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HYPERCYCLIC RINGS

WILLIAM H. CALDWELL

The object of this paper is to provide characterizations
for certain rings R having the property that each cyclic right
jR-module has a cyclic injective hull.1 Such rings will be called
hypercyclic. Characterizations for left perfect hypercyclic
rings and commutative hypercyclic rings are given in terms
of their ideal structure and self-injectivity. An example of
a commutative hypercyclic ring without chain conditions is
given to demonstrate that the characterization obtained is
nontrivial.

In § 1, the class of left perfect hypercyclic rings is shown to be
precisely the class of uniserial rings. This is done by showing that
they are quasi-Frobenius principal left ideal rings. In § 2, commutative
hypercyclic rings are shown to be semi-local, and then commutative
local hypercyclic rings are described.

THEOREM. R is commutative local hypercyclic if and only if
either (a) R is local uniserial or (b) R satisfies the five conditions
(i) The Jacobson radical is a nil ideal and is the union of an
ascending sequence of proper principal subideals, (ii) Ideals in R
are linearly ordered, (iii) R has nonzero socle, (iv) Nonprίncipal
ideals are of the form xJ, J = radical, (v) RR is injective.

The main result in §1 is a generalization of [3, Th. 2, p. 211],

1* Hypercyclic rings under chain conditions* We first require
some definitions and conventions. First of all, we will reserve the
letters J and S for the Jacobson radical and the socle, respectively,
of R. We will denote the injective hull of MR by E(MR). It is well
known that E(MR) is an essential extension of MR, where AR essential
in BR means that AR Π CR Φ 0 for any 0 φ CR £ BR. This will be denoted
Aβ £ fBR. In [2], Bass calls a ring left perfect provided every left
i?~module has a projective cover. J is called left T-nilpotent provided
for every sequence {αj of elements of J there exists an n such that
a1 a2 an — 0. (Clearly a T-nilpotent radical is nil; however, we
will later give an example of a ring which has a nil radical which
is not T-nilpotent). Bass then gives the following equivalences for
left perfectness.

1 All rings are associative and have identity. Further, all modules MR are
unital, i.e. m l — m for all me MR.
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THEOREM P. The following are equivalent.
(1) R is left perfect.
(2) J is left T-nilpotent and R/J is semi-simple.
( 3 ) R satisfies descending chain condition on principal right

ideals.
(4) R has no infinite sets of orthogonal idempotents and every

nonzero right R-module has nonzero socle.

It is easy to see that any left or right artinian ring is right and
left perfect, since a nilpotent radical is clearly T-nilpotent so that
(2) is satisfied. More generally, any semi-primary ring is (both right
and) left perfect. We borrow the following lemma from [3].

LEMMA 1.1. A left perfect hyper cyclic ring is right self in-
jective.

Recall that a module M is called a cogenerator for the class of
right i?-modules if M satisfies the following property: If A and B
are ^-modules and /: AB —• BB is a nonzero homomorphism then there
exists g: BR —> MR such that gf is nonzero.

It is well known that an in jective ίϊ-module M is a cogenerator
if and only if M contains a copy of each simple right iϋ-module.
Consequently, a quasi-Frobenius ring is an injective cogenerator; in
fact, it is well known that any left perfect right self injective ring
is a cogenerator. Since a left perfect hypercyclic ring is right self
injective by 1.1, it is a cogenerator.

THEOREM 1.2. // R is left perfect and right self injective, then
any injective cyclic R-module is projective.

Proof. Since R is perfect, R/J is semi-simple, so

{βi} orthogonal idempotents and e^R/J) simple. Lift to a set {ej of
orthogonal idempotents of R and write R = *Σΐ=i ® β ^ Hence each
e{R is an indecomposable injective i?-module. Since R is perfect, e{R
is the injective hull of its nonzero socle and hence must have simple
socle Si. Then S = Σ?=i Θ S{ must be finite. We now show that
the socle of any injective cyclic R/I embeds in R. Then, since R/I
is essential over its socle, it will also embed in R, and being injective,
be a summand of R, whence projective.

Let C be a summand of the socle of R/I maximal with respect
to the property that C embeds in R. Such a summand must exist
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since S has finite length. Then there exists D such that C 0 ΰ =
S(R/I), the socle of R/I. We wish to show, then, that D = 0.

