A STABILITY THEOREM FOR A THIRD ORDER NONLINEAR DIFFERENTIAL EQUATION

J. L. Nelson

A stability theorem and a corollary are proved for a nonlinear nonautonomous third order differential equation. A remark shows that the results do not hold for the linear case.

Theorem. Let $p^{\prime}(t)$ and $q(t)$ be continuous and $q(t) \geqq 0$, $p(t)<0$ with $p^{\prime}(t) \geqq 0$. For any A and B suppose

$$
A+B t-\int_{t_{1}}^{t} q(s) d s<0
$$

for large t where $Q(t)=\int_{t_{0}}^{t} q(s) d s$, then any nonoscillatory solution $x(t)$ of the equation

$$
\dddot{x}=p(t) \dot{x}+q(t) x^{2 n+1}=0, n=1,2,3, \cdots,
$$

has the following properties;

$$
\begin{aligned}
\operatorname{sgn} x & =\operatorname{sgn} \ddot{x}, \neq \operatorname{sgn} \dot{x}, \lim _{t \rightarrow \infty} \ddot{x}(t) \\
& =\lim _{t \rightarrow \infty} \dot{x}(t)=0, \lim _{t \rightarrow \infty}|x(t)|=L \geqq 0,
\end{aligned}
$$

and $x(t) \dot{x}(t), \ddot{x}(t)$ are monotone functions.
Corollary. If $q(t)>\epsilon>0$ for large t, then $\lim _{t \rightarrow \infty} x(t)=0$.
In this paper, a nonoscillatory solution $x(t)$ of a differential equation is one that is continuable for large t and for which there exists a t_{0} such that if $t>t_{0}$ then $x(t) \neq 0$. Under above conditions on $p(t)$ and $q(t)$ there always exist continuable nonoscillatory solutions of the equation

$$
\begin{equation*}
\dddot{x}+p(t) \dot{x}+q(t) x^{2 n+1}=0 . \tag{1}
\end{equation*}
$$

This follows from an exercise in [1] by letting

$$
x(t)=y_{1}(t), \dot{x}(t)=-y_{2}(t), \ddot{x}(t)=y_{3}(t),
$$

so that

$$
\begin{aligned}
& \dot{y}_{1}=-y_{2} \\
& \dot{y}_{2}=-y_{3} \\
& \dot{y}_{3}=-\left[q(t) y_{1}^{2 n+1}-p(t) y_{2}\right] .
\end{aligned}
$$

Equation (1) can then be written as the system $\bar{y}^{\prime}=-f(t, \bar{y})$ where $f(t, \bar{o})=\bar{o}, f(t, \bar{y})$ continuous for $t \geqq 0, y_{1}, y_{2}, y_{3}, \geqq 0$ and $f_{k}(t, \bar{y}) \geqq 0$, $k=1,2,3$, for $y_{k}>0$. In fact $\|\bar{y}(0)\|$ may be prescribed.

Theorem 1. ${ }^{1}$ If p and q satisfy the following conditions for large t,
(i) $q(t) \geqq$ and q continuous,
(ii) $p(t)<0$ with $p^{\prime}(t) \geqq 0$ and continuous,
(iii) for any A and $B, A+B t-\int_{t_{0}}^{t} Q(s) d s<0$ for large t where $Q(t)=\int_{t_{0}}^{t} q(s) d s$,
then for any nonoscillatory solution $x(t)$ of (1) the following properties hold for large t :
(a) $\operatorname{sgn} x=\operatorname{sgn} \ddot{x} \neq \operatorname{sgn} \dot{x}$, where $\operatorname{sgn} x=\left\{\begin{array}{rlll}1 & \text { if } & x & 0 \\ -1 & \text { if } & x & 0\end{array}\right\}$.
(b) $\lim _{t \rightarrow \infty} \ddot{x}(t)=\lim _{t \rightarrow \infty} \dot{x}(t)=0, \lim _{t \rightarrow \infty} / x(t) /=L \geqq 0$.
(c) $x(t), \dot{x}(t), \ddot{x}(t)$ are monotone functions.

