A STABILITY THEOREM FOR A THIRD ORDER NONLINEAR DIFFERENTIAL EQUATION

J. L. Nelson

A stability theorem and a corollary are proved for a nonlinear nonautonomous third order differential equation. A remark shows that the results do not hold for the linear case.

THEOREM. Let p'(t) and q(t) be continuous and $q(t) \ge 0$, p(t) < 0 with $p'(t) \ge 0$. For any A and B suppose

$$A+Bt-\int_{t_1}^t q(s)ds < 0$$

for large t where $Q(t) = \int_{t_0}^t q(s) ds$, then any nonoscillatory solution x(t) of the equation

$$\ddot{x} = p(t)\dot{x} + q(t)x^{2n+1} = 0, n = 1, 2, 3, \cdots,$$

has the following properties;

$$\begin{split} \operatorname{sgn} x &= \operatorname{sgn} \ddot{x}, \neq \operatorname{sgn} \dot{x}, \lim_{t \to \infty} \ddot{x}(t) \\ &= \lim_{t \to \infty} \dot{x}(t) = 0, \lim_{t \to \infty} |x(t)| = L \ge 0, \end{split}$$

and $x(t) \dot{x}(t), \ddot{x}(t)$ are monotone functions. COROLLARY. If $q(t) > \varepsilon > 0$ for large t, then $\lim_{t\to\infty} x(t) = 0$.

In this paper, a nonoscillatory solution x(t) of a differential equation is one that is continuable for large t and for which there exists a t_0 such that if $t > t_0$ then $x(t) \neq 0$. Under above conditions on p(t) and q(t) there always exist continuable nonoscillatory solutions of the equation

(1)
$$\ddot{x} + p(t)\dot{x} + q(t)x^{2n+1} = 0$$

This follows from an exercise in [1] by letting

$$x(t) = y_1(t), \dot{x}(t) = -y_2(t), \ddot{x}(t) = y_3(t)$$

so that

$$egin{array}{lll} \dot{y}_1 &= -y_2 \ \dot{y}_2 &= -y_3 \ \dot{y}_3 &= -[q(t)y_1^{2n+1}-p(t)y_2] \,. \end{array}$$

Equation (1) can then be written as the system $\bar{y}' = -f(t, \bar{y})$ where $f(t, \bar{o}) = \bar{o}, f(t, \bar{y})$ continuous for $t \ge 0, y_1, y_2, y_3, \ge 0$ and $f_k(t, \bar{y}) \ge 0$, k = 1, 2, 3, for $y_k > 0$. In fact $||\bar{y}(0)||$ may be prescribed.

J. L. NELSON

THEOREM 1.1 If p and q satisfy the following conditions for large t,

- (i) $q(t) \ge and q$ continuous,
- (ii) p(t) < 0 with $p'(t) \ge 0$ and continuous.

(iii) for any A and B, $A + Bt - \int_{t_0}^t Q(s)ds < 0$ for large t where $Q(t) = \int_{t_0}^t q(s)ds$,

then for any nonoscillatory solution x(t) of (1) the following properties hold for large t:

- (a) $\operatorname{sgn} x = \operatorname{sgn} \ddot{x} \neq \operatorname{sgn} \dot{x}$, where $\operatorname{sgn} x = \begin{cases} 1 & \text{if } x & 0 \\ -1 & \text{if } x & 0 \end{cases}$. (b) $\lim_{t \to \infty} \ddot{x}(t) = \lim_{t \to \infty} \dot{x}(t) = 0, \lim_{t \to \infty} |x(t)| = L \ge 0.$
- (c) $x(t), \dot{x}(t), \ddot{x}(t)$ are monotone functions.

Proof. Suppose x(t) is a solution that does not oscillate. Let a be a large positive number such that $x(t) \neq 0$ for $t \geq a$.

Since -x(t) is also a solution of (1), without loss of generality, assume that x(t) > 0 for $t \ge a$. (1) may be written in the form

$$(2) \qquad \frac{x(t)}{x^{2n+1}(t)} + \frac{p(t)\dot{x}(t)}{x^{2n+1}(t)} = -q(t) \text{ for } t \leq a.$$

An integration from a to t, an integration by parts, and another integration from a to t yield

$$(3) \frac{\dot{x}(t)}{x^{2n+1}(t)} + \frac{2n+1}{2} \int_{a}^{t} \frac{(\dot{x}(s))^{2}}{x^{2n+2}(s)} ds \\ + (2n+1)(n+1) \int_{a}^{t} \frac{(t-s)(\dot{x}(s))^{3}}{x^{2n+3}(s)} ds \\ - \frac{1}{2n} \int_{a}^{t} \frac{p(s)}{x^{2n}(s)} ds + \frac{1}{2n} \int_{a}^{t} \frac{(t-s)p'(s)}{x^{2n}(s)} ds \\ = M + Kt - \int_{a}^{t} Q(s) ds .$$

Assertion 1. For any $t_a > a$, $\dot{x}(t)$ cannot be nonnegative for all $t>t_a$. Suppose that $\dot{x}(t)\geq 0$ for all $t>t_a$. Let t_p be so large that the conditions of the theorem hold for all $t \ge t_p$ and $t_p \ge t_a$. For $t \geq t_p$ the following holds

$$(4) \quad \frac{\dot{x}(t)}{x^{2n+1}(t)} + (2n+1)(n+1)\int_{a_p}^{t} \frac{(t-s)(\dot{x}(s))^3}{x^{2n+3}(s)}ds - \frac{1}{2n}\int_{t_p}^{t} \frac{p(s)}{x^{2n(s)}}ds \\ + \frac{1}{2n}\int_{t_p}^{t} \frac{(t-s)p'(s)}{x^{2n}(s)}ds \leq \bar{M} + Kt - \int_{a}^{t}Q(s)ds ,$$

¹ This theorem appears in the author's Ph. D. dissertation written at the University of Missouri under the direction of W. R. Utz.

where all constants are combined and named \overline{M} . For sufficiently large t the right side, $\overline{M} + \overline{K}t - \int_{0}^{t} Q(s) ds$, is negative and the left side positive, this is clearly impossible.

