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GOLDIE'S TORSION THEORY
AND

ITS DERIVED FUNCTOR

J. S. ALIN AND S. E. DICKSON

In this paper the global dimension of any complete, well-
powered abelian category with injective envelopes in calculated
relative to the torsion theory of A. W. Goldie and is found to
be always one or zero. The rings R such that the left module
category n^^ has global dimension zero are precisely those
such that every module having zero singular submodule is in-
jective. These rings are characterized as being of the form
!Γ©S (ring direct sum) where T is a ring having essential
singular ideal and S is semi-simple with minimum condition.
The rings with essential singular ideal are precisely those which
are torsion as left modules over themselves.

In a recent paper [3] the right derived functors of a torsion sub-
functor of the identity were calculated for an abelian category £T
sufficiently like the category R^f of left iϋ-modules over a ring R
with unit. This leads to a relativized injective dimension for objects of
the category for every such torsion subfunctor, and hence to a global
dimension for the category which depends on the torsion subfunctor
chosen. The torsion sub-functors arise from torsion theories closed
under subobjects in the sense of Dickson [2, 3]. In this paper we inves-
tigate the global dimension of the category ^ relative to a torsion
theory introduced by Goldie [7] for modules which grew out of con-
siderations of the singular submodule. This torsion theory enjoys the
nice property that the indecomposable injective objects of any sufficiently
tame abelian category <ĝ  are unmixed, that is, are either torsion or
torsion free. This torsion theory also coincides with that considered
by Gentile [6] and Jans [8] for R^£ whenever the singular ideal of
R is zero, and hence coincides with the standard concepts of torsion
and torsion free modules over a commutative integral domain.

1* 5^-torsion objects in an abelian category. Throughout this
paper, <& shall denote an abelian category which is complete, well-
powered, and has for each object A an injective envelope E(A) (see
Freyd [5] for this terminology). These conditions on <& are more
than sufficient to permit discussion of torsion theories in the sense of
[2]. Recall a torsion theory for & is a pair {J7~, ^~) of classes of
objects of ^ satisfying the following axioms:

ί i ) ^ n ^ = {0}
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( ii) T—>A-+0 exact and Γ e y imply Ae
(iii) 0-*A-+F exact and F e ̂  imply A e
(iv) For each l e ^ there is an exact sequence

0—T^X^F^0
with TejT", .Fe j^~'.
The class ^ £ ^ is called a torsion class for ^ if there exists a
class _^~ s i f such that (^", ̂ ) is a torsion theory. Dually, one
defines torsion free class. Torsion classes have been previously called
radical classes in other contexts, but we prefer to use the more sug-
gestive terminology when dealing with abelian categories because of
the many properties the classes ^ and ^ have in common with
the respective classes of torsion and torsion free abelian groups (see
[2] for further analogies and properties of torsion theories). The
application of methods of the theory of radicals to the study of
torsion theories for abelian categories has been fruitful, however,
(see [3] for an account of these methods) and especially so because
in abelian categories "normal subobject of" is transitive.

Let j y g ' g 7 be a class of objects such that A—*X~^0 exact
and A G J / imply Xejzf. Our axioms on i f provide complete sub-
object lattices for each object (see [2], Prop. 1.1) and for any
X e i f we define s/\X) = \J {A g X \ A e J^}. If 7 is a limit ordinal,
define J^r(X) = \Jβ<rS^β(X) and if y - 1 exists, j^r(X) is defined
by the equality s^r{X)Is^r"\X) = J^\XlJ^r~\X)). For any object
X, define s>f{X) to be the first s^fr{X) of this ascending chain such
that j^fr{X) = jy r + 1(X), which exists since ^ is well-powered. The
smallest torsion class ^~ containing j y is then described as J7~ =
j ^ ( ί T ) = {Xe^\j^f(X) = X}. Here we have used a construction
of Amitsur [1] which can be traced back to the Baer construction of
the lower nil radical for rings. By the construction of Kurosch [9]
one sees also that j ^ ( ^ ) is the class of all objects J of ^ such
that each nonzero factor object of X has a nonzero subobject from
the class j ^ . A further result is that if s^f was originally also
closed under subobjects, so is the resulting class j ^ ( ^ ) , as is shown
in [2]. Objects of the class sf{c<^) will be called the jy-torsion
objects of ^.