Proof. Suppose $x(t)$ is a solution that does not oscillate. Let a be a large positive number such that $x(t) \neq 0$ for $t \geqq a$.

Since $-x(t)$ is also a solution of (1), without loss of generality, assume that $x(t)>0$ for $t \geqq a$. (1) may be written in the form

$$
\begin{equation*}
\frac{\dddot{x}(t)}{x^{2 n+1}(t)}+\frac{p(t) \dot{x}(t)}{x^{2 n+1}(t)}=-q(t) \text { for } t \leqq a \tag{2}
\end{equation*}
$$

An integration from a to t, an integration by parts, and another integration from a to t yield
(3)

$$
\begin{aligned}
& \frac{\dot{x}(t)}{x^{2 n+1}(t)}+\frac{2 n+1}{2} \int_{a}^{t} \frac{(\dot{x}(s))^{2}}{x^{2 n+2}(s)} d s \\
& \quad+(2 n+1)(n+1) \int_{a}^{t} \frac{(t-s)(\dot{x}(s))^{3}}{x^{2 n+3}(s)} d s \\
& \quad-\frac{1}{2 n} \int_{a}^{t} \frac{p(s)}{x^{2 n}(s)} d s+\frac{1}{2 n} \int_{a}^{t} \frac{(t-s) p^{\prime}(s)}{x^{2 n}(s)} d s \\
& =M+K t-\int_{a}^{t} Q(s) d s .
\end{aligned}
$$

Assertion 1. For any $t_{a}>a, \dot{x}(t)$ cannot be nonnegative for all $t>t_{a}$. Suppose that $\dot{x}(t) \geqq 0$ for all $t>t_{a}$. Let t_{p} be so large that the conditions of the theorem hold for all $t \geqq t_{p}$ and $t_{p} \geqq t_{a}$. For $t \geqq t_{p}$ the following holds

$$
\frac{\dot{x}(t)}{x^{2 n+1}(t)}+(2 n+1)(n+1) \int_{a_{p}}^{t} \frac{(t-s)(\dot{x}(s))^{3}}{x^{2 n+3}(s)} d s-\frac{1}{2 n} \int_{t_{p}}^{t} \frac{p(s)}{x^{2 n(s)}} d s
$$

$$
\begin{equation*}
+\frac{1}{2 n} \int_{t_{p}}^{t} \frac{(t-s) p^{\prime}(s)}{x^{2 n}(s)} d s \leqq \bar{M}+K t-\int_{a}^{t} Q(s) d s \tag{4}
\end{equation*}
$$

[^0]where all constants are combined and named \bar{M}. For sufficiently large t the right side, $\bar{M}+\bar{K} t-\int_{0}^{t} Q(s) d s$, is negative and the left side positive, this is clearly impossible.

There are two possibilities for $\dot{x}(t)$.
Case 1. $\dot{x}(t)<0$ for $t>\bar{t}$, for some \bar{t}.
Case 2. For each $t \in(a, \infty)$ there is a $\bar{t}>t$ such that $\dot{x}(\bar{t}) \geqq 0$.
Assertion 2. Case 2 is impossible.
Let t_{1} be a large t such that $\dot{x}\left(t_{1}\right) \geqq 0$. There exists a number $t_{2}>t_{1}$ such that $\dot{x}\left(t_{2}\right)<0$. Let r be the greatest zero of $\dot{x}(t)$ less than t_{2}. There exists a number $t_{3}>t_{2}$ such that $\dot{x}\left(t_{3}\right) \geqq 0$. Let s be the smallest zero of $\dot{x}(t)$ greater than t_{2}. Multiply the original differential Equation (1) by $\dot{x}(t)$ to obtain

$$
\dddot{x}(t) \dot{x}(t)+p(t)[\dot{x}(t)]^{2}+q(t) x^{2 n+1}(t)=0
$$

integrating from r to s and using integration by parts on the first integral gives

$$
-\int_{r}^{s}[\ddot{x}(t)]^{2} d t+\int_{r}^{s} p(t)[\dot{x}(t)]^{2} d t+\int_{r}^{s} q(t) x^{2 n+1}(t) \dot{x}(t) d t=0 .
$$

The left side is negative, this is clearly impossible and Assertion 2 is proved. Therefore, there exists a \bar{t} such that $\dot{x}(t)<0$ for $t>\bar{t}$.

