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A CHARACTERIZATION OF COMPACT CONNECTED
PLANAR LATTICES

CHARLES E. CLARK and CARL EBERHART

In this paper it is proved that every topological lattice
on the two-cell is topologically isomorphic (iseomorphic) to a
sublattice of the product lattice I X I. An explicit description
of the compact connected sublattices of I X J containing (0, 0)
and (1,1) is given. These results, together with a theorem
of A. D. Wallace, yield a characterization of all compact
connected lattices in the plane: each is iseomorphic to a
sublattice of I X I.

A topological lattice is a partially ordered space X with the
property that every pair of elements α, b of X has a least upper
bound, α V δ, and a greatest lower bound, a A &, so that the opera-
tions V and Λ are continuous. A simple example of a topological
lattice is the unit interval / with the usual ordering. The partial
order on the n-ce\\ In given by (Xi) fg (y^ if and only if #t ̂  yi for
i = 1, •••, w is a lattice ordering, in fact, it is the lattice ordering
obtained by regarding In as a product lattice. L. W. Anderson and
A. D. Wallace have found conditions under which a lattice ordering
on the n-cell is the product order. One can also consider the follow-
ing problem: determine all lattice orderings of the n-cell. It is well
known that the usual order is the only lattice order on the interval.
In this paper the problem is considered for the two-cell. It is shown
that every topological lattice on the two-cell is iseomorphic to a
sublattice of the product lattice I x I. This result together with a
theorem of A. D. Wallace is used to prove that every compact con-
nected lattice in the plane is iseomorphic to a sublattice of / x I.
Finally, an explicit description of the compact connected sublattices
of / x / containing (0, 0) and (1, 1) is given.

1* Lattice orderings of the two-celL Let L be a topological
lattice whose underlying space is homeomorphic to a two-cell. Since
L is compact, L has a unique minimum element 0 and a unique
maximum element 1. It is known [1] that 0 and 1 lie on the boundary
of L and that the boundary arcs T and E determined by 0 and 1
are maximal chains in L and that T and E generate L in the sense
that L ^ T V E — T A E. In this section we prove that L is iseo-
morphic to a sublattice of I x I. The proof requires several lemmas.

LEMMA 1. Let p,qeL. If (p A T) Π T = (q A T) n T, then either
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p A Taq Λ T or q A Tap A T.

Proof. We first assume that p, q e E and that p ^ g. If p — 0,
then peq A T. Suppose p > 0 and that p$ q A T. It is well known
that p V T and q A T are arcs from p to 1 and from q to 0 respec-
tively. Since L is a 2-cell, it must follow that (p V T) n (g Λ Γ) ̂  D.
Let z e ( ί ) V Γ ) Π t o Λ T ) and let

a? - sup {(q AT)Γ)T} = sup {(p A T) Γ) T} .

Then z = p V t for some ί e Γ. If ί <̂  a?, then by the definition of a;,
we would have p V t = p. Hence t > x. But now the inequality
t ^ z ^ q implies that qAt=teqAT which contradicts the choice
of x.

Now let p and q be arbitrary elements of L and choose e, f eE
such that pee A T and q e f A T. This is possible since E A T = L.
If either of p or q is an element of T, then the lemma is trivial.
For suppose pe T. Then

pAT=(pAT)f]T = (qA T)f]T(zq AT .

We may now assume that p, q g T. We contend that (e Λ T) Π ϊ1 =
(p Λ T) Π Γ = (/ Λ T) n Γ = (q A T) n T. TO establish the first
equality, let t e (e A T) Π T. Then since e A T is a chain and
p, t ee A T, either p S t or t ^ p. Suppose p ^ t. Then for some
*! e Γ, p = e Λ ίi = (e Λ ίi) Λ £ = (β Λ ί) Λ *i = ί Λ *i e T, which is a
contradiction. Therefore t ^ p and £ e (p Λ T) Π ϊ7. Now suppose
t e (p A T) Π T. Then t ^ p ^ e implies that t e (e A T) Π T. This
proves the first equality; the last equality is proved similarly. From
the first part of the proof, we conclude that either eATczfAT or
f A Tcze A T. Suppose / Λ T c β Λ T. Then p A T and q A T are
s u b c h a i n s of e A T, so e i t h e r pATaqAT or qATapAT.