Assume to the contrary. Then D has a simple submodule if,
and K must embed in R since 72 is a cogenerator. Let /: C —> 72 and
g:K-+R be the embeddings. Define fc:C07£->72072 by h((c,k)) =
(/(<?)? £(&))• Then A, is an embedding, and since 72 072 is injective,
it must contain as a summand a copy of 7?(C07f), the injective hull
of C φ K, so that E(C 0 7£) is projective. Now R/I also contains as
a summand E(C ® K), and if π denotes the projection of R/I onto
E(Cζ&K) and v denotes the natural map of R onto 72/7 then TΓV maps
R onto 7£(C0 K). Since J 5 ( C 0 ί ) is projective, it is isomorphic with
a summand of 72, and since C 0 7Γ S E(C@K), CφK embeds in 72,
contradicting the maximality of C. This contradiction establishes that
C = S(R/I), and, consequently, the theorem. Notice that any cyclic
injective, then, embeds in R in fact, this is what we proved.

If / is any subset of 72, we denote by r(I) and s(I) respectively
the right and left annihilator of / in 72. That is, r(7) = {x e 721 Ix = 0}
and s(I) = {xeR\xl ~ 0}. If I consists of the single element x, we
will write (0 : x) for r(7).2

We need the following lemma from [5],

LEMMA 1.3. If RR is injective, then finitely generated left
ideals are left annihilators.

THEOREM 1.4. If 72 is left perfect and hypercyclic, then anni-
hilator left ideals are principal left ideals.

Proof. By Lemma 1.1, 72̂  is injective, so that 72 satisfies the
conditions of Theorem 1.2. Consequently, every injective cyclic 72-
module embeds in 72, so that, since every cyclic embeds in an injective
cyclic (its injective hull), every cyclic embeds in 72. Hence every right
ideal is the right annihilator of a single element. Let L be any left
annihilator ideal, L — s(I) for some right ideal / in 72. Then r(L) =
I = (0 : x) for some x e 72. Since (0:x) = (0 : Rx) = r(Rx), r(L) = r(Rx).
But 72 is injective, so that principal left ideals are left annihilators
and since L is also a left annihilator, L = s(r(L)) = s(r(Rx)) — Rx.

THEOREM 1.5. 72 is left perfect and hypercyclic if and only if
72 is uniserial.

Proof. That any uniserial ring is left perfect and hypercyclic
follows from [3, Th. 4.2] and the fact that any artinian ring is perfect

2 More generally, if AR ^ BR, (A:B) = {rβR\ Br ^ A]
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Conversely, assume R satisfies the conditions of the theorem. Then
R is an injective cogenerator, so that J is the left annihilator of
S (see [8]). Hence, J = Rx for some x eR by 1.4. But R is left
perfect, so that J is T-nilpotent, and consequently nil. Thus xn = 0
for some n. Since J is an ideal, Jn = (Rx)n £ Rxn = 0, so that
J is nilpotent. But then R is semi-primary, and so is also right
perfect. It follows that R satisfies descending chain condition for
principal left ideals. Let IQ £ /x £ I2 £ be an ascending chain of
right ideals of R. Let /Λ = (0 : &A). Then Rxt 2 iux2 2 is a
descending chain of left ideals of R which must terminate, so there
is an integer k such that Rxk = Rxk+P for every p. But then Ik = 1 ^
for every p so J? is right neotherian. By [3, Th. 4.2] R is uniserial.

2* Commutative hypercyclic rings* In § 1 the first result
derived from chain conditions was the injectivity of RR. Commuta-
tivity is also a sufficient hypothesis to guarantee injectivity of a
hypercyclic ring.

LEMMA 2.1. If R is commutative and R/A embeds in R/B for
any ideals A, B £ R, then B £ A.

Proof. If / is the embedding and beB, then f(b + A) =
/(I + A)b = 0.

COROLLARY 2.2. A commutative hypercyclic ring is self-injective.

Proof. If R/I~ E(R), R embeds in R/I.

In [7], Osofsky proves the following three lemmas.

LEMMA a. Let {en\ne N} be a set of orthogonal idempotents in
a right self injective regular ring. Then for every subset A £ N,
there is an idempotent EAe R such that:

EAen = en for all ne A

EAen, = en,EA = 0 for all n'e N ~ A

LEMMA b. Let R be a right-self injective regular ring containing
an infinite set of orthogonal idempotents {en\ne N}. Let I = Σ%eivβ J^
For A £ N, define EA as in Lemma a. Then the set S^ = {EA \ A e S$f),
where each A is infinite, is independent modulo I if and only if for
any finite set {Ai | i = 1, , n} £ jzf, A{ Π U ^ Aά is a finite subset
of N, 1 ̂  i ^ n.
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LEMMA C. Let R be a right self ίnjectίve regular ring which
contains an infinite set of orthogonal idempotents {en \ n e N}. If
I — ΈjnβN βJl, then R/I is not an injective R-module.

