A CHARACTERIZATION OF COMPACT CONNECTED PLANAR LATTICES

Charles E. Clark and Carl Eberhart

Abstract

In this paper it is proved that every topological lattice on the two-cell is topologically isomorphic (iseomorphic) to a sublattice of the product lattice $I \times I$. An explicit description of the compact connected sublattices of $I \times I$ containing $(0,0)$ and (1,1) is given. These results, together with a theorem of A. D. Wallace, yield a characterization of all compact connected lattices in the plane: each is iseomorphic to a sublattice of $I \times I$.

A topological lattice is a partially ordered space X with the property that every pair of elements a, b of X has a least upper bound, $a \vee b$, and a greatest lower bound, $a \wedge b$, so that the operations \vee and \wedge are continuous. A simple example of a topological lattice is the unit interval I with the usual ordering. The partial order on the n-cell I^{n} given by $\left(x_{i}\right) \leqq\left(y_{i}\right)$ if and only if $x_{i} \leqq y_{i}$ for $i=1, \cdots, n$ is a lattice ordering, in fact, it is the lattice ordering obtained by regarding I^{n} as a product lattice. L. W. Anderson and A. D. Wallace have found conditions under which a lattice ordering on the n-cell is the product order. One can also consider the following problem: determine all lattice orderings of the n-cell. It is well known that the usual order is the only lattice order on the interval. In this paper the problem is considered for the two-cell. It is shown that every topological lattice on the two-cell is iseomorphic to a sublattice of the product lattice $I \times I$. This result together with a theorem of A. D. Wallace is used to prove that every compact connected lattice in the plane is iseomorphic to a sublattice of $I \times I$. Finally, an explicit description of the compact connected sublattices of $I \times I$ containing $(0,0)$ and $(1,1)$ is given.

1. Lattice orderings of the two-cell. Let L be a topological lattice whose underlying space is homeomorphic to a two-cell. Since L is compact, L has a unique minimum element 0 and a unique maximum element 1. It is known [1] that 0 and 1 lie on the boundary of L and that the boundary arcs T and E determined by 0 and 1 are maximal chains in L and that T and E generate L in the sense that $L=T \vee E=T \wedge E$. In this section we prove that L is iseomorphic to a sublattice of $I \times I$. The proof requires several lemmas.

Lemma 1. Let $p, q \in L . \quad$ If $(p \wedge T) \cap T=(q \wedge T) \cap T$, then either
$p \wedge T \subset q \wedge T$ or $q \wedge T \subset p \wedge T$.
Proof. We first assume that $p, q \in E$ and that $p \leqq q$. If $p=0$, then $p \in q \wedge T$. Suppose $p>0$ and that $p \notin q \wedge T$. It is well known that $p \vee T$ and $q \wedge T$ are arcs from p to 1 and from q to 0 respectively. Since L is a 2-cell, it must follow that $(p \vee T) \cap(q \wedge T) \neq \square$. Let $z \in(p \vee T) \cap(q \wedge T)$ and let

$$
x=\sup \{(q \wedge T) \cap T\}=\sup \{(p \wedge T) \cap T\}
$$

Then $z=p \vee t$ for some $t \in T$. If $t \leqq x$, then by the definition of x, we would have $p \vee t=p$. Hence $t>x$. But now the inequality $t \leqq z \leqq q$ implies that $q \wedge t=t \in q \wedge T$ which contradicts the choice of x.

