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EXTENSIONS OF REGULAR BOREL MEASURES

JACK HARDY AND H. ELTON LACEY

This paper is concerned with the extension of regular
Borel measures defined on the Borel sets generated by sub-
topologies of compact Ήausdorff topologies.

Specifically, if X is a nonempty set and τ is a topology on X, the
Borel sets of (X, τ) are the members of the smallest σ-ring containing
r. A regular Borel measure is taken to mean a finite-valued measure
μ on the Borel sets of (X, τ) with property that

μ(B) = sup {μ{F) \ F S B, F is closed} .

In this paper, the situation considered is the following: τ is a
compact Hausdorff topology on X, and σ is a regular (in the topological
sense) sub-topology of τ. The space C(X, τ) is the (partially ordered)
Banach space of all continuous real-valued functions on (X, σ), in the
supremum norm. The space C(X, σ) is similarly defined. By construct-
ing a one-to-one correspondence between the collection of regular Borel
measures on (X, σ) and the collection of positive linear functionals on
C(X, σ) it is shown that every regular Borel measure on (X, σ) can be
extended to a regular Borel measure on (X, τ). This result is used to
prove the existence of nonatomic regular Borel measures on compact
Hausdorff spaces with perfect sub-sets.

The concept of a "partition space" plays a central role in this
development.

DEFINITION 1. Let X be a topological space. A topological
space Y is said to be a partition space of X if there is an onto func-
tion / : X—> Y such that the topology for X is the smallest topology
for which / is continuous.

A partition space is a special kind of quotient space [6:94],
Every topological space is a partition space of itself, and a partition
space of a compact space is compact. It will be important to know
when a topological space has a Hausdorff partition space. For a
similar result about quotient spaces see [6: 98], A proof is given here
because the notation of the proof is used later on.

THEOREM 2. A topological space X has a Hausdorff partition
space if and only if, for any two points x and y in X, if there is
an open set U such that x e U and y $ U, then there are disjoint
neighborhoods of x and y.
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Proof. Let Y be a Hausdorff partition space of X and let / : X-+ Y
be the function in Definition 1. Suppose x and y are two points of
X, and U is an open set such that x e U and y£U. There is an open
set E mY such that U = f~\E). Then f(x) e E and f(y) $ E. Thus
f(x) Φ f(y), and there are disjoint neighborhoods E1 of f(x) and E2 of
f(y). Then f~\Ex) and f~\E^) are disjoint neighborhoods of a? and ?/.

Conversely, for each xe X, let iVx be the set all elements y e X
such that, for each open set U, y e U if and only if xe U.

Let Y = {Nx : x e X}. Define a function / : X-+ Y by α — iVx for
every xe X, and give F the largest topology for which/is continuous
(that is, a subset Ba Y is open if and only if f~\B) is open). Then
3Γ is a Hausdorff partition space of X, because / is certainly
continuous, and if U is open in X, then U = \J{Nx : xe U} implies
f-\Nx : x e U) = C7.

COROLLARY 3. Every regular topologίcal space has a Hausdorff
partition space. In particular, every compact regular space has a
compact Hausdorff partition space.

From now on, the "partition space" of a topological space X will
mean the partition space Y = {Nx: x e X} defined in the proof of
Theorem 2.

The proof of the following theorem is straight-forward computa-
tion and hence will be ommited.

THEOREM 4. Let Y be the partition space of a topological space
X, and Bx and Bγ be the classes of Borel sets in X and Y, respec-
tively. Then

Bx = {f~\E):EeBγ}.

If μ and v are real-valued functions on Bx and Bγ such that μ(f~\E)) =
v(E) for every EeBγ, then μ is a regular Borel measure on X if
and only if v is a regular Borel measure on Y.

COROLLARY 5. In the notation of Theorem 4, to every regular
Borel measure μ on X assign a unique regular Borel measure vμ on
Y by means of the formula

vμ{E) = μ{f~\E)ΛEeBγ) .

Then the mapping μ—>vμ is a one-to-one correspondence between the
collection of regular Borel measures on X and the collection of regular
Borel measures on Y.