Let a', b\ c' designate respectively the lemmas resulting when the
word "commutative" is substituted for "regular" in Lemmas a, b, and
c. Then a', b' and c' are also true.3

Proof. We first point out that the hypothesis of Lemma c are
used in [7] only to guarantee that the conclusions of Lemmas a and
b hold. Hence we need only show that a' and b' are true.

a'. Since R is injective, R/J as also injective (see (9)), and thus
satisfies Lemma a. Let {EA} designate the idempotents obtained from
the set {en} of orthogonal idempotents in R/J. Lift4 to corresponding
sets of orthogonal idempotents {EA} and {en} in R.

By Lemma a, EAen — en = x e J. Then, enx = x, so that EAen =
en + x = en + enx = en(l + x). Hence en = EAen(l + x)'1 e EAR so EAen = en.

The second property in Lemma a' follows since EAen, is idempotent
and in J. The same argument as above shows that EA is orthogonal
to EN»A. Now since EA + EN^A - EN = KeJEA - EAENe J, so that
EA = EAEN as above. Hence EAK = EN^AK = 0, and ENK = K. Hence

EN + K= EN + #*£• - ^ ( 1 + ΛΓ) = EA + S ^ A

A)R, soO = (

(EA + EN^A)ENK - JMΓ - if.
b'. Let Sα be independent modulo /. We know that Lemma b

applies to R/J, so we need only show that if Sa is independent modulo
I then it is independent modulo I + J. However, it is easily seen
that {EA} is independent modulo an ideal K is and only if for every
finite subset {EA. \ i = 1, , n) S {EA}, EA. Π Σ^y ̂ 4 S ίΓ, j - 1, , n.
Hence since IQI + J, independence mod I implies independence mod J.

The converse is proved exactly as in [7].
We use cf to conclude that a commutative hypercyclic ring can

have no infinite sets of orthogonal idempotents, and consequently
must be semi-simple modulo its radical.

THEOREM 2.3. If {ej is any set of idempotents in a commuta-
tive hypercyclic ring R, and if I — Σ βi-B, then R/I is an injective
R-module.

Proof. Let E(R/I) = R/K. Then R/I embeds essentially in R/K,
so K £ I by 1.1. Now if e is any idempotent in R,

3 The author is indebted to Dr. Osofsky who pointed out this fact.
4 This is possible in any self injective ring, see [10].
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jfIJΓ _ (1 - e)R + K ^ eR + KR/K θ — — .

The sum is direct since R is commutative. Let φ: R/I-* R/K denote
the embedding. Now for any x e R, if φ(x + I)e (eR + K)/K, write
<p(x + I) = y + K. Then ye + K = ey + K = y + K, so <?(£ +1) =
9>(£ + J)e. Since <p((x + i > = φ(xe + I) = φ(ex + I) = φ(0 + I) = 0
whenever βe/, (eiί + K)/KΠφ(R/I) = 0 whenever e e /. Since (JK/I) is
essential in J?/iΓ, eϋ? C K. Hence I^K. So 1= K. Hence R/I is in jective.

COROLLARY 2.4. If R is a commutative hypercyclic ring, then
R/J is semi-simple.

Proof. Since R is in jective, R/J is a right self in jective regular
ring, so that R/J is semi-simple if and only if it has no infinite sets
of orthogonal idempotents. Since orthogonal idempotents can be lifted
orthogonally modulo J, R/J is semi-simple if and only if R has no
infinite sets of orthogonal idempotents. However if R has an infinite
set of orthogonal idempotents, {ej, and if I = Σ e*R, R/I would be
noninjective by Lemma c'. This can't happen by the theorem.

Notation. We will call a commutative local hypercyclic ring a
CLH ring.

THEOREM 2.5. A commutative ring R is hypercyclic if and only
if R is a ring direct sum of a finite number of CLH rings.

Proof. Assume R is hypercyclic. Since R/J is semi-simple, R
is semi-local (a ring direct sum of a finite number of local rings).
Now if eR is a local component of R and M is an 22-module, then
M(l — e) = 0 and so maps of ideals I of R into M reduce to maps
of ideals el into M and so iϋ-injectivity of M is equivalent to eR-
injectivity. Also, notice that R/I is an eR module if and only if
(1 — e)R C J, that is, if and only if R/I is a cyclic βiϋ-module. Since
R is hypercyclic, every cyclic ei2-module eR/el has a cyclic R-injective
hull, and since this must be eR-injective, the eR-injective hull of
eR/el is a cyclic βlϋ-module, so each eR is a CLH ring. Conversely,
let R = Σ?=ι Θ eίR, where each ejϊ, is a CLH ring. Then if / is any
ideal in R, I = Σ?=i θ ej, so that R/I = Σ ? = 1 0 ejl/ej.. Consequently
E(R/I) ~ Σii=i@E(βiR/eiI). Again we notice that the JB-injective hull
coincides with the ejϋ-injective hull of βiR/eJ. However each e{R is
CLH, so that the e ĵR-injective hull of ejti/ej. is isomorphic with eiR/Ai