Now let p and q be arbitrary elements of L and choose $e, f \in E$ such that $p \in e \wedge T$ and $q \in f \wedge T$. This is possible since $E \wedge T=L$. If either of p or q is an element of T, then the lemma is trivial. For suppose $p \in T$. Then

$$
p \wedge T=(p \wedge T) \cap T=(q \wedge T) \cap T \subset q \wedge T
$$

We may now assume that $p, q \notin T$. We contend that $(e \wedge T) \cap T=$ $(p \wedge T) \cap T=(f \wedge T) \cap T=(q \wedge T) \cap T$. To establish the first equality, let $t \in(e \wedge T) \cap T$. Then since $e \wedge T$ is a chain and $p, t \in e \wedge T$, either $p \leqq t$ or $t \leqq p$. Suppose $p \leqq t$. Then for some $t_{1} \in T, p=e \wedge t_{1}=\left(e \wedge t_{1}\right) \wedge t=(e \wedge t) \wedge t_{1}=t \wedge t_{1} \in T$, which is a contradiction. Therefore $t \leqq p$ and $t \in(p \wedge T) \cap T$. Now suppose $t \in(p \wedge T) \cap T$. Then $t \leqq p \leqq e$ implies that $t \in(e \wedge T) \cap T$. This proves the first equality; the last equality is proved similarly. From the first part of the proof, we conclude that either $e \wedge T \subset f \wedge T$ or $f \wedge T \subset e \wedge T$. Suppose $f \wedge T \subset e \wedge T$. Then $p \wedge T$ and $q \wedge T$ are subchains of $e \wedge T$, so either $p \wedge T \subset q \wedge T$ or $q \wedge T \subset p \wedge T$.

For $x \in T$, we define $C_{x} \subset E$ by $C_{x}=\{h \in E \mid x=\sup \{(h \wedge T) \cap T\}\}$.
Lemma 2. The set C_{x} is closed for all $x \in T$.
Proof. We consider the nontrivial case where $C_{x} \neq \square$. From the continuity of \wedge it follows that the set $\{h \in E \mid x \in h \wedge T\}$ is closed. Let $e^{\prime}=\inf \{h \in E \mid x \in h \wedge T\} ;$ then $x \in e^{\prime} \wedge T$ and $e^{\prime} \leqq e$ for all $e \in C_{x}$. If $t \in\left(e^{\prime} \wedge T\right) \cap T$ and $t>x$, then for $e \in C_{x}$, we would have $t \leqq e^{\prime} \leqq e$ and hence $t \in(e \wedge T) \cap T$ contradicting the fact that $e \in C_{x}$. Hence $x=\sup \left\{\left(e^{\prime} \wedge T\right) \cap T\right\}$ and $e^{\prime} \in C_{x}$.

Let $h_{n} \in C_{x}, n=1,2, \cdots$, and let $h_{n} \rightarrow h$. Then $e^{\prime} \leqq h_{n}$ for each n and by Lemma 1, we have that $e^{\prime} \wedge T \subset h_{n} \wedge T$ for all values of n and therefore $e^{\prime} \wedge T \subset h \wedge T$. Let $x^{\prime}=\sup \{(h \wedge T) \cap T\}$. Then
$x^{\prime} \geqq x$ since $x \in(h \wedge T) \cap T$. We have that $e^{\prime}, x^{\prime} \in h \wedge T$ and so one of the inequalities $x^{\prime} \leqq e^{\prime}, e^{\prime} \leqq x^{\prime}$ must hold. If $x^{\prime} \leqq e^{\prime}$, then $x^{\prime} \in(e \wedge T) \cap T$ which implies that $x^{\prime} \leqq x$ and hence $x^{\prime}=x$ and $h \in C_{x}$. If $\mathrm{e}^{\prime} \leqq x^{\prime}$, let $e^{\prime}=h \wedge t$ for $t \in T$. Then

$$
e^{\prime}=e^{\prime} \wedge x^{\prime}=(h \wedge t) \wedge x^{\prime}=\left(h \wedge x^{\prime}\right) \wedge t=x^{\prime} \wedge t \in T
$$

This involves a contradiction unless $e^{\prime}=0$. However, if $e^{\prime}=0$, then $x=0$ and $h_{n} \wedge T=0$ for all values of n; hence $n \wedge T=0$ and $h \in C_{x}$. This completes the proof of the lemma.

