PRIME RINGS WITH A ONE-SIDED IDEAL SATISFYING A POLYNOMIAL IDENTITY

L. P. Belluce and S. K. Jain

It is known that the existence of a nonzero commutative one-sided ideal in a prime ring implies that the whole ring is commutative. Since rings satisfying a polynomial identity are natural generalizations of commutative rings the question arises as to what extent the above mentioned result can be extended to include these generalizations. That is, if R is a prime ring and I a nonzero one-sided ideal which satisfies a polynomial identity does R satisfy a polynomial identity?

This paper initiates an investigation of this problem. A counter example, given later, will show that the answer to the above question may be negative, even when R is a simple primitive ring with nonzero socle. The main theorem of this paper is Theorem 3 which states:

Let R be a prime ring having a nonzero right ideal which satisfies a polynomial identity. Then, a necessary and sufficient condition that R satisfy a polynomial identity is that R have zero right singular ideal and \hat{R}, the right quotient ring of R, have at most finitely many orthogonal idempotents.
2. In the following given a ring $R, R^{4}\left({ }^{4} R\right)$ denotes the right (left) singular ideal of R. Thus $R^{4}=\left\{x \mid x \in R, x^{r} \in L^{4}(R)\right\}$ where $L^{4}(R)$ denotes the set of right ideals of R that meet, in a nonzero fashion, all right ideals of R. Similarly for ${ }^{4} R$ and ${ }^{4} L(R)$.

If Q is a ring such that R is a subring of Q and $q R \cap R \neq 0$ for each $q \in Q$ then Q is called a right quotient ring for R. Moreover if $Q=\left\{a b^{-1} \mid a, b \in R, b\right.$ regular $\}$ then Q is called a classical right quotient ring. Following [2] we say that a ring R is right quotient simple if and only if it has a classical right quotient ring Q with $Q \cong D_{n}, D_{n}$ a ring of $n \times n$ matrices over a division ring D.

From [4] we know that if R is a prime ring with $R^{4}=0$ then R has a unique maximal right quotient ring \hat{R} where \hat{R} is a prime regular ring. Moreover, letting $L(R)$ denote the lattice of right ideals of R, there is a mapping $s: A \rightarrow A^{s}$ of $L(R)$ which is a closure operation satisfying $0^{s}=0,(A \cap B)^{s}=A^{s} \cap B^{s}$ and $\left(x^{-1} A\right)^{s}=x^{-1} A^{s}$. The set $L^{s}(R)$ of closed ideals of R can be made into a lattice in a natural way and it is shown in [4] that $L^{s}(R) \cong L^{s}(\hat{R})$ under the mapping $A \rightarrow A \cap R, A \in L^{s}(\hat{R})$. We shall have occasion to use the following realization of \hat{R}. Let $E=U_{\Delta \in L^{4}(R)} \operatorname{Hom}_{R}(A, R)$. On E
define the relation, $\alpha \equiv \beta$ if for some $A \in L^{4}(R), A \subseteq \operatorname{Dom} \alpha \cap \operatorname{Dom} \beta$ and $\alpha(x)=\beta(x)$ for each $x \in A$. It is shown in [5] that \equiv is an equivalence relation and that E / \equiv is a ring and in fact is \hat{R}.

The above remarks apply similarly to a prime ring R for which ${ }^{4} R=0$.
3. In this section occur the basic results of this paper. We will have occasion to use the result of Posner [8] stating that if R is a prime ring with polynomial identity then \hat{R} is a classical twosided quotient ring having the same multilinear identities as R. That part of Posners argument that shows if R has a polynomal identity then so does \hat{R} is a very complicated argument and we take this opportunity to present a simple alternative argument.

Lemma 1. Let R be a prime ring with polynomial identity. Then \hat{R} has a polynomial identity.

Proof. From Posner [8] we know that R has left and right quotient conditions and hence R is right quotient simple, with $\hat{R} \cong D_{n}$. By a theorem of Faith and Utumi [2] R contains an integral domain K with right quotient ring $\hat{K} \cong \hat{D}$. Since K satisfies a polynomial identity we have by Amitsur [1] that \hat{K} also has a polynomial identity. Thus D, and hence D_{n}, is finite dimensional over its center; thus D_{n}, so \hat{R}, has a standard identity.

Lemma 2. Let R be a prime ring with $R^{4}=0$, let $A \in L^{4}(R)$ and let $\alpha \in \operatorname{Hom}_{R}(R, R), R$ considered as a right R-module. If $\alpha(A)=0$ then $\alpha=0$.