for some A, S eJR. Hence E(R/I) = ΣU θ ^R/A, ~ 12/Σ?=i θ At is
cyclic and hence R is hypercyclic. This completes the proof. By this
theorem, we can obtain a characterization of commutative hypercyclic
rings by restricting our attention to CLH rings.
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It has been shown that in the presence of certain chain conditions,
hypercyclic rings are actually uniserial. For a uniserial ring every
principal indecomposable left or right ideal has a unique composition
series. We will show that CLH rings have a similar property, specifi-
cally, that ideals in such rings are linearly ordered. In [2], Bass calls
a submodule N of an R module M superfluous provided A + N = M
implies A = M for all submodules A of M. It is easy to show that
the radical of a ring is a superfluous submodule of RR and that
submodules of superfluous modules are superfluous.

LEMMA 2.6. If R is a commutative local ring, then cyclic R-
modules are indecomposable.

Proof. If R/A = C/A 0 D/A, then C + D = R, and since every
ideal different from R is contained in J = rad R, either C or D is
superfluous, so that R = C, say, hence flgi and iZ/A is inde-
composable.

If A is any submodule of an iϋ-module M, a submodule B of M
which is maximal with respect to the property that A Π B — 0 is called
a complement of A in M. Thus any non-ssential submodule of M has
nonzero complement in M. Clearly, if B is a complement of A, then
4 0 5 g l . If M is also in jective, then whenever B is a complement
of A, M' ~ E(A 0 B) = JS7(Λ) 0 #(£), so that Λf is decomposable if A
and B are both nonzero.

THEOREM 2.7. If R is a CLH ri^, £/̂ w ideals in R are linearly
ordered.

Proof. Let A and B be ideals in JB. If A/Af]B and
were both nonzero, then A/AΠB would have nonzero complement in
R/A Π B. But then A/A f)BQ) comp (A/A f] B) would lead to a decom-
position of E(R/AΓ)B), and since the in jective hull of R/Af]B is cyclic,
it is indecomposable by Lemma 2.6. Hence A/AπB or B/AπB = 0,
thus AQAf]B or BQAf]B hence, i S JS or J5 g 4.

COROLLARY 2.8. Finitely generated ideals in a CLH ring are
principal.

Proof. Let / = xjl + + xJR. Then by the theorem, there
exists an integer i such that xόR £ cc4i2, j = 1, , w. That is, I = α̂ JS.

DEFINITION. Λίβ is called faithful provided Mr = 0 if and only
if r = 0. (Mr = {mr \ m e Λf}).
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In [8], the following lemma is proved, which we find useful.

LEMMA 2.9. If R is any ring and {Si \ i e 1} a complete set of
representatives of isomorphism classes of simple R-modules, then

is a faithful R-module.

Since clearly any module M with a faithful submodule is itself
faithful, in order to show that an iu-module M is faithful, it suffices
to prove that M contains a copy of the injective hull of each simple.

THEOREM 2.10. If R is a CLH ring, then R has a simple socle.

Proof. By Theorem 2.7, we need only show that S Φ 0. Let
E(R/J) = R/K. Then R/K is faithful by Lemma 2.9, so that (R/K)K =
0 implies K = 0, hence R/J embeds in R so S Φ 0.

Observe that S is essential in R, since R is indecomposable.

THEOREM 2.11. // xR is a cyclic module over a CLH ring R
then any submodule of xR is essential in xR.

Proof. Evident by 2.7.

THEOREM 2.12. Let R be a CLH ring. Then for any ideal I, R/I
has nonzero socle if and only if E(R/I) = R.

Proof. If E(R/I) = R, then R/I embeds in R. Since by Theorem
2.10, S is simple and essential in R, it is contained in every ideal,
hence, the image of R/I has nonzero socle, so R/I does.

Conversely, if R/I has nonzero socle, then E(R/I) contains a
copy of the injective hull of the unique simple, and so is a faithful
i2-module, so that if E(R/I) = R/K, then R/K is faithful. But
(R/K) K= 0 so that K = 0.

It is well known that a module MR is injective if and only if
for every right ideal I in R and each homomorphism φ: I —* M there
exists me M such that φ(r) — mr for every r e J. This condition
will be called Baer's condition in the ensuing, as it is in [4].

THEOREM 2.13. Let R be a CLH ring, and let I be an ideal of
R such that (0 : x) £ / for some xe J. Then R/I is not injective
unless I — R.

Proof. Assume R/I injective, (0 : x) S /. Define φ: xR —> R/I by
φ(xr) — r + I. Since xr = 0 implies r e (0 : x) ̂  I, so that r + J = 0,
φ is well defined. Clearly φ is an J?-homomorphism. Since R/I is
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injective, by Baer's condition there exists meR such that φ(xr) =
(m + I)xr = mxr + I for all #r e xR. But then 1 + / = ̂ (x l) =
mx + I, so that 1 — mx e I. Since x e J, (1 — mx)"1 e i2, so that 1 =
(1 — mx)(l — mx)~ι e I. Hence, I — R.