We now define relations \mathscr{C} and \mathscr{Y}^{\wedge} on T as follows: for $a, b \in T$, $a \mathscr{C} b \equiv a \in e \vee T$ if and only if $b \in e \vee T$ for all $e \in E$. $a \mathscr{V}^{\prime} b \equiv a \in e \wedge T$ if and only if $b \in e \wedge T$ for all $e \in E$.

Lemma 3. The relations \mathscr{H} and \mathscr{V} are closed congruences on T.
Proof. It is easy to see that \mathscr{H} and \mathscr{Y}^{\wedge} are congruences on T. We will show that the relation \mathscr{V}^{\prime} is closed. A dual argument will show that \mathscr{C} is closed.

Let $a_{n} \rightarrow a, b_{n} \rightarrow b$ with $\mathrm{a}_{n}, b_{n} \in T$ and $a_{n} \mathscr{V}^{\wedge} b_{n}$ for each n. Assume that $a \leqq b$. If $h \in e \wedge T$ for $e \in E$, it follows trivially that $a \in e \wedge T$. Suppose $a \in e \wedge T$ for $e \in E$. Let $x=\sup \{(e \wedge T) \cap T\}$; then $a \leqq x$. If $a<x$, then for n sufficiently large, $a_{n}<x$ and hence $a_{n} \in e \wedge T$. Since $a_{n} \mathscr{Y} b_{n}$ we must have $b_{n} \in e \wedge T$ for n sufficiently large and therefore $b \in e \wedge T$. This gives $a \mathscr{V} b$.

We now assume that $a=x$ and let $f=\sup C_{x}$. This sup exists since C_{x} is closed by Lemma 2. If $f=1$, then $a=b=1$. Suppose $f<1$ and let $f_{m} \rightarrow f$ where $f_{m} \in E, f_{m}>f$ for $m=1,2, \cdots$. Let $y_{m}=\sup \left\{\left(f_{m} \wedge T\right) \cap T\right\}$. Then since $f_{m} \notin C_{x}, y_{m}>a$. Thus for fixed m, there exists a positive integer N_{m} such that if $n \geqq N_{m}$, then $a_{n}<y_{m}$, or $a_{n} \in f_{m} \wedge T$. Therefore $b_{n} \in f_{m} \wedge T$ for $n \leqq N_{m}$. We conclude that $b \in f_{m} \wedge T$ for each positive integer m and hence $b \in f \wedge T$. But $a=\sup \{(f \wedge T) \cap T\}$ and hence $b \leqq a$. Therefore $a=b$.

Lemma 4. Let $e \in E$ and let $x=\sup \{(e \wedge T) \cap T\}, e^{\prime}=\sup C_{x}$, $x^{\prime}=\inf V_{x}$ where V_{x} denotes the congruence class modulo \mathscr{V} which contains x. Then $\left\{z \mid x^{\prime} \leqq z \leqq e^{\prime}\right\} \subset e^{\prime} \wedge T$.

Proof. If $z \in T$, then $z \leqq x \leqq e^{\prime}$ implies $z=e^{\prime} \wedge z \in e^{\prime} \wedge T$. Suppose $z \notin T$ and let $f \in E$ such that $z \in f \wedge T$. If $f=0$, then $z=0 \in e^{\prime} \wedge T$. Suppose $f>0$. We have $x^{\prime} \leqq z \leqq f$ and therefore $x^{\prime} \in f \wedge T$ and since $x^{\prime} \mathscr{V} x, x \in f \wedge T$. If $t \in(f \wedge T) \cap T$, then $t \in(z \wedge T) \cap T$ since
$z \wedge T \subset f \wedge T$ and $z \notin T$. From the inequality $t \leqq z \leqq e^{\prime}$ we conclude that $t \in\left(e^{\prime} \wedge T\right) \cap T$ and hence $t \leqq x$. Hence $x=\sup \{(f \wedge T) \cap T\}$ and by Lemma 1 we have $f \wedge T \subset e^{\prime} \wedge T$ and therefore $z \in e^{\prime} \wedge T$.