For x 6 ϊ7, we define Cx c E by Cx - {A e E\ x = sup {(& Λ T) ΓΊ Γ}}.

LEMMA 2. 27&e sβ£ Cx is closed for all xeT.

Proof. We consider the nontrivial case where Cx Φ D. From
the continuity of Λ it follows that the set {h e E\ x e h A T} is closed.
Let e' = inf {h e E \ x e h A T}; then x e ef A T and e' ̂  e for all e e Cx.
If t e (e' A T) n T and t > x, then for β e Cx, we would have t ^ e' ̂  β
and hence £ e (e Λ ϊ7) Π T contradicting the fact that e G CX. Hence
x = sup {{er A T) n T} and βr e Cx.

Let fcn6C8,n = l,2, •••, and let hn —> fe. Then e' ̂  Λw for each
n and by Lemma 1, we have that e' A Tahn A T for all values of
n and therefore e' AT ah AT. Let x' = sup{(Λ Λ Γ) Π Γ}. Then
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x' Ξ> x since xe(hAT)f]T. We have that ef, x' e hΛ T and so one of the
inequalities x' ^ e', er ^ xf must hold. If x' ^ e', then x' e(e A T) f) T
which implies that xr ^ x and hence x' = x and h eCx. If e' ^ #',
let e' = Λ, Λ ί for ί e T. Then

e' = e ' Λ x' = (h A t) A x' = (h A x') A t = xf A t e T .

This involves a contradiction unless ef = 0. However, if ef = 0, then
x = 0 and AΛ Λ Γ = 0 for all values of n; hence n A T — 0 and A e C*.
This completes the proof of the lemma.

We now define relations Sίf and 3*~ on Γ as follows: for a,beT,

= aee\y T if and only if b e e V T f or all e e £7.

= α 6 e Λ Γ if and only if b e e A T for all e e E.

LEMMA 3. The relations ^f and 5̂ " are closed congruences on T.

Proof. It is easy to see that £%f and 5^ are congruences on T.
We will show that the relation 5^ is closed. A dual argument will
show that £%f is closed.

Let an—>a,bn—+b with aΛ, bne T and an^bn for each w. Assume
that α ̂  6. If h e e A T for e e E, it follows trivially that α G e Λ ϊ7.
Suppose α e e A T for β e E. Let a? = sup {(e A T) Π ϊ7}; then α ̂  a?.
If a < x, then for π sufficiently large, α% < x and hence αΛ e e A T.
Since anψ~bn we must have 6n e e A T for n sufficiently large and
therefore bee A T. This gives a^b.

We now assume that a = a; and let / = sup CO.. This sup exists
since Cx is closed by Lemma 2. If / — 1, then a = 6 — 1. Suppose
/ < 1 and let / m - > / where fmeE,fm>f for m = l ,2 , . . . . Let
^ w - sup {(/m Λ Γ) Π Γ}. Then since fm g Cβ, 2/m > α. Thus for fixed
m, there exists a positive integer Nm such that if n ^ ΛΓm, then
αΛ < l/», or α, efm A T. Therefore bn efm A T for n ^ ΛΓm. We
conclude that b e fm A T for each positive integer m and hence
bef AT. But α = sup{(/Λ T) Π T) and hence b ^ α. Therefore
a = b.

LEMMA 4. Let eeE and let x = sup {(e A T) Π T}, er = swp Cxr

x' z=z %nf Vx where Vx denotes the congruence class modulo 5̂ ~ which
contains x. Then {z | xf ^ z ^ e'} c er A T.

Proof. If ze T, then 2 ̂  & ^ β' implies « = ef A z e ef A T. Suppose
z £ T and let fe E such that zef A T. If / = 0, then z = Oee' A T.
Suppose / > 0 . We have xr ^ z ^ / and therefore xfefAT and
since xf ^ x.xef AT. If te(f A T)nT9 then i e ( M T ) i l T since
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z A TafΛ T and z g T. From the inequality t ^ z ^ e' we conclude
that t e (ef A T) Π T and hence t ^ a?. Hence a? = sup {(/ Λ Γ) Π T}
and by Lemma 1 we have / Λ Γ c e ' Λ T and therefore ^ e e ' Λ T.