COROLLARY 2.14. If R is a CLH ring and if J is principal,
then E(RjI) ~ R for each right ideal I Φ R.

Proof. Let J = xR. Then S = (0 : J) = (0 : x) is contained in
every nonzero ideal /, so that by the theorem, R/I is not injective,
hence, R is the only injective cyclic.

COROLLARY 2.15. // R/S has nonzero socle for a CLH ring R,
then E(R/I) ~ R for each ideal I Φ R.

Proof. R/S has nonzero socle, so E(R/S) ~ R by Theorem 2.12,
hence R/S embeds in R. So R/S = xR where S = (0 : x). Since S =
(0 : J), (0 : x) = (0 : Rx) — (0 : J). But RR is injective, so that principal
ideals are annihilators by Lemma 1.3, and since J is maximal, it is
an annihilator. Hence, xR = (0 : (0 : xR)) — (0 : (0 : J) = /, so J is
principal. By Corollary 2.14, the proof is complete.

LEMMA 2.16. Let R be a commutative local ring, 0 Φ xeR.
Then xR/xJ is a nonzero simple R-module.

Proof. Since R/(0 : x) = xR and

(0 : x) C e/, i2/J = R/(0 : x)/J/(0 : a;) ~ xR/xJ

is simple.

THEOREM 2.17. Let R be a CLH rm#. // / is an ideal in R
such that (R/I)R is injective, then I = 0 or I = S.

Proof. We show that if R^ 1^ S, then it!// is not injective.
Let a? G I, x $ S. Since xi2 3 S, there is an element reR such that
0 Φ z — xr e S, and so zR = S. Further, since aλβ ̂  St and xR/xJ is
simple by Lemma 2.16, S S xJ, so that r e / . But then r(xJ) =
xrJ = zJ S SJ - 0, so that x J g ( 0 : r). If x J ^ (0 : r) then xR S
(0 : r) so 0 ̂  a? = xr = 0, a contradiction. By Theorem 2.13, since
xJ S /, i?/I is not injective.

We will show in a later example that it is possible for both RR

and (R/S)R to be injective for a CLH ring R, however, we do not
have enough information to do so now.
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The techniques of Theorem 2.17 allow us to describe exactly the
ideals of a CLH ring. We first have a corollary to Theorem 2.17.

COROLLARY 2.18. Let I be an ideal in a CLH ring R. If I Φ

(0 : x) for any xeR, then there is an xeR such that I = (Six).

Proof. If / Φ (0 : x) for any xeR, then R/I does not embed in R,
so that E(R/I) is not isomorphic with R. By the theorem, E(R/I) =
R/S, so that R/I embeds in R/S. If / is the embedding, 1= (Six)
where f(l + I) = x + S.

THEOREM 2.19. Let I be an ideal in a CLH ring R. Then I is
principal or I = xJ for some xeR.

Proof. We show first that given any element 0 Φ y e R there
exists an element zeR such that (S:y) = zR, (Siz) = yR, (0 :y) — zJ,
and (0 : z) = yj. Since by Corollary 2.18, every ideal of R must be
of the form (0 : x) or (S i x) the proof will be complete.

Let 0 Φ y eR. Then yRz> S, so there exists zeR such that
yz Φ 0 is in S. Hence, yzR — S, and so zR £ (S i y). However, if
te(S ly) and t ξ. zR, then zR £ t J so that there is j e J such that
z = tj. Then zy = ytj e SJ = 0, a contradiction. Hence zR — (S : 2/).
Since ΐ/222 = 21/22,2/22 £ (S: 2) and an argument symmetric to the above
shows that yR = (Siz). Now since yz e S, zJ = (0 : ?/) and (0 : 2) = yJ.

DEFINITION. An ideal 2 in a ring 22 is called nil provided every
element of 2 is nilpotent.

THEOREM 2.20. If R is a CLH ring, then J is nil.

Proof. Let yeJ, and let 2 = Π~=i^22. Then 2 = 0 if and only
if y is nilpotent, for if yn Φ 0 for every n, then S £ /̂%22 for every
n, so S ^ I. We will show that the assumption that there is a y e J
such that ί ^ 0 leads to a contradiction. We first show that yl = I.
If 2 = 0 , this is obvious, so assume 2 Φ 0. Then yn £ I for any w,
for if so, yn e yn+1R so τ/% = yn+1r and hence,

7/* = y*(l - yr)(l - yr)~ι = (yn - yn+1r)(l - yr)~ι = 0 ,

a contradiction. Now let te I. Then t = yr for some r e 22, and if
r 6 2, there is some n such that r22 3 ynR, so that rfc = yn for some
fc G 22. Hence, yn+1 = yrk = tke I, a contradiction.