Lemma 5. If $e, f \in E$ and $p \in[(f \vee T) \cap(e \wedge T)] \backslash T$, then $\{p\}=$ $(f \vee T) \cap(e \wedge T)$.

Proof. Suppose $p^{\prime} \in(f \vee T) \cap(e \wedge T)$. Then either $p^{\prime} \leqq p$ or $p^{\prime} \geqq p$ and in either case it is easily seen that $p^{\prime} \notin T$ since $p \notin T$. Assume that $p^{\prime} \leqq p$ and let $x=\sup \{(e \wedge T) \cap T\}$. Then since $p, p^{\prime} \notin T, x=\sup \{(p \wedge T) \cap T\}=\sup \left\{\left(p^{\prime} \wedge T\right) \cap T\right\}$. Since $p^{\prime} \leqq p$ on $f \vee T$, we have that $p \in p^{\prime} \vee T$ so that $p=p^{\prime} \vee t$ for some $t \in T$ and since $x=\sup \left\{\left(p^{\prime} \wedge T\right) \cap T\right\}$, it follows that $t \geqq x$. But $t \leqq p \leqq e$ implies that $t \in(e \wedge T) \cap T$ and so $t \leqq x$. Hence $t=x$ and $p=$ $p^{\prime} \vee x=p^{\prime}$.

Lemma 6. Let $x \in T$ and let $x^{\prime}=\sup V x$. Then $C_{x^{\prime}} \neq \square$.
Proof. The set $\{h \in E \mid x \in h \wedge T\}$ is closed by the continuity of \wedge and is nonempty since $x \in 1 \wedge T$. Let $e=\inf \{h \in E \mid x \in h \wedge T\}$. Then $x \in e \wedge T$ and since $x \mathscr{Y} x^{\prime}$ it follows that $x^{\prime} \in e \wedge T$. Let $x^{\prime \prime}=$ $\sup \{(e \wedge T) \cap T\}$. Then $x^{\prime \prime} \leqq x^{\prime}$. Suppose $h \in E$ and $x \in h \wedge T$. Then $h \geqq e$ by the definition of e and since $x^{\prime \prime} \in e \wedge T$ it follows that $x^{\prime \prime} \in h \wedge T$. On the other hand, if $x^{\prime \prime} \in h \wedge T$ for some $h \in E$, then $x \in h \wedge T$ since $x \leqq x^{\prime \prime}$. Therefore $x \mathscr{V}^{\prime} x^{\prime \prime}$ but since $x^{\prime \prime} \geqq x^{\prime}$ and $x^{\prime}=\sup \mathscr{Y}^{\prime} x$, we must have $x^{\prime \prime}=x^{\prime}$. Hence $e \in C_{x^{\prime}}$.

We are now prepared to define the iseomorphism from L into $I \times I$. For $p \in L$, define

$$
\alpha_{1}(p)=\sup \{(p \wedge T) \cap T\}
$$

and

$$
\alpha_{2}(p)=\inf \{(p \vee T) \cap T\}
$$

Let η_{1}, η_{2}, denote the natural maps from T onto $T / \mathscr{Y}^{-}=T_{1}$ and $T / \mathscr{H}=T_{2}$ respectively. Let $\phi_{1}=\eta_{1} \circ \alpha_{1}, \phi_{2}=\eta_{2} \circ \alpha_{2}$ and define

$$
\phi: L \rightarrow T_{1} \times T_{2}
$$

by

$$
\dot{\phi}=\dot{\phi}_{1} \times \dot{\phi}_{2}
$$

Theorem 1. If L is a topological lattice which is homeomorphic to a 2-cell, then L is iseomorphic to a sublattice of $I \times I$.