We now turn to the Goldie torsion theory. Let & be the class
of all factor objects B/A (together with all their isomorphic copies
in ^ ) such that B is an essential extension of the subobject A.
Then <& is clearly closed under subobjects and factor objects. Hence
the torsion class ^ ( ^ ) is closed under subobjects. Further, for any
object A of if, &(A) = &\A). To see this, note first that &(A)
is an essential extension of &\A). For if HQ &(A), then ^(H) =
H and 0 = H f] ^1(A)SHf] &\H) shows &\H) = 0. But then by



GOLDIE'S TORSION THEORY AND ITS DERIVED FUNCTOR 197

a transfinite induction, 5?(H) = 0. Thus we see that &{A)j&\A) e &
or g?(A) = 5f 2(A). If A is a gf-torsion object, then E(A) is gf-
torsion since E(A)/A e & and ^(ί^ 7) is closed under extensions. It
follows that for any injective object Q of <g% Q — &(Q)@F where
F is ^-torsion free and injective. These facts and others are sum-
marized in the following theorem.

THEOREM 1.1 Let S^(^) be the smallest torsion class containing
the class & of factor objects B/A by essential subobjects and their
isomorphic copies in <£*. Then

(a) For any Ae<gf, Sf(A) = gf2(A).
(b) ^(^) is closed under taking factor objects, infinite direct

sums, and extensions.
(c) ^ ( ^ ) is closed under taking subobjects and injective

envelopes provided ^ has injective envelopes.
(d) Any indecomposable injective is either ^-torsion or g?-torsion

free.
(e) The corresponding torsion free class J^ is closed under

taking subobjects, infinite direct products, and extensions.
(f) ^ is closed under injective envelopes provided & has

injective envelopes.
(g) ^ is an idempotent, left exact, additive sub functor of the

identity of i f satisfying gf(A/gf(A)) = 0 for all Aec^.

By property (g) of the functor g^ there is a connected sequence
{Goldn(A)}nZi of right derived functors [10, p. 389] which can be ob-
tained by first taking a resolution of A in injectives, applying <&,
and then taking homology. These were computed for a general left
exact subfunctor of the above type in [3], using an economical resolu-
tion by injective envelopes:

0 _> A ~* E{A) -> E(E\A)) -> E(E\A)) -> . . .

where En+1(A) = E(En(A))/En(A) for n = 0,1, 2, , and#°(,4) = A.
However, since all the injective objects E(En(A)) in this resolution
are ^-torsion for n^l, the sequence remains exact after applying
gf at the spots E(En(A)) for n ^ 2. It follows that Goldπ(A) = 0 for
n ^ 2, and it is easily checked that Gold (A) = %?(E(A)/A)/(5?(E(A)) +
A/A) (where we have now dropped the superscript). This formula is
simplified by the observation that Gold(gf (A)) = 0, so that the short
exact sequence

0 -> 5f (A) — A -> A/&(A) -> 0 yields
0 -> Gold(il) -> Gold(il/2f (A)) -> 0

•exact, with the resulting simplification of the expression for Gold(A)
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in the following result.

THEOREM 1.2. For any short exact sequence

there is a corresponding exact sequence
0 -> gf (A) -> g^(£) — gf (C) — Gold(A) — Gold(B) — Gold(C) -> 0

where Gold(A) = E(A/&(A))/(A/&(A)).

COROLLARY 1.3. The category cέ? has global dimension zero with
respect to the subfunctor *& if and only if each ^-torsion free
object is injective. In this case we say that & has ^-global
dimension zero.

Let _̂ ~ be a torsion class. After Freyd [5] we say that an
object L is ^-absolutely pure, if L is ^"-torsion free and whenever
L^F with F a ^-torsion free object, it follows that F/L is ^~-
torsion free. The next result establishes a link between the right
derived functor of 2^ and the 5f-absolutely pure objects of ^.

PROPOSITION 1.4. The following statements are equivalent for

( i ) L is ^"-absolutely pure
( ii ) L is injective and S^-torsion free
(iii) L is 5^-torsion free and Gold(L) = 0.
We first prove a lemma which is valid for any torsion theory

(^~, ^) for ^ such that ^ is closed under subobjects. In this
situation ^ must be closed under taking injective envelopes [2],

LEMMA 1.5. Let (^~, ^~) be a torsion theory for ^ such that
is closed under subobjects. Then L e J?~ is J7~-absolutely pure

if and only if E(L)/L is ^-torsion free.

Proof. If L is ^-absolutely pure, then L e J?~ so that E{L) e
, hence E(L)/Le^. On the other hand, if L e ^ and E(L)j

Le ^ let LQF for Fe ^ . Then the sequence

0 -> E(L)/L -* E(F)/L -> E(F)/E(L) -> 0

is exact with each and in ^ so that E(F)/L e ^ since ^ is closed
under extensions. Thus F/L e ^ .