This shows that re I, so that t e yl, and hence yl = 2.
Now by Theorem 2.19, 2 = xR or x/ for some xeR. Assume
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I = xR for some nonzero xeR. Then xR = / = yl = yajJί, so that
x = yxr for some r e R. Then α?(l — yr) = 0, and since y e J, a? = 0,
a contradiction. Thus I — xJ for some nonzero xe R. But if # e ynR
for every w, then xR £ / = ίcJ, and xi2 5 ^J by Lemma 2.16, a con-
tradiction. Hence, there must exist an integer n such that xR 2 ynR.
But then xr = τ/% for some r e 12, so #a?r = yn+1, and since j/α? e xJ,
yn+i e j β rpkjs contradiction establishes that / = 0 so that J is nil.

COROLLARY 2.21. A CLH ring R is uniserial if and only if J
is a principal ideal.

Proof. Let R be uniserial. Then every ideal is principal.
Conversely, if J is principal, then J is nilpotent. Since Jn/Jn+ί is
semi-simple for every n, it must be simple by the linear order on
ideals. Consequently, if p = index of nilpotency of J, then

is the unique composition series for R. Since R is primary, R is
uniserial.

LEMMA 2.22. Let R be a commutative local ring satisfying the
following:

(1) J is the union of an ascending chain of proper principal
subideals and is nil, but not nilpotent, J— UΓ^i β

( 2 ) Ideals in R are linearly ordered.
(3) SΦQ.
(4) Ideals in R are of the form xR or xJ.

Then the following are true.
(a) J=J\
(b) For every xeR, xJ is not finitely generated unless xJ = 0.
( C ) J 2 - {j\j2 I j \ , j2 € J} .

Proof. ( a ) Look at J/J2. Since (J/J2)J - 0, J/J2 is either 0
or is simple. But if xeJ is such that xί J 2 , then xR =£ J 2 , so that
xR = J. But J can't be principal since J is not nilpotent. Thus
J/J2 - 0 so J = J 2 .

( b) If xJ is finitely generated then xJ = zlϋ for some s e iϋ.
Then zR — xJ — xJ2 — zRJ — zJ, which is impossible unless zR — 0.

( c ) Clearly A - {iJ21 j u j2 eJ}Q J2. If

s = Σ α<&< e J 2 , α Λ G / ,
1=1

then by the linear order on ideals, there is an integer k such that
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CLibieaφuR, i = 1, •••,%. But t h e n we can w r i t e α ^ = akbkrif and
s = α A ΣΓ n = «*(δfc ΣΓ rj e A.

THEOREM 2.23. Let R satisfy the conditions of Lemma 2.22.
Then we conclude

( a ) Ideals in R are annihilators.
( b ) If φ: xR —> R or ψ\ xR —> iϋ/S, £feew 9? cαw 6e ^ ΐ ^ β ^ 62/ α

ϊe/ΐ multiplication.
( c) If I is an ideal in R, then R/I embeds as an essential

submodule of either R orR/S.
(d) (R/S)R is injective if and only if RR is infective.

Proof. ( a ) Let J = |JΓ x%R where xjt = S, x{R Si xi+ιR. Let
I = xJ. Since S C #12, there is 7/ e12 such that O ^ ^ e S , and it
follows that xJ = (0 :7/). If I = xR, again there is y e R such that
0 Φ xy e S. To show that xR is the annihilator of yJ, we need only
observe that if z e (0 : T/J), then 22/J = 0 so that zy e S. But if
zR 2 £jfϋ, then there is an element reJ such that 2r = x. Then
#! — xy = 2/2r = 0 since yze S and r e J . So z e xR, and xi2 = (0 : yJ).

( b ) Let ψ\ xR—*R. Then φ(xR) = φ(x)R is a principal ideal.
Now xr = 0 implies φ(xr) = 0 so that φ(x)r = 0. Hence, r e (0 : x)
implies r e ( 0 : φ(x)). However, if (0 : x) £Ξ (0 : <£>(#)) then ^(»)i2 S α i?,
by taking annihilators, hence, there is an element meR such that
φ(x) = mx, and so φ(xr) = mxr for all xr e ^J2. Let φ\xR—+ R/S.
Again φ(xR) = (y + S)R where φ(x) — y + S. But if xr = 0, then
<p(£r) = 0 + S, so (0:x) s (S : ?/). Now (0 : a?) = ί J for some t e R.
Since J 2 = J by Lemma 2.22, tJ2 = tJ. But #ί J S S, so 7/ίJ2 S SJ = 0.
Since 2/ί J 2 = τ/ί J, (0 : x) = t J S (0 :2/). Hence, τ/J? £ cci?, so 2/ = ma;.
Then 9>(#r) = 9>(a;)r = (ma; + S)r = (m + S)asr.