THEOREM 6. Let Y be the partition space of a topological space
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X, and C(X) and C(Y) be the spaces of continuous real-valued func-
tions on X and Y, respectively. Then

C(X) = {gof:geC(Y)}.

If I(gof) = J(g) for every g eC(Y), then I is a positive linear func-
tional on C(X) if and only if J is a positive linear functional on
C(Y).

Proof. Clearly {g of: g e C(Y)} c C(X). On the other hand, take
h e C(X). If Nx is a fixed point of Y and y19 y2 e Nx, then h{yx) =
/K^Xotherwise, there are disjoint neighborhoods Eλ and E2 of h(yx)
and h(y2), and hr\E^ and h~ι(E2) would be disjoint neighborhoods of
yγ and y2). Thus g(Nx) = h(x) defines a real-valued function g on Y.
Clearly g e C(Y) and gof = h. This shows C(X) = {gof: g e C(Y)}.

The second part is immediate.

COROLLARY 7. In the notation of Theorem 6, to every positive
linear functional I on C(X) assign a unique positive linear func-
tional JΣ on C(Y) by means of the formula

JΣ{g) = I(gof), (geC(Y)) .

Then the mapping I—»Ji is a one-to-one correspondence between the
collection of positive linear functionals on C(X) and the collection
of positive linear functionals on C(Y).

Let X be a compact regular space. To every regular Borel measure
j « o n l assign a unique positive linear functional Iμ on C(X) as follows.
If Y is the partition space of X, a regular Borel measure μ on X gives
rise (by Corollary 5) to a regular Borel measure v on Y. Then the
formula

JM = ( gdv (geC(Y))\
JY

defines a positive linear functional Jv on C(Y) which (by Corollary 7)
defines a positive linear functional Iμ on C(X).

THEOREM 8. For a compact regular space X, the mapping
μ—>Iμ is a one-to-one correspondence between the collection of regular
Borel measures on X and the collection of positive linear functionals
on C(X).

Proof. The Riesz Representation Theorem for compact Hausdorff
spaces [4:177-178] shows that the mapping v—>Ju is a one-to-one
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correspondence between the collection of regular Borel measures on Y
and the collection of positive linear functionals on C(Y). Then Corol-
laries 5 and 7 complete the proof.

The next theorem (which generalizes a proof in [9]) is the main
result of this paper.

THEOREM 9. Let τ be a compact Hausdorff topology for a set
X, and let σ be a regular topology for X such that σ aτ. Then
every regular Borel measure on (X, σ) can be extended to a regular
Borel measure on (X, τ).

Proof. Let μ be a regular Borel measure on (X, σ) and / be the
positive linear functional on (X, σ) corresponding to a by the mapping
in Theorem 8. By [8, p. 18], / can be extended to a positive linear
functional J* on C(X, r). Let //* be the regular Borel measure on
(X, τ) such that

r*(ΰ) = 1 Qdμ*
Jx

for all g e C(X, τ). It is shown that //* extends μ.
Let Ybe the partition space of (X, σ), and v be the regular Borel

measure on Y defined by v(E) = μ{f~\E)) for every Borel set E in Y.
Let J be the positive linear functional on C(Y) corresponding to

v. Let U be a member of σ. Then there is an open set V in Y such
that f-\V) = U. Now, μ(U) = v(V) =

sup {J(h) \heC(Y),0^h^l, h(y) = 0 if y g V}

= sup {I(k) I ft e C(X, σ)f 0 ^ ft ^ 1, ft(a?) = 0 if x e ί/}

^ sup {/*(ft) I ft e C(X, τ), 0 ^ ft ^ 1, ft(α?) - 0 if a? 6 i7}

To show the reverse inequality, let ε > 0 and let if be a closed
set in (X, τ) such that Ka U and μ*(U) < ε + μ*(iQ. Since (X, σ)
is regular, for each x in ft, there is a set F(αO such that V(x)
is closed in (X, σ) and a; e V(x) a U. Since a compact regular space
in normal [6:141], for each x e K, there is a gxeC(X,σ) such that
CHvix) ^ gx ^ CHLr (CH is the characteristic function). Let U(x) =
{y e X I 03,(2/) + ε > 1}. Then {U(x) \ x e K} is a family of open subsets
q(Xy τ) which covers K, and there are Xί9 , Xn in K such that
{U(Xi) I i = 1, m

 fn} covers K. Let ^ = max{gx. \ i = 1, , n). Then
^ G C(X, σ) and ^ ( ϋ ' ) < ε + μ*(K) = ε +^jCHκdμ* ^ + \jί9 +
ε + εμ*(X) + J*(flf) ^ 2ε + μ(I7) (since 0 ^ g ^ C ^ ) . Thus