LEMMA 5. If e,feE and pe[(fvT)f](eA T)]\T, then {p} =
(/V Γ ) n ( e Λ Γ) .

Proo/. Suppose p' e(f V T) Γ\(e A T). Then either p' ^ p or
p' ^ p and in either case it is easily seen that p' £T since pi T.
Assume that pr ^ p and let α = sup{(e Λ T) Π T}. Then since
p1p'£Tix= sup {(p Λ ϊ7) Π T} = sup {(pf A T) Π Γ}. Since p ' ^ p on
/ V ϊ 1 , we have that p e p ' V Γ so that p = p' V t for some ί e Γ and
since α = sup {(pf A T) Π Γ}, it follows that ί ^ a;. But t <, p <> e
implies that te(e A T) Π ϊ 7 and so £ <Ξ a?. Hence t = x and p =
p' V x = p\

LEMMA 6. Lei X G Γ α^d Zeί a?' = sup Vx. Then Cx, Φ D.

Proof. The set {/&e2£|a;e/fc Λ T) is closed by the continuity of
Λ and is nonempty since x e 1 Λ T. Let e = inί{heE\xeh A T}.
Then xee A T and since x^x' it follows that x' e e A T. Let x" =
sup {(β Λ Γ) ΓΊ JΓ}. Then x" ^ a;'. Suppose h e E and a? e h A T. Then
h ^ β by the definition of e and since x" e e A T it follows that
x" eh A T. On the other hand, if x" e h A T for some h e E, then
xeh A T since x <£ a?". Therefore ^^"x" but since x" ^ a?' and
a;' = sup 5 "̂ a?, we must have a?" = a?'. Hence eeCx,.

We are now prepared to define the iseomorphism from L into
I x I. For peL, define

and
α£(p) = inf {(p V Γ) Π ϊ1} .

Let )?!, ̂ 2, denote the natural maps from T onto Γ/^" = 2\ and
= r 2 respectively. Let ^ = ^ 0 ^ , ^ = ^2°^2 and define

φiL — T.x T2

by

THEOREM 1. If L is a topological lattice which is homeomorphic
to a 2-cell, then L is iseomorphic to a sublattice of I x I.

Proof. We will show that the map defined above is a one-to-one
continuous homomorphism from L into T1x T2. The theorem then
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follows since Tx x T2 is iseomorphic to I x /.
(i) The map φ is continuous. We show φ1 is continuous, A dual

argument shows that φ2 is continuous.
Let xe Tx and let a = sup^f 1 ^). Then Ca Φ D by Lemma 6.

Let β =sup Ca We claim that ^Γx[0, x] = e Λ L. A similar argument
shows that φτx[x, 1] — a' V L where α' = inf η^x). Thus the inverse
under φx of a subbasic closed set is closed in L and hence aγ is
continuous.

Let zee ΛL. Then 6 = sup{(z Λ T) Γ) T} ̂  z <, e and so 6 ̂  α.
Then ^(2) = Tj^a^z)) = η^b) <* ^(α) = x. Hence z e ^Γx[0, a;]. Now let
z e Φϊ^O, x], b = sup 7}Γ\Φi(^))f a n d / =* S U P Cδ. Since ^(2) ̂  x, then
6 ^ α. If 2 e T then z ^ b ^ a ^ e; thus zee A L.

Now suppose that 2 g Γ. From the definition of b we have η^b) —
^i(^i(^)) a n d hence b^aλ(z). Therefore ax(z) S b. Let h e E such that
zeh Λ T. Then since zg T, it was shown in the proof of Lemma 1
that sup {(z A T) Π T} = sup{(λ, Λ Γ) Π 71}. Therefore aL(z) eh A T
and since b^'a^z), we have be(h A T) f] T and hence 6 e (« Λ T) Π Γ.
Then by the definition of α̂ Oδ), we have b ̂  αr ĵs). Thus ax(z) = b,
and (2 Λ T) Π Γ = (/ Λ Γ) Π T. By Lemma 1, z A T c / Λ Γ. Since
δ ^ α, then / ^ β. Hence z ^ f ^ e implies that zee A L.