Proof. We will show that the map defined above is a one-to-one continuous homomorphism from L into $T_{1} \times T_{2}$. The theorem then
follows since $T_{1} \times T_{2}$ is iseomorphic to $I \times I$.
(i) The map ϕ is continuous. We show ϕ_{1} is continuous. A dual argument shows that ϕ_{2} is continuous.

Let $x \in T_{1}$ and let $a=\sup \eta_{1}^{-1}(x)$. Then $C_{a} \neq \square$ by Lemma 6. Let $e=\sup C_{a}$. We claim that $\phi_{1}^{-1}[0, x]=e \wedge L$. A similar argument shows that $\phi_{1}^{-1}[x, 1]=a^{\prime} \vee L$ where $a^{\prime}=\inf \eta_{1}^{-1}(x)$. Thus the inverse under ϕ_{1} of a subbasic closed set is closed in L and hence α_{1} is continuous.

Let $z \in e \wedge L . \quad$ Then $b=\sup \{(z \wedge T) \cap T\} \leqq z \leqq e$ and so $b \leqq a$. Then $\phi_{1}(z)=\eta_{1}\left(\alpha_{1}(z)\right)=\eta_{1}(b) \leqq \eta_{1}(a)=x$. Hence $z \in \dot{\phi}_{1}^{-1}[0, x]$. Now let $z \in \phi_{1}^{-1}[0, x], b=\sup \eta_{1}^{-1}\left(\phi_{1}(z)\right)$, and $f \leftrightharpoons \sup C_{b}$. Since $\phi_{1}(z) \leqq x$, then $b \leqq a$. If $z \in T$ then $z \leqq b \leqq a \leqq e$; thus $z \in e \wedge L$.

Now suppose that $z \notin T$. From the definition of b we have $\eta_{1}(b)=$ $\eta_{1}\left(\alpha_{1}(z)\right)$ and hence $b \mathscr{V} \alpha_{1}(z)$. Therefore $\alpha_{1}(z) \leqq b$. Let $h \in E$ such that $z \in h \wedge T$. Then since $z \notin T$, it was shown in the proof of Lemma 1 that $\sup \{(z \wedge T) \cap T\}=\sup \{(h \wedge T) \cap T\}$. Therefore $\alpha_{1}(z) \in h \wedge T$ and since $b \mathscr{V}^{\prime} \alpha_{1}(z)$, we have $b \in(h \wedge T) \cap T$ and hence $b \in(z \wedge T) \cap T$. Then by the definition of $\alpha_{1}(z)$, we have $b \leqq \alpha_{1}(z)$. Thus $\alpha_{1}(z)=b$, and $(z \wedge T) \cap T=(f \wedge T) \cap T$. By Lemma $1, z \wedge T \subset f \wedge T$. Since $b \leqq a$, then $f \leqq e$. Hence $z \leqq f \leqq e$ implies that $z \in e \wedge L$.
(ii) ϕ is one-to-one. Suppose $p, p^{\prime} \in L$ such that $\phi_{i}(p)=\phi_{i}\left(p^{\prime}\right)$, $i=1,2$. We will show that $p=p^{\prime}$. We consider three cases.

Case 1. $\quad p, p^{\prime} \in L \backslash T$. Then since $\phi_{1}(p)=\eta_{1}\left(\alpha_{1}(p)\right)=\eta_{1}\left(\alpha_{1}\left(p^{\prime}\right)\right)=$ $\phi_{1}\left(p^{\prime}\right)$, we have that $\alpha_{1}(p) \mathscr{V}^{\prime} \alpha_{1}\left(p^{\prime}\right)$. Choose $e, f \in E$ such that $p \in e \wedge T$ and $p^{\prime} \in f \wedge T$. Then from the proof of Lemma 1, it follows that

$$
\sup \{(e \wedge T) \cap T\}=\sup \{(p \wedge T) \cap T\}=\alpha_{1}(p)
$$

and

$$
\sup \{(f \wedge T) \cap T\}=\sup \left\{\left(p^{\prime} \wedge T\right) \cap T\right\}=\alpha_{1}\left(p^{\prime}\right)
$$