1 We wish to thank the referee for pointing out a simplification of the proof.
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μ(U) and by the regularity of μ, μ* extends μ.
It is now shown how this can be applied to relationships between

measures on X and Y and mappings from X and Y. In particular,
it is shown that if X, Y are compact Hausdorff spaces and f:X—+Y
is a continuous onto map, then each regular Borel measure on Y
generates a regular Borel measure on X.

THEOREM 10. Let X and Y be a compact Hausdorff spaces, f
be a continuous function from X onto Y, and v be a regular Borel
measure on Y. Then there is a regular Borel measure μ on X such
that

μ(f-\E)) = v(E)

for every Borel set E in Y. Moreover, if v is non-atomic, then so is μ.

Proof. Let τ denote the topology for X, and let

σ = {f-\U): U open in Y) .

Then σ is a regular topology for X, σ (zτ, C(X, σ) is a linear subspace
of C(X, τ), and C(X, σ) contains the constant functions. Thus Theorem 9
implies that every regular Borel measure on (X, σ) can be extended
to a regular Borel measure on (X, τ).

For every Borel set E in Y, define μQ(f-\E)) = v(E). The proof
of Theorem 4 shows that μ0 is a regular Borel measure on (X, σ).
Let μ be a regular Borel measure on (X, τ) which extends μ0. Then
μ{f~ι{E)) — v(E) for every Borel set E in Y. If v is nonatomic, then,
for every xe X,

0 ^ μ(x) ^ μ{f~ιf{x)) = v(f(x)) - 0

implies μ(x) = 0, and thus μ is nonatomic.

COROLLARY 11. [9]. If X is a compact Hausdorff space with
a nonempty perfect set, then there is a nonzero, nonatomic regular
Borel measure on X.

Proof. There is a continuous map of X onto [0,1], Thus, in
Theorem 10 one can use Lebesgue measure for v.

COROLLARY 12. Let X be a compact Haudorff space, {Pn} be a
disjoint sequence of perfect subsets of X, and {an} be a sequence of
nonnegative real numbers such that X α% < oo. Then there is a non-
atomic regular Borel measure μ on X such that μ(Pn) = an for every
n.
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Proof. For each n, let vn be a nonatomic regular Borel measure
on Pn such that vn(Pn) = anf and define μn{E) = yw(i7 Π P J for every
Borel set E in X. Then μ ~ Σ Â  *s a nonatomic regular Borel mea-
sure on X, and μ(Pn) = αw for every w.

For the last theorem some additional terminology is needed. Let
X and Y be compact Hausdorff spaces. By M(X) is meant the Banach
lattice of all regular Borel measures on X under the total variation
norm. Of course, M{X) is precisely the Banach space dual of C(X).
If v is a regular Borel measure on Y, by L\v) is meant the Banach
lattice of all v-integrable functions on Y, under the integral norm.

THEOREM 13. If there is a continuous map f of X onto F, then
L\v) is linearly isometric to a subspace of M(X).

Proof. Let μ be the regular Borel measure associated with v of
Theorem 11. Let N be the normed linear space whose elements are
the continuous functions on Y, but whose norm is the integral norm
with respect to v. Then N is dense in L\v). Define the linear operator

A: N-+M(X) by (Ag)(h) = [ h(g of) dμ for all g e N, h e C(X). Now,
r JX

\\Ag\\ = \ \gof\dμ = \\g\\ and A is an isometry of N into M(X).
jx

Since N is dense in L\v), A can be uniquely extended to an isometry
of L\v) into M(X).
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