(ii) 0 is one-to-one. Suppose p,p'eL such that &(2>) = 0<(2>')>
ΐ = 1, 2. We will show that p — pr. We consider three cases.

Case 1. p, p ' e L\JΓ. Then since φ^p) = η^
^i(ί>')ι w e have that ajφ)^ a^p'). Choose e, feE such that pee A T
and pf ef A T. Then from the proof of Lemma 1, it follows that

sup {(e AT)Γ)T} = sup {(p A T) Π T] = a^p),

and

sup {(/ Λ T) Π T) - sup ftp' Λ T) Π Γ} - ^(p') .

But since tfi(j>)5^tfi(#>'), we must have oc^p') e (e A T) f)T and
«i(2>) 6 ( / Λ Γ ) ί i Γ . I t now follows t h a t α^p') ^ at(p) ^ αx(p') and
hence a^p) = ^ ( p ' ) = αr^β) — « i (/) . Hence by Lemma 1, either
f ATae AT or e ATczf A T. Suppose / Λ T a e A T. Then
p, pr e e A T. Using a similar argument and the dual of Lemma 1 we
obtain g eE such that p, pf eg V T. Since p, p 'g Γ, we conclude
from Lemma 5 that p — pf.

Case 2. <p, p ' e T. Assume p ^ p' . If p' = 1, then p ' e l v Γ
and pf<§ίfp implies that p e l V T and so p — 1. Suppose p ' < 1 and
let / = sup {h e E\ p e h V T}. Then / < 1. Let fn —> /, where Λ e 2?
and /Λ > / for all n. Then j> g /Λ V Γ and hence p'$fnV T for all
^ . Therefore if /Λ V p e T, then fnV p> p\ and if fn V P g T then
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P = (fnV p) Ape(fnV p) AT and hence p' e (fn V p) A T since
pJTp' and fnV pϊT. So fn V p ^ p' for all n. Therefore, by the
continuity of V, p = / V p S p'. Then p = p'.

Case 3. p$T,p' eT. Choose e,feE such that

p 6 (β Λ Γ) n (/ V ϊ7) .

Then since p£ T, {p} = (e A T) Π (/ V T) by Lemma 5. Since
Φi(p) — ΦAVΊJ

 w e have sup{(p Λ T) Π T} ^"p' from which follows
p' ep A T f] e A T. Similarly, p' efv T, contradicting Lemma 5.

(iii) φ is a homomorphism. We will show that φ1 is a homomorphism
with respect to V, Similar arguments will show that φ1 is a homo-
morphism with respect to Λ and that Φ2 is a homomorphism with
respect to V and Λ.

Let p,p'eL;x = a,(p) = sup {(p A T) Π T],

^ V Γ)Π T} ,

and

« = aL(p V j>') - sup {((p V p') Λ T) ΓΊ Γ} .

Assume that x ^ x'. Then & V x' = x' and ^(x V &') = ^i(^) V ^(a;') =
^(α') . τ h e n ^i(P) V Φi(P') = Vι(χ) V η^x') = ^i(x'). We will show that
<*i(p V pθ = %{%) = ^(»'), i.e., s ^ ' α ' .

We have that x ' ^ p ' ^ V p\ so .τf e ((p V p') A T) Π Γ and
hence x' ^ 2. If 2 e β Λ T f or β e E', then clearly a?' G β Λ Γ. Now
suppose x' ee A T, e e E. We consider two cases.

Case 1. 2?' £ i?. We may assume that e = inf {A, e E\ xf e h A T).
If p' e T, then p ' ^ i ϋ ' e e Λ T . If p' € T, then choose geE such that
p' e g A T. Then xr ^ pr ^ g implies that xf e g A T and hence e ^ g.