But since $\alpha_{1}(p) \mathscr{V}^{\prime} \alpha_{1}\left(p^{\prime}\right)$, we must have $\alpha_{1}\left(p^{\prime}\right) \in(e \wedge T) \cap T$ and $\alpha_{1}(p) \in(f \wedge T) \cap T$. It now follows that $\alpha_{1}\left(p^{\prime}\right) \leqq \alpha_{1}(p) \leqq \alpha_{1}\left(p^{\prime}\right)$ and hence $\alpha_{1}(p)=\alpha_{1}\left(p^{\prime}\right)=\alpha_{1}(e)=\alpha_{1}(f)$. Hence by Lemma 1, either $f \wedge T \subset e \wedge T$ or $e \wedge T \subset f \wedge T$. Suppose $f \wedge T \subset e \wedge T$. Then $p, p^{\prime} \in e \wedge T$. Using a similar argument and the dual of Lemma 1 we obtain $g \in E$ such that $p, p^{\prime} \in g \vee T$. Since $p, p^{\prime} \notin T$, we conclude from Lemma 5 that $p=p^{\prime}$.

Case 2. $p, p^{\prime} \in T$. Assume $p \leqq p^{\prime}$. If $p^{\prime}=1$, then $p^{\prime} \in 1 \vee T$ and $p^{\prime} \mathscr{\mathscr { C }} p$ implies that $p \in 1 \vee T$ and so $p=1$. Suppose $p^{\prime}<1$ and let $f=\sup \{h \in E \mid p \in h \vee T\}$. Then $f<1$. Let $f_{n} \rightarrow f$, where $f_{n} \in E$ and $f_{n}>f$ for all n. Then $p \notin f_{n} \vee T$ and hence $p^{\prime} \notin f_{n} \vee T$ for all n. Therefore if $f_{n} \vee p \in T$, then $f_{n} \vee p>p^{\prime}$, and if $f_{n} \vee p \notin T$ then
$p=\left(f_{n} \vee p\right) \wedge p \in\left(f_{n} \vee p\right) \wedge T$ and hence $p^{\prime} \in\left(f_{n} \vee p\right) \wedge T$ since $p \mathscr{V}^{\prime} p^{\prime}$ and $f_{n} \vee p \notin T$. So $f_{n} \vee p \geqq p^{\prime}$ for all n. Therefore, by the continuity of $\vee, p=f \vee p \leqq p^{\prime}$. Then $p=p^{\prime}$.

Case 3. $\quad p \notin T, p^{\prime} \in T$. Choose $e, f \in E$ such that

$$
p \in(e \wedge T) \cap(f \vee T)
$$

Then since $p \notin T,\{p\}=(e \wedge T) \cap(f \vee T)$ by Lemma 5. Since $\phi_{1}(p)=\phi_{1}\left(p^{\prime}\right)$, we have $\sup \{(p \wedge T) \cap T\} \mathscr{V}^{\prime} p^{\prime}$ from which follows $p^{\prime} \in p \wedge T \cap e \wedge T$. Similarly, $p^{\prime} \in f \vee T$, contradicting Lemma 5.
(iii) ϕ is a homomorphism. We will show that ϕ_{1} is a homomorphism with respect to \vee, Similar arguments will show that ϕ_{1} is a homomorphism with respect to \wedge and that ϕ_{2} is a homomorphism with respect to \vee and \wedge.