The proof of Proposition 1.4 is now immediate.

2* ^-torsion .R-modules* Let R be a ring with unit. In [7]
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Goldie has considered for a left iϋ-module M the submodules

Zλ(M) = {m e M | (0 : m) is an essential left ideal of R)

Z2(M) = {me M\ (Z,(M): m) is an essential left ideal of R).

The module ZX(M) is known as the singular submodule of M. The
connection of Z2(M) with the previous section is expressed in

PROPOSITION 2.1. Let gf be the class of factor modules B/A
such that B is an essential extension of the submodule A, along with
all isomorphic copies of these. Then &\M) — ZX(M) and
5f2(M) = Z2(Λf) for any left i2-module M.

Proof. It suffices to show that ^\M) = Z^M) and it is clear
that ^(Λf) S ^(Λf). Now let H^^(M) where H ^ B/A for A
essential in 5. Then for any x e H, (0 : x) is essential in R so that
xeZt(M). This concludes the proof.

Gentile [6] has shown that for rings R with zero singular ideal,
ZX(M) = M if and only if RomR(M, E(R)) = 0, where E(R) is the
injective envelope of R considered as a left iϋ-module. It follows
that those modules M with Zγ(M) = M form a torsion class when R
has zero singular ideal and hence Zγ{M) = Z2(M) in this case. This
fact has also been pointed out by Goldie [7, Prop. 2.3]. Jans [8] has
investigated the E(R)-torsϊon theory that results for R^/f by taking
for the torsion modules those modules having only the zero homo-
morphism into E(R). In general this torsion does not coincide with
Goldie's torsion. To see this consider the ring S of polynomials in
the indeterminate x over any field F modulo x4. Findlay and Lambek
[4] have noted that the subring R of S generated by 1, x2 and x3

has the i?-module S as an essential extension which is not a rational
extension, i.e., there is an i?-homomorphism / : S —» S such that f(R) —
0 but / Φ 0. This map / can be extended to E(R) by injectivity,
producing a nonzero map g : E(R)/R —> E{R) which shows that E(R)/R
is not torsion in the £r(jR)-theory, but clearly is torsion in the Goldie
theory.

3* Rings having 5^-global dimension zero* We say that the
ring R has ^-global dimension zero if the category R^t does, i.e.,
if the right derived functor of <& vanishes identically on R^fί'. Our
main result in this connection follows:

THEOREM 3.1. The ring R has &-global dimension zero if and
only if R = T φ S (ring direct sum) where T is a ring with essential
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singular ideal and S is semi-simple with minimum condition.

Proof. First assume that each & -torsion free iϋ-module is
injective. Let F be S^7-torsion free and let s(F) be the sum of all
simple submodules of F (s(F) = 0 if none exist). Then s(F) is &-
torsion free, hence injective, so that F = s(F) φ K, say. If K Φ 0
choose x Φ 0 G K. Then Rx has a simple homomorphic image V, but
the kernel of this epimorphism is g"-torsion free, hence injective,
and it splits off, showing that K would have a simple submodule
isomorphic to V. Hence F = s(F). Now all simple submodules which
are gf-torsion free are projective (their order ideals are maximal left
ideals of R which are not essential). Hence the ^"-torsion free
modules are projective and completely reducible, and are closed under
homomorphic images, by the complete reducibility. Hence the cano-
nical exact sequences 0 —+ ̂ (A) —* A —> A/gf (A) —* 0 are all split exact.
In particular we have R = ^(R) φ S, with S completely reducible.
This is a two-sided decomposition, observing that right multiplications
in R are left i?-homomorphisms and that the classes of 5^-torsion
modules as well as the 2^-torsion free modules are each closed under
homomorphic images. Thus S is a semi-simple ring with minimum
condition and T = ^(R) is a subring of R which is S^7-torsion as an
i?-module. To see that T is torsion as a T-module, it suffices to show
that for any essential left ideal L of R, L Π T is an essential left
ideal of T. Let L be an essential left ideal of i?, and H a left ideal
of T with H n (L Π T) = 0. But then i ί n L - O s o i ϊ ^ O a s i ϊ i s
also a left ideal of R. Hence T is torsion as a T-module, and there-
fore has essential singular ideal (see Lemma 3.5 below).

