1}\right) \in D:(2.5) \text { vanishes }\right\}
$$

Some F, then, must contain an open subdisk D_{1}, with center
$\left(\tau_{0}^{\prime}, \tau_{1}^{\prime}\right)$. That is, there exists an N-tuple h_{1}, \cdots, h_{N} of integers not all zero with the property that for all sufficiently small positive h and k,

$$
\sum_{p=1}^{N} h_{p} \varphi\left(h+p k+\tau_{0}^{\prime}+p \tau_{1}^{\prime}+\sum_{j=2}^{p}\binom{p}{j} \tau_{j}\right)=0
$$

The assertion of the theorem follows upon taking

$$
\varphi_{p}(x)=h_{p} \varphi\left(x+\tau_{0}^{\prime}+p \tau_{1}^{\prime}+\sum_{j=2}^{p}\binom{p}{j} \tau_{j}\right)
$$

in the following lemma, a weak version of one due to Kemperman [4, p. 41]. The proof is included for completeness.

Lemma. Let $a>0$, and let $\varphi_{1}, \cdots, \varphi_{N}$ be real functions, with φ_{j} defined and continuous on $I_{j}=(-(j+1) a,(j+1) a),(j=1, \cdots, N)$. Suppose that for all x, y in $(-a, a)$, there holds

$$
\begin{equation*}
\sum_{j=1}^{N} \varphi_{j}(x+j y)=0 \tag{2.6}
\end{equation*}
$$

Then φ_{j} is equal on I_{j} to a polynomial of degree N-2 at most.
Proof. We may suppose that $N \geqq 2$ (the case $N=1$ is trivial), and that the lemma holds for $N-1$. Let $0<b<a$, and let $I_{j}^{\prime}=$ $(-(j+1) b,(j+1) b)$.

Next, we choose and keep fixed a number $h, 0<h<\min (b, a-b)$. For this h, and $j=1, \cdots, N$, let

$$
\widetilde{\varphi}_{j}(x)=\varphi_{j}(x+(1-j / N) h)-\varphi_{j}(x), \quad\left(x \in I_{j}^{\prime}\right) .
$$

We note that each $\widetilde{\varphi}_{j}$ is continuous, and $\widetilde{\varphi}_{N} \equiv 0$. Moreover, if x, y are in $(-b, b)$, then $x, y, x+h$, and $y-h / N$ are in $(-a, a)$. Thus, for all x, y in $(-b, b)$, we have

$$
\sum_{j=1}^{N-1} \widetilde{\varphi}_{j}(x+j y)=\sum_{j=1}^{N} \varphi_{j}(x+h+j(y-h / N))-\sum_{j=1}^{N} \varphi_{j}(x+j y)=0 .
$$

The induction hypothesis implies that, for $j=1, \cdots, N-1, \widetilde{\varphi}_{j}$ is a polynomial of degree $N-3$ at most on I_{j}^{\prime}. Hence φ_{j} is, on I_{j}^{\prime}, the sum of a polynomial of degree $N-2$ at most and a function of period $(1-j / N) h$. But such a representation is given for every sufficiently small positive h, which, with the continuity of φ_{j}, implies that φ_{j} is a polynomial of degree $N-2$ at most on I_{j}^{\prime}, $(1 \leqq j \leqq N-1)$. From the arbitrariness of b, φ_{j} is such a polynomial on I_{j}. Finally, (2.6) shows that φ_{N} is also such a polynomial on I_{N}.

In a previous paper [1], results of $v . d$. Corput were used to
obtain various sufficient conditions on a real sequence ψ in order that ψ satisfy condition (I):
(I) There exists a sequence S such that $\lim \Delta^{j} \psi(n)(n \in S)$ exists for all $j \geqq r$, while $\left\{\left(\psi(n), \Delta \psi(n), \cdots, \Delta^{r-1} \psi(n)\right): n \in S\right\}$ is uniformly distributed $(\bmod 1)$ in the r-dimensional unit cube.
(I) clearly implies that ψ has property (QN) for every $N \geqq 2$. The reader is referred to the paper for details and proofs.
3. A metric result for uniform distribution in the N-cube.

Theorem 3.1 Let $g=\{g(n): n \in Z\}$ be a sequence of real numbers. Let there exist a subsequence S_{5} of Z such that, for every N-tuple h_{1}, \cdots, h_{N} of integers not all zero there holds

$$
\begin{equation*}
\lim \left|\sum_{p=1}^{N} h_{p} g(n+p)\right|=\infty, \quad \text { as } n \rightarrow \infty, \quad n \in S_{0} \tag{3.1}
\end{equation*}
$$

Then there exists a subsequence S of S_{0} such that, for almost all real α, the sequence $\left(\alpha g^{N}\right) \mid S$ is uniformly distributed $(\bmod 1)$ in the N cube.

Proof. Let the set of all such N-tuples be ordered, with, say, $h_{1}^{\prime}, \cdots, h_{N}^{\prime}$ as the first. Let a subsequence $S_{1} \subset S_{0}$ be taken such that

$$
\sum_{p=1}^{N} h_{p}^{\prime}\{g(n+p)-g(m+p)\}
$$

is either greater than 1 for every n, m in S_{1}, with $n>m$, or else is less than -1 for every such n and m. Successively extracting subsequences $S_{1} \supset S_{2} \supset \cdots$ in this way, and then using a diagonal procedure, one finally obtains a sequence S such that, for every N-tuple h_{1}, \cdots, h_{N}, there is an $m_{0}=m_{0}\left(h_{1}, \cdots, h_{N}\right)$ such that one has either

$$
\begin{equation*}
\sum_{p=1}^{N} h_{p}\{g(n+p)-g(m+p)\} \geqq 1 \tag{3.2}
\end{equation*}
$$