( c ) Let / = xJ. Then there is a 2/ e R such that I = (0 : y).
Then R/I ~ yR under r + I-+yr, so 12/J embeds in 12.

Let / = xR. R/xR ~ R/xJ/xR/xJ, and since R/xJ = yR as above
xR/xJ ~ S, R/I = yR/S. Thus R/I embeds in 12/S.

To see that the embeddings above are essential, one need only
notice that if me R or 12/S, then mR contains or is contained in
the image of R/I, so that if mRf]φ(R/I) = 0 then mR = 0.

(d) Notice that by virtue of (b), we need only show that maps
of ideals of the form xJ are given by left multiplications in order to
show that R or R/S satisfies Baer's condition. Also, if {OJJ is the set
of generators of the radical, then φ is completely determined by its
action on {##*}, that is, if we can show that φ(xx^) — mxx{ for every
i, we will know that φ is determined by left multiplication by m.

Now if A is any ideal in R with a maximal sub-ideal B, then by
the linear order on ideals, A = xR for any xe A such that xg B. On
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the other hand, any ideal of the form xR has maximal submodule xJ
as in Lemma 2.16, so that A has a maximal submodule if and only if
A is principal (finitely generated, by the linear order on ideals). We
see that the nonfinitely generated ideals in R are precisely the ideals
of the form xJ for any xe R, xg S. Now since xJ is not finitely
generated it has no maximal submodule, and consequently, its nonzero
image under homomorphism to R or R/S cannot have a maximal
submodule and so must be not finitely generated. Consequently, if
φ:xJ—>R, then <p(χj) = yJ for some yeR, and if φ:xJ—>RjS,
φ(χj) = yJ/S for some yeR.

Assume first that R is injective, and let φ: χj—+ xJ/S be an
i?-epimorphism. Then φ{ = (φ restricted to xx{R) determines a map
from xxiR into yJ/S, and the maps φζ have the property that if
i^j, then φό{τ) = ψi(r) for all r in xxάR. Since x{R gi xi+1R, there
is an element tteJ such t h a t xi+1U = xi% By (b), there exists m{ e R/S

such that ψiixXiT) — πiiXXiT for all xx{r e xXiR. Let m* = j \ + S.
Then φ(xxiτ) = φ^xXiV) = m^a^r, so that <p(xXi) = xXiJi + S. However,
xxi+1ti = xxi9 so that

φ(xxi+1ti) = φ(xxi+1)ti = (xxi+1ji+1 + S)t{

= xxi+iji+iti + S = xχiji+1 + S .

Hence α Xiii — xxiji+1 = xx^i e S. We now define a new map from
xJ into R by giving its values on {xx^m Let (̂asα )̂ = xXiJi+1. Then
φ will be well defined provided φ(xXi) = ̂ (aj»<+i)ίi. But

since xi+ιti — xi+1 and xxi+1ri+1 e S and ίi e J. Thus ^ is a well defined
jS-homomorphism of xJ into R. Since i? is injective, there is an
meR such that φ(xj) = mίcJ for all ay e α;/. We assert that φ(xj) =
(m 4- S)ay for all xj exJ. Again, this will be true provided φ(xXi) =
(m + s)xXi for every integer i. However, that φ(xXi) = xxiU + S =
xXiji+ί + S was shown above, and xxiji+1 = rnxx^, so that φ(xXi) =
ma;̂ ^ + S — (m + S)xxt. Consequently iϋ/S is injective.

Conversely, assume that ΛJ/S is injective, and let φ:xJ—>yJ be
an epimorphism. If v denotes the natural map from yJ onto yJ/S,
then vφ is a mapping from xJ onto T/J/S. Since R/S is injective,
there is zeR such that vφ{xj) = (z + S)xj for all xj exJ. We show
that the map <£> is defined by φ(xj) = jsay" for all ajj" e xJ. Since

OTj + S = vφ(xj) = 9>(a;j) + S, ?>(a;j) — ̂ J e S .

Now j e J = J 2 = {iiig I ΛJ2 e J} by Lemma 2.22, so that there are
a,beJ such that j = αδ. Then
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<P(xj) — zxj = φ(xab) — zxab = φ(xa)b — zxab = (φ(xa) — zxa)b ,

and since φ(xa) — zxa e S and beJ, (φ(xa) — zxa)b = 0, so that φ(xj) =
zxj for all xj e xJ. This completes the proof of (d), and thus of the
theorem.

We now come to our main result.