Let $p, p^{\prime} \in L ; x=\alpha_{1}(p)=\sup \{(p \wedge T) \cap T\}$,

$$
x^{\prime}=\alpha_{1}\left(p^{\prime}\right)=\sup \left\{\left(p^{\prime} \vee T\right) \cap T\right\}
$$

and

$$
z=\alpha_{1}\left(p \vee p^{\prime}\right)=\sup \left\{\left(\left(p \vee p^{\prime}\right) \wedge T\right) \cap T\right\}
$$

Assume that $x \leqq x^{\prime}$. Then $x \vee x^{\prime}=x^{\prime}$ and $\eta_{1}\left(x \vee x^{\prime}\right)=\eta_{1}(x) \vee \eta_{1}\left(x^{\prime}\right)=$ $\eta_{1}\left(x^{\prime}\right)$. Then $\dot{\phi}_{1}(p) \vee \dot{\phi}_{1}\left(p^{\prime}\right)=\eta_{1}(x) \vee \eta_{1}\left(x^{\prime}\right)=\eta_{1}\left(x^{\prime}\right)$. We will show that $\phi_{1}\left(p \vee p^{\prime}\right)=\eta_{1}(z)=\eta_{1}\left(x^{\prime}\right)$, i.e., $z \mathscr{V}^{`} x^{\prime}$.

We have that $x^{\prime} \leqq p^{\prime} \leqq p \vee p^{\prime}$, so $x^{\prime} \in\left(\left(p \vee p^{\prime}\right) \wedge T\right) \cap T$ and hence $x^{\prime} \leqq z$. If $z \in e \wedge T$ for $e \in E$, then clearly $x^{\prime} \in e \wedge T$. Now suppose $x^{\prime} \in e \wedge T, e \in E$. We consider two cases.

Case 1. $p^{\prime} \in E$. We may assume that $e=\inf \left\{h \in E \mid x^{\prime} \in h \wedge T\right\}$. If $p^{\prime} \in T$, then $p^{\prime}=x^{\prime} \in e \wedge T$. If $p^{\prime} \in T$, then choose $g \in E$ such that $p^{\prime} \in g \wedge T$. Then $x^{\prime} \leqq p^{\prime} \leqq g$ implies that $x^{\prime} \in g \wedge T$ and hence $e \leqq g$.

From Lemma $6, e=\sup C_{x^{\prime}}$. But the proof of Lemma 1 gives

$$
x^{\prime}=\sup \left\{\left(p^{\prime} \wedge T\right) \cap T\right\}=\sup \{(g \wedge T) \cap T\}
$$

and therefore $g \leqq e$. Hence $g=e$ and $p^{\prime} \leqq e$.
We will show that $p \leqq e$ also. If $p \in T$, then $p=x \leqq x^{\prime} \leqq e$. Suppose $p \in T$ and let $f=\inf \{h \in E \mid p \in h<T\}$. Then since $p \notin T$, $\sup \{(f \wedge T) \cap T\}=\sup \{(p \wedge T) \cap T\}=x \leqq x^{\prime}$ and hence $f \leqq e$. Then the inequality $p \leqq f \leqq e$ gives the desired conclusion.

We now have $p^{\prime} \leqq e, p \leqq e$; hence $p \vee p^{\prime} \leqq e$. Since $p^{\prime} \in e \wedge T$, the inequality $p^{\prime} \leqq p \vee p^{\prime} \leqq e$ and Lemma 4 gives $p \vee p^{\prime} \in e \wedge T$. Hence $z \in e \wedge T$. This concludes the proof for Case 1.

Case 2. $p^{\prime} \in E$. If $p^{\prime} \leqq p$, then $p \vee p^{\prime}=p$ implies $x=z$. But
then $x \leqq x^{\prime} \leqq z$ implies $x^{\prime}=z$ and so $z \in e \wedge T$.
If $p^{\prime} \notin p \wedge L$ then since

$$
x=\sup \{(p \wedge T) \cap T\} \leqq x^{\prime}=\sup \left\{\left(p^{\prime} \wedge T\right) \cap T\right\}
$$