for all n and m in S with $n>m \geqq m_{0}$
or else

$$
\begin{equation*}
\sum_{p=1}^{N} h_{p}\{g(n+p)-g(m+p)\} \leqq-1 \tag{3.3}
\end{equation*}
$$

for all such n and m.
By a well-known result of Weyl [6, p. 348], either condition (3.2) or (3.3) implies that, for almost all real α, the sequence

$$
\begin{equation*}
\alpha \sum_{p=1}^{N} h_{p} g(n+p) \quad(n \in S) \tag{3.4}
\end{equation*}
$$

is uniformly distributed $(\bmod 1)$. There being only countably many N-tuples, it follows that, for almost all α, (3.4) is uniformly distributed $(\bmod 1)$ for every N-tuple h_{1}, \cdots, h_{N}. But this shows [2, p. 66] that for almost all α the sequence $\left(\alpha g^{N}\right) \mid S$ is uniformly distributed (mod 1) in the N-cube.

It is easy to see that if $\theta>1$ is a transcendental number and $g(n)=\theta^{n}$, then Theorem 3.1 is applicable. The next result shows the less obvious fact that Theorem 3.1 also applies if, for instance, $g(n)=$ $n^{3} \log n \sin n^{2}$.

Theorem 3.2. Let $g=\{g(n): n \in z\}$ be of the form

$$
\begin{equation*}
g(n)=r(n) s(n), \quad n \in Z \tag{3.5}
\end{equation*}
$$

where s has property (PN), while

$$
\begin{equation*}
\lim r(n)=\infty, \quad \lim (r(n+1) / r(n))=1 \tag{3.6}
\end{equation*}
$$

Then there is a subsequence S_{0} of Z such that (3.1) holds for every N-tuple h_{1}, \cdots, h_{N} of integers not all zero.

Proof. For $p=1,2, \cdots, N$, it follows from (3.6) that

$$
r(n+p)=r(n)(1+0(1)), \quad \text { as } n \rightarrow \infty
$$

Therefore we have

$$
\begin{equation*}
g(n+p)=r(n) s(n+p)(1+o(1)), \quad \text { as } n \rightarrow \infty, \quad p=1, \cdots, N \tag{3.7}
\end{equation*}
$$

Since s has property (PN), there exists a subsequence S_{0} of Z such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|h_{1} s(n+1)+\cdots+h_{N} s(n+N)\right|>0, \quad\left(n \in S_{0}\right) \tag{2.1}
\end{equation*}
$$

for all N-tuples h_{1}, \cdots, h_{N} of integers not all zero. But (3.6), (3.7), and (2.1) imply (3.1).
4. An application to noncontinuable power series. Perry [5] has proved that, for every real sequence $f=\{f(n): n \in Z\}$, there exists a sequence of moduli $\left\{\left|a_{n}\right|: n \in Z\right\}$ such that the power series

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|a_{N}\right| e(f(n)) z^{n} \tag{4.1}
\end{equation*}
$$

has radius of convergence 1 and the analytic function it represents can be continued analytically across a semicircle of the unit circle. However, if the additional requirements

$$
\begin{equation*}
\left|a_{n}\right|=0(1) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \inf _{0 \leqq k<\infty} \sum_{n=k+1}^{k+N}\left|a_{n}\right|=\infty \tag{4.3}
\end{equation*}
$$

are imposed, then there are conditions on f sufficient that (4.1) represent a function with $|z|=1$ as its natural boundary. Some such conditions were given in [1]. Theorem 4 gives a metric result in this direction.

Theorem 4. Let $\left\{\left|a_{n}\right|: n \in Z\right\}$ satisfy (4.2) and (4.3). Let g be a real sequence which, for each N, satifies the hypothesis of Theorem 3.1. For each real α, let

$$
\begin{equation*}
F_{\alpha}(z)=\sum_{n=0}^{\infty}\left|a_{n}\right| e(\alpha g(n)) z^{n}, \quad|z|<1 \tag{4.4}
\end{equation*}
$$

Then the set of α for which F_{α} can be continued across an arc of the unit circle has measure zero.

Example. $\sum e\left(\alpha n \sin n^{2}\right) z^{n}$ has $|z|=1$ as its natural boundary for almost all a.

For $N=2,3, \cdots$, let A_{N} be the set of those real α for which αg^{N} is dense $(\bmod 1)$ in the unit N-cube.

By Theorem 3.1, A_{N} contains almost all α, and it follows that almost all α are in A_{N} for every N. For each such α, and each $z_{0}=e\left(\theta_{0}\right)$, there holds

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left|\sum_{k+1}^{k+N} a_{n} e\left(\alpha g(n)+n \theta_{0}\right)\right| \geqq \lim _{k \rightarrow \infty} \inf \sum_{k+1}^{k+N}\left|a_{n}\right| \tag{4.5}
\end{equation*}
$$

In view of (4.3), (4.5) shows that the partial sums of the series in (4.4) are unbounded at z_{0}. By (4.2) and a well-known theorem of Fatou [3, p. 391], it follows that z_{0} is a singularity for F.

References

1. F. W. Carroll, On some classes of noncontinuable analytic functions, Trans. Amer. Math. Soc. 94 (1960), 74-85.
2. J. W. Cassells, An introduction to Diophantine approximation, Cambridge Tract 45, Cambridge Univ. Press, 1957.
3. P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400. 4. J.H.B. Kemperman, A general functional equation, Trans. Amer. Math. Soc. 86 (1957), 28-56.
4. R. L. Perry, A theorem on power series whose coefficients have given arguments, J. Lond. Math. Soc. 35 (1960), 172-176.
5. H. Weyl, Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313-352.

Received September 19, 1966. This research was supported by a grant from the National Science Foundation.

The Ohio State University
Columbus, Ohio