THEOREM 2.24. Let R be a commutative local ring. Then R is
CLH if and only if either (A) R is uniserial, or (B) R satisfies the
following conditions:

(1) J is the union of an ascending chain of proper principal
subideals, and J is nil.

(2 ) Ideals in R are linearly ordered.
(3) S^O.
(4) Ideals in R are of the form xR or xJ.
( 5 ) RR is injective.

Proof. Let R be CLH, and assume R is not uniserial. We have
already shown that conditions (2) through (5) are satisfied using
Theorem 2.7, Theorem 2.10, Theorem 2.19, and Corollary 2.2 respectively,
hence we need only show (1). Let {#*} be a collection of elements of
J such that Xi has index of nilpotence ni9 nt < n2 < n3 . Such
elements must exist since J is nil by Theorem 2.20, and if J were
nilpotent, R would be uniserial (RID JID J2 ID J2 = 0 the unique
composition series). We assert that J = \J? x{R. Since / is not
principal by Theorem 2.21, the ideals XiR are properly contained in J.
Let y e J, n — index of nilpotency of y. Choose i such that ni > n.
Then yR C x{R for if not, x{R C yR by (2) and so x = yr, whence

χn _ ynτn = Q̂  contradicting the choice of n{. Hence J c \J^x4R and
so (1) is satisfied.

Conversely, since any uniserial ring is hypercyclic, we need only
show that conditions (l)-(5) imply that R is CLH. However, this is
a trivial consequence of Theorem 2.23.

We are now in a position to give an example of a nonartinian
hypercyclic ring, which will show that the assumption of chain con-
ditions was necessary in order to obtain the equivalence of hypercyclic
and uniserial.

EXAMPLE. Let K be a field, x an indeterminate over K, and let
W — {{αj I {at} a well ordered sequence of positive real numbers}.
Form the ring T = {ΣΓ=o a<i%ai \ (*>*€%, {#*} e W}. Then T is a local
ring, commutative, and J(T) = {Σ»=oα»βα<Ξ T | α 0 > 0}. Furthermore,
if r = ΣΓ=o a&ai εJ(T), and α& is the minimal element of {α<}, then r =.
^αA: Σo°° aiX"*-"**, a n d s ince r ' = ΣΓ=oα»ί»αί"αfc = ^ + Σ i ^ * <&<&*<-**, r ' is
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regular in T. Consequently, if z,ye J(T)y z = xaru y = xβr2 with ru r2

regular in T, and if α > β, z — xar1 — £/V2$
a~/V1r;r

1 — yx^rp^eyT,
so that zT Q yT. Hence the ideals in T are linearly ordered, and
zTjzJ(T) is simple. Now let / be any ideal in J(T). Then the set
A — {ae Reals \xa e 1} is a nonempty set of reals bounded below by 0.
Let a be the greatest lower bound of A. There are two cases:

Case 1. aeA. Then xa e /, and if β < a, then a^g/, so that
xβT ^ I by the linear order, and so I = xaT is principal.

Case 2. agA. Then x"$I. But if ^ e J, then xrel for every
7 > β, so that since a = g.l.b. A, #α+0 e I for every /3 > 0. Consequently,
xaJ(T) S I, and since xaT/xaJ(T) is simple and x"T^I, 1= xaJ(T).

Let .# = T/xJ(T). Then i? inherits the properties of having a
linear order on ideals and having two kinds of ideals, zR or zJ.
Furthermore, R has simple socle S — xT/xJ(T) and J(R) is nil, since
if xar + xJ(T)e J(R) and na > 1, then

(xar + xJ{T))n = ί»*αrw + a;J(Γ) = 0 +

Hence, in order to show that R is a CLH ring, we need only show
that R is injective (or R/S is injective). However, in [6] it is
shown that every homomorphic image of T is a self injective ring.
Consequently, we have exhibited an example of a nonartinian CLH ring.

Notice that our example of a nonartinian CLH ring has the
property that R/S has no socle, and consequently cannot be a CLH
ring itself. This raises the question of when are homomorphic rings
of hypercyclic rings again hypercyclic.

THEOREM 2.25. Let R be commutative. Then every homomorphic
image of R is a hypercyclic ring if and only if R is uniserial.

Proof. Let R be uniserial. Since every homomorphic image of
a uniserial ring is uniserial and since every uniserial ring is hyper-
cyclic, every homomorphic image of R is hypercyclic.

Conversely, assume every homomorphic image of R is hypercyclic.
If eR denotes one of the local components of R, and eS denote its
socle, eR/eS must be a local hypercyclic ring, and must consequently
have nonzero socle. By Theorem 2.12, eR/eS embeds in eR so that eJ
is principal. By Corollary 2.21, eR is uniserial. Since R is, then, a
direct sum of uniserial rings, R is uniserial and the proof is complete.
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