the proof of the continuity of ϕ_{1} shows that $p \in p^{\prime} \wedge L$. Hence $p \vee p^{\prime}=p^{\prime}$ and again we conclude that $z=x^{\prime}$. This concludes the proof that ϕ_{1} is a homomorphism with respect to V, and the proof of Theorem 1.
2. Compact connected lattices in the plane. In [4] Wallace proved that a compact connected lattice L which is imbeddable in the plane is a cyclic chain (in the sense of Whyburn \{5]) and that each true cyclic element is a convex sublattice and is homeomorphic to a 2 -cell. Thus by Theorem 1, each true cyclic element is iseomorphic to a sublattice of $I \times I$. Let Δ denote the diagonal thread in $I \times I$. Label the true cyclic elements of $L,\left\{C_{i}\right\}_{i=1}^{\infty}$. Denote the 0 and 1 of C_{i} by a_{i} and b_{i} respectively. Let T be any maximal chain from 0 to 1 in L, and let h be an iseomorphism from T onto Δ, the diagonal in $I \times I$. Then the "square" in $I \times I$ with upper right hand vertex $h\left(b_{i}\right)$ and lower left hand vertex $h\left(a_{i}\right)$ is a sublattice of $I \times I$ which is iseomorphic to $I \times I$. Hence C_{i} may be imbedded in this sublattice as in Theorem 1. In this manner an iseomorphism of L into $I \times I$ is determined. Thus we have proven:

TheOrem 2. Every compact connected lattice in the plane is iseomorphic to a sublattice of $I \times I$.

Finally we state an explicit description of the compact connected sublattices of $I \times I$ containing $(0,0)$ and $(1,1)$.

Theorem 3. Let f and g be functions from I into I satisfying
(i) f, g are nondecreasing, $f(0)=0, g(1)=1$,
(ii) $f(x) \leqq g(x)$ for all $x \in I$,
(iii) f is continuous from the left and g is continuous from the right.
Then the set $L=\{(x, y): f(x) \leqq y \leqq g(x)\}$ is a compact connected sublattice of $I \times I$ containing $(0,0)$ and $(1,1)$. Conversely, if L is a compact connected sublattice of $I \times I$ containing $(0,0)$ and $(1,1)$ then there exist functions f and g satisfying i-iii such that

$$
L=\{(x, y): f(x) \leqq y \leqq g(x)\}
$$

Proof. The proof is straightforward and will be omitted. The functions f and g alluded to in the second part are defined as follows:

$$
\begin{array}{lr}
g(x)=\sup \{L \cap(\{x\} \times I)\} & \text { for } x \in I \\
f(x)=\inf \{L \cap(\{x\} \times I)\} & \text { for } x \in I .
\end{array}
$$

3. Comments. Edmondson has given an example of a topological lattice on a 3-cell which is nonmodular; hence this lattice is not a sublattice of $I \times I \times I$ [2]. This shows that the higher dimensional analogous of Theorem 1 are false.

This the result of this paper does not hold if the term "lattice" be replaced by "semilattice" is a consequence of the results of D. R. Brown, [1], regarding semilattice structures on the two-cell.

Wallace has conjectured that every 2-dimensional compact connected lattice with no cutpoints is a two-cell. A related conjecture is that every 2 -dimensional compact connected lattice can be imbedded in the plane. If this were true, the words "in the plane" in the statement of Theorem 2 could be replaced by " 2 -dimensional."

The authors are pleased to acknowledge their indebtedness to Professor R. J. Koch for his suggestions in the preparation of this paper.

References

1. D. R. Brown, Topological semilattices on the two-cell Pacific J. Math. 15 (1965).
2. Don E. Edmondson, A nonmodular compact connected topological lattice, Proc. Amer. Math. Soc. 7 (1956).
3. A. D. Wallace, Factoring a lattice, Proc. Amer. Math. Soc. 9 (1958).
4. -, Two theorems on topological lattices. Pacific J. Math. 7 (1957).
5. G. T. Whyburn, Analytic Topology, Coll. Pub. Amer. Math. Soc., 1942.

Received May 2, 1966.