From Lemma 6, e = supCx,. But the proof of Lemma 1 gives

xf = sup {(pf AT)f]T} = sup {(flr Λ T) Π Γ} ,

and therefore g ^ β Hence g = e and p' ^ β.
We will show that p ^ β also. If p e T , then p = x <̂  x' ^ β.

Suppose p ^ Γ and let / = inf {h e £7 j p e A < T}. Then since p g T,
sup {(/ Λ Γ ) Π T} = sup {(p AT) f]T} = x ^x' and hence / ^ β. Then
the inequality p ^ / ^ e gives the desired conclusion.

We now have p' <^ e, p ^ e; hence p V p' ^ e. Since pf ee A T,
the inequality p' tί P V p' ^ e and Lemma 4 gives p V p' e e Λ T.
Hence zee A T. This concludes the proof for Case 1.

Case 2. pr e i?. If p ' ^ p, then p V p' = P implies x = z. But
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t h e n x <̂  x' ^ z implies x' = z and so ^ e e Λ T .

If pf ί p A L then since

x = s u p {(p AT)f]T}^ x' = s u p {{pf A T) Π T} ,

the proof of the continuity of φγ shows that pep' A L. Hence
p\j p' = pr and again we conclude that z = x'. This concludes the
proof that φx is a homomorphism with respect to V, and the proof
of Theorem 1.

2» Compact connected lattices in the plane* In [4] Wallace
proved that a compact connected lattice L which is imbeddable in the
plane is a cyclic chain (in the sense of Why burn {5]) and that each
true cyclic element is a convex sublattice and is homeomorphic to a
2-cell. Thus by Theorem 1, each true cyclic element is iseomorphic
to a sublattice of I x I. Let Δ denote the diagonal thread in I x I.
Label the true cyclic elements of L, {CJΓ=i Denote the 0 and 1 of
d by a,i and 64 respectively. Let T be any maximal chain from 0 to
1 in L, and let h be an iseomorphism from T onto A, the diagonal
in I x I. Then the "square" in I x / with upper right hand vertex
h(bi) and lower left hand vertex h{a^ is a sublattice of I x I which
is iseomorphic to I x I. Hence d may be imbedded in this sublattice
as in Theorem 1. In this manner an iseomorphism of L into I x I
is determined. Thus we have proven:

THEOREM 2. Every compact connected lattice in the plane is
iseomorphic to a sublattice of I x I.

Finally we state an explicit description of the compact connected
sublattices of I x I containing (0, 0) and (1, 1).

THEOREM 3. Let f and g be functions from I into I satisfying
(i ) f,g are nondecreasing, /(0) = 0, g(l) = 1,
(ii) f(x) <L g(x) for all xel,
(iii) / is continuous from the left and g is continuous from the

right.
Then the set L = {(x, y): f(x) < y ^ g(x)} is a compact connected
sublattice of I x I containing (0, 0) and (1, 1). Conversely, if L is
a compact connected sublattice of I x I containing (0, 0) and (1, 1)
then there exist functions f and g satisfying i-iii such that

L = {(x, y): f(x) ^y^ g(x)} .

Proof. The proof is straightforward and will be omitted. The func-
tions / and g alluded to in the second part are defined as follows:
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g(x) = sup {L n ({x} x /)} for x e I

f(x) = inf {L Π ({x} x I)} for x e l .

3* Comments* Edmondson has given an example of a topological
lattice on a 3-cell which is nonmodular; hence this lattice is not a sub-
lattice of I x I x I [2]. This shows that the higher dimensional
analogous of Theorem 1 are false.

This the result of this paper does not hold if the term "lattice"
be replaced by "semilattice" is a consequence of the results of D. R.
Brown, [1], regarding semilattice structures on the two-cell.

Wallace has conjectured that every 2-dimensional compact con-
nected lattice with no cutpoints is a two-cell. A related conjecture is
that every 2-dimensional compact connected lattice can be imbedded in
the plane. If this were true, the words "in the plane" in the state-
ment of Theorem 2 could be replaced by "2-dimensional."

The authors are pleased to acknowledge their indebtedness to
Professor R. J. Koch for his suggestions in the preparation of this
paper.
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