Consider Equation (1) written in the form

$$
\dddot{x}(t)=-p(t) \dot{x}(t)-q(t) x^{2 n+1}(t),
$$

the right side is negative for large t. Therefore, $\dddot{x}(t)<0$ for $t>\bar{t}$. This implies that $\ddot{x}(t)$ is a decreasing function and $\dot{x}(t)$ is concave downward for $t>\bar{t}$. Since $\ddot{x}(t)$ is eventually of one sign, there are three possibilities for $\dot{x}(t)$.

Case 1. $\lim _{t \rightarrow \infty} \dot{x}(t)=-\infty$
Case 2. $\lim _{t \rightarrow \infty} \dot{x}(t)=c<0$
Case 3. $\lim _{t \rightarrow \infty} \dot{x}(t)=0$.
Case 1 is impossible since it implies that $x(t)$ is negative for large t. Case 2 also implies that $x(t)$ is negative for large t. Therefore, the only remaining possibility is

$$
\lim _{t \rightarrow \infty} \dot{x}(t)=0
$$

Since $\ddot{x}(t)$ is decreasing and must remain positive for large $t, \dot{x}(t)$ is eventually monotone increasing. Since $\ddot{x}(t)$ is monotone decreasing and positive, $\lim _{t \rightarrow \infty}(\ddot{x}) t$ exists. Suppose that $\lim _{t \rightarrow \infty} \ddot{x}(t)=c>0$. Then $x(t)$ eventually has slope larger than $c / 2$, this is impossible since $\dot{x}(t)<0$ for large t. Therefore, $\lim _{t \rightarrow \infty} \ddot{x}(t)=0$. Thus $x(t)$ is positive,
decreasing and concave upward for large t.
Corollary. If $q(t)>\varepsilon>0$ for large t, then $\lim _{t \rightarrow \infty} x(t)=0$.
Proof. Suppose $\lim _{t \rightarrow \infty} x(t)=L, L \neq 0$. Since $-x(t)$ is a solution whenever $x(t)$ is a solution, it can be assumed without loss of generality that $L>0$. Consider Equation (1) in the form

$$
\dddot{x}(t)=-p(t) \dot{x}(t)-q(t) x^{2 n 1}(t) .
$$

Since $\lim _{t \rightarrow \infty} \dot{x}(t)=0$ and $\lim _{t \rightarrow \infty} p(t)=p$, where $p \leqq 0$, given any α such that

$$
0<\frac{\alpha}{2}<L^{2 n+1}, \quad \text { for large } t
$$

$L^{2 n+1}-\alpha / 2<x^{2 n+1}(t)<L^{2 n+1}+\alpha / 2$ and $p(t) \dot{x}(t)>0$. Therefore, $\dddot{x}(t)=-p(t) \dot{x}(t)-q(t) x^{2 n+1}(t)<-\varepsilon\left(L^{2 n+1}-\alpha / 2\right)<0$ and $\ddot{x}(t)$ must then tend to $-\infty$ as t tends to $+\infty$, this is impossible. This $L=0$.

Remark. The following example illustrates the theorem.

$$
\begin{aligned}
& \dddot{x}-\frac{1}{2} \dot{x}+\frac{e^{2 t}}{2} x^{3}=0 . \\
& x=e^{-t} \text { is a solution with the required properties } .
\end{aligned}
$$

Remark. The theorem does not hold for $n=0$, i. e., in the linear case.

Proof. Consider $\dddot{x}-2 \dot{x}+x=0, x=e^{t}$ is a solution.

Reference

1. Hartman, Ordinary Differential Equations, John Wiley, 1964.

Received February 1, 1967.
Southwest Missouri State College
Springfield, Missouri

[^0]: ${ }^{1}$ This theorem appears in the author's Ph. D. dissertation written at the University of Missouri under the direction of W. R. Utz.