Conversely, assume that R = Γ φ S , where T has essential singu-
lar ideal and S is semi-simple with minimum condition. Then T and
S are two-sided ideals of R, and S is a completely reducible iϋ-module
whereas T is a torsion ϋ?-module, for if L is an essential left ideal
of T then L φ S is an essential left ideal of R. We show first that
a module A is ^"-torsion free if and only if TA = 0. Let 5^(A) =
0 and xeA. Then Tx is ^-torsion, for given teT, (0:tx)QS and
so R/(0 : tx) & Rtx is a left iϋ-homomorphic image of R/S ^ T. Hence
Tx = 0 and so TA = 0. Now assume TA = 0. If 5^(A) φ 0, choose
x Φ Oe gf (A). Since TRx = 0, (0 : α) 2 Γ Hence i2/(0 : x) ^ Rx is a
homomorphic image of S and is therefore isomorphic to a submodule
of S by complete reducibility. But then of course Rx = 0, a con-
tradiction. Hence gf (A) = 0. Now let gf (A) - 0. Then gf (#(A)) -
0, and the above characterization shows &(E(A)/A) = 0 so that ^(A) =
A. We are through by Corollary 1.3.

COROLLARY 3.2. If R has the property that all ^-torsion free
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modules are injective, then all &-torsion free modules are projective.

COROLLARY 3.3. If R has &-global dimension zero, then any
R-module M splits as M ^ %?(M) ® M/S?(M).

COROLLARY 3.4. If R is a {not necessarily commutative) integral
domain, then R has &-global dimension zero if and only if R is a
division ring.

REMARK. If R has 5^-global dimension zero, then the class
of ^-torsion free modules is closed under homomorphic images and
hence is a TTF class in the sense of Jans [8]. Applying Theorem
2.4 of [8], we get that (^~, ^ ) is also a torsion theory and thus if
R has 2^-global dimension zero, an arbitrary infinite product of 2^-
torsion modules is 2^-torsion.

We now consider those rings R which are ^-torsion as left R-
modules.

LEMMA 3.5. Let R be a ring with unit. Then R — Z2(R) if
and only if there exists an essential left ideal L of R with (0 : x)
essential in R for all x e L.

Proof. If R — Rt, then Zγ(R) satisfies the condition.
Conversely, let L satisfy the condition of the lemma. Then L ξΞ=

Z^R) and so ZX{R) is essential in R. Hence (Z^R): x) is essential in
R for all x e R and so Z2(R) = R.

Notation. Let R be a ring with unit and L a left ideal of R.
Denote by Rn the ring of all n x n matrices with entries in R and
by Ln the left ideal of Rn consisting of all matrices with entries in
L.

LEMMA 3.6. // L is essential in R, Ln is essential in Rn.

Proof. Let I be a nonzero left ideal of Rn. Left multiplication
by the matrix units ei5 of Rn yields a nonzero n x n matrix A in I
with top row (rx, r2, , rn) and all other entries zero. There is an
r e R such that rrly ,rrneL and rrk Φ 0 for some k. Thus 0 Φ
renAeIf] Ln and so Ln is essential in Rn.

THEOREM 3.7. // R is ^-torsion as an R-module, then Rn is
&-torsion as an Rn-module.
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Proof. By Lemma 3.5, there is an essential left ideal L of R
with (0 : x) essential in R for all x e L. By Lemma 3.6, Ln is essential
in Rn. Let (aid) e Ln. Then (0: ai5) is essential in R for all i, j and
so ΓΊ it i(0 : ax) = K is essential in R. Now (0 : (ai5)) Ξ2 lfn and iΓ^ is
essential in Rn, by Lemma 3.6, so (0 : (a^)) is essential in Rn. The
theorem now follows by Lemma 3.5.

EXAMPLE 1. Let Z be the ring of integers and peZ prime.
Let R = Z/(p2). The ideal L = (p)/(p2) is essential in R and Lx = 0
for all xeL. Hence by Lemma 3.5, R = 2^(i?). By applying the
previous theorem one gets noncommutative examples of S^7-torsion
rings.

Note also that since Z^R/L) = 0, the class of ^-torsion rings is
not closed under ring homomorphisms. Hence there is no hope that
taking Z2(R) for a ring R would in general produce a radical for rings
(see [1]).

EXAMPLE 2. If R is any quasi-frobenius ring, then R has Sf-
global dimension zero. To see this just note that the projective part
of the left socle of R is injective, hence a summand. The comple-
mentary summand is a ^-torsion ring. It is easily checked that a
ring with minimum condition on left ideals is 5^-torsion if and only
if no simple module is projective.

E. P. Armendariz has kindly pointed out to us that the first half
of the proof of Theorem 3.1 is valid for any torsion theory (J7~, J?~)
when j ^ ~ consists entirely of injectives.
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