There are two possibilities for $\dot{x}(t)$.

Case 1. $\dot{x}(t) < 0$ for $t > \overline{t}$, for some \overline{t} .

Case 2. For each $t \in (a, \infty)$ there is a $\overline{t} > t$ such that $\dot{x}(\overline{t}) \ge 0$.

Assertion 2. Case 2 is impossible.

Let t_1 be a large t such that $\dot{x}(t_1) \ge 0$. There exists a number $t_2 > t_1$ such that $\dot{x}(t_2) < 0$. Let r be the greatest zero of $\dot{x}(t)$ less than t_2 . There exists a number $t_3 > t_2$ such that $\dot{x}(t_3) \ge 0$. Let s be the smallest zero of $\dot{x}(t)$ greater than t_2 . Multiply the original differential Equation (1) by $\dot{x}(t)$ to obtain

$$\ddot{x}(t)\dot{x}(t) + p(t)[\dot{x}(t)]^2 + q(t)x^{2n+1}(t) = 0$$
 ,

integrating from r to s and using integration by parts on the first integral gives

$$-\int_{r}^{s} [\ddot{x}(t)]^{2} dt + \int_{r}^{s} p(t) [\dot{x}(t)]^{2} dt + \int_{r}^{s} q(t) x^{2n+1}(t) \dot{x}(t) dt = 0$$
.

The left side is negative, this is clearly impossible and Assertion 2 is proved. Therefore, there exists a \overline{t} such that $\dot{x}(t) < 0$ for $t > \overline{t}$.

Consider Equation (1) written in the form

$$\ddot{x}(t) = -p(t)\dot{x}(t) - q(t)x^{2n+1}(t)$$
 ,

the right side is negative for large t. Therefore, $\ddot{x}(t) < 0$ for $t > \bar{t}$. This implies that $\ddot{x}(t)$ is a decreasing function and $\dot{x}(t)$ is concave downward for $t > \bar{t}$. Since $\ddot{x}(t)$ is eventually of one sign, there are three possibilities for $\dot{x}(t)$.

Case 1.
$$\lim_{t\to\infty} \dot{x}(t) = -\infty$$

Case 2. $\lim_{t\to\infty} \dot{x}(t) = c < 0$

Case 3. $\lim_{t\to\infty} \dot{x}(t) = 0$.

Case 1 is impossible since it implies that x(t) is negative for large t. Case 2 also implies that x(t) is negative for large t. Therefore, the only remaining possibility is

$$\lim_{t\to\infty}\dot{x}(t)=0.$$

Since $\ddot{x}(t)$ is decreasing and must remain positive for large $t, \dot{x}(t)$ is eventually monotone increasing. Since $\ddot{x}(t)$ is monotone decreasing and positive, $\lim_{t\to\infty} (\ddot{x})t$ exists. Suppose that $\lim_{t\to\infty} \ddot{x}(t) = c > 0$. Then x(t) eventually has slope larger than c/2, this is impossible since $\dot{x}(t) < 0$ for large t. Therefore, $\lim_{t\to\infty} \ddot{x}(t) = 0$. Thus x(t) is positive,

J. L. NELSON

decreasing and concave upward for large t.

COROLLARY. If $q(t) > \varepsilon > 0$ for large t, then $\lim_{t\to\infty} x(t) = 0$.

Proof. Suppose $\lim_{t\to\infty} x(t) = L$, $L \neq 0$. Since -x(t) is a solution whenever x(t) is a solution, it can be assumed without loss of generality that L > 0. Consider Equation (1) in the form

 $\ddot{x}(t) = -p(t)\dot{x}(t) - q(t)x^{2n1}(t)$.

Since $\lim_{t\to\infty} \dot{x}(t) = 0$ and $\lim_{t\to\infty} p(t) = p$, where $p \leq 0$, given any α such that

$$0 < rac{lpha}{2} < L^{{\scriptscriptstyle 2n+1}}$$
 , for large t

 $L^{2n+1} - \alpha/2 < x^{2n+1}(t) < L^{2n+1} + \alpha/2$ and $p(t)\dot{x}(t) > 0$. Therefore, $\ddot{x}(t) = -p(t)\dot{x}(t) - q(t)x^{2n+1}(t) < -\varepsilon(L^{2n+1} - \alpha/2) < 0$ and $\ddot{x}(t)$ must then tend to $-\infty$ as t tends to $+\infty$, this is impossible. This L = 0.

REMARK. The following example illustrates the theorem.

 $\ddot{x} - rac{1}{2} \dot{x} + rac{e^{2t}}{2} x^3 = 0$.

 $x = e^{-t}$ is a solution with the required properties .

REMARK. The theorem does not hold for n = 0, i.e., in the linear case.

Proof. Consider $\ddot{x} - 2\dot{x} + x = 0, x = e^t$ is a solution.

Reference

1. Hartman, Ordinary Differential Equations, John Wiley, 1964.

Received February 1, 1967.

SOUTHWEST MISSOURI STATE COLLEGE SPRINGFIELD, MISSOURI

344