Proof. Let $x \in R$; then we have that $x^{-1} A \in L^{4}(R)$. If $r \in x^{-1} A$ then $x r \in A$ and thus $\alpha(x r)=0$. Since α is a right R-endomorphism, $\alpha(x r)=\alpha(x) \cdot r: \quad$ It follows that $\alpha(x) \cdot x^{-1} A=0$, hence $x^{-1} A \subseteq \alpha(x)^{r}$. Thus $\alpha(x)^{r} \in L^{\Delta}(R)$ and so $\alpha(x) \in R^{d}$. Hence $\alpha(x)=0$.

The following lemma is trivial in the case R contains a central element. Without a central element the proof is more involved.

Lemma 3. Let R be a prime ring with a polynomial identity. Then $\operatorname{Hom}_{R}(R, R)$ has a polynomial identity, if $R^{\Delta}=0$.

Proof. From Lemma 1 we know that \hat{R} has a polynomial identity. Consider \hat{R} realized as $U_{A \in L(R)} \operatorname{Hom}_{R}(A, R) / \equiv$. For $\alpha \in \operatorname{Hom}_{R}(R, R)$ let $\bar{\alpha}$ denote the equivalence class in \hat{R} determined by α. The mapping $\alpha \rightarrow \bar{\alpha}$ is a homomorphism of $\operatorname{Hom}_{R}(R, R)$ into \hat{R}. If $\bar{\alpha}=\bar{\beta}$ then for
some $A \in L^{4}(R) \alpha(x)=\beta(x), x \in A$. Thus $(\alpha-\beta)(A)=0$. By Lemma 2 we see that $\alpha=\beta$. Thus $\alpha \rightarrow \bar{\alpha}$ is an injection onto a subring of \hat{R} and so $\operatorname{Hom}_{R}(R, R)$ has a polynomial identity.

The following theorem provides a sufficient condition on the right ideal I having a polynomial identity to ensure the whole ring has a polynomial identity.

Theorem 1. Let R be a prime ring having a right ideal $I \neq 0$, I satisfying a polynomial identity and $I_{l}=0$. Then R satisfies a polynomial identity.

Proof. By assumption I_{l}, the left annihilator of I, is 0 . Hence I is a prime ring itself. Considering I as a left I-module we have by the obvious dual of Lemma 3 that $\operatorname{Hom}_{I}(I, I)$, (the left I-endomorphisms), has a polynomial identity. For $x \in R$ the mapping $x \rightarrow r_{x}$, right multiplication by x, is an anti-isomorphism of R into $\operatorname{Hom}_{I}(I, I)$. Thus R itself satisfies a polynomial identity.

ThEOREM 2. Let R be a right quotient simple ring, $I \neq 0$ a right ideal of R satisfying a polynomial identity. Then R satisfies a polynomial identity.

Proof. From Goldie [3] we have that I contains a uniform right ideal, thus we may assume I is uniform. Since $R^{\Delta}=0$ it follows that $\left\{x \mid x \in I, x^{r} \in L^{\Delta}(R)\right\}=0$, hence from [6] we have that $K=\operatorname{Hom}_{R}(I, I)$ is an integral domain. Moreover it is known ([3]) that $\hat{K} \cong D, D$ a division ring, where $\hat{R} \cong D_{n}$. To complete the proof it suffices to show that D has a polynomial identity; the latter will hold provided K has a polynomial identity. To this end consider the homomorphism $a \rightarrow l_{a}$, left multiplication by a, of I into K. Let J denote the image of this map. $J=0$ implies $I^{2}=0$ which is impossible; hence J is a nonzero subring of K satisfying a polynomial identity. Let $\alpha \in K$ and let $l_{a} \in J$. Let $x \in I$. Then $\alpha l_{\alpha}(x)=\alpha(a x)=\alpha(a) \cdot x=l_{\alpha(a)}(x)$. Thus $\alpha l_{a}=l_{\alpha(a)} \in J$. Hence J is a left ideal of K. Since K is an integral domain we have by an obvious dual to Theorem 1 that K has a polynomial identity.

We now obtain, easily, the following.

Theorem 3. Let R be a prime ring having a nonzero right ideal which satisfies a polynomial identity. Then, a necessary and sufficient condition that \hat{R} satisfy a polynomial identity is that $R^{s}=0$ and \hat{R} have at most a finite number of orthogonal idempotents.

Proof. Necessity is clear. Conversely, then, since \hat{R} is regular with at most finitely many orthogonal idempotents it follows from [7] that \hat{R} has the descending chain condition (d.c.c.) on right ideals. \hat{R} is prime, thus $\hat{R} \cong D_{n}$ for some division ring D. Since $L^{s}(R) \cong L^{s}(\hat{R})$ we see that $L^{s}(R)$ has d.c.c. Thus from [4] we see that \hat{R} is a classical right quotient ring, hence Theorem 2 applies.

The following example (communicated orally to S. K. Jain by A. S. Amitsur) shows that the extension of an identity from a right ideal to the entire ring is not always possible. Let F be a field and let F_{∞} be the ring of all infinite matrices of finite rank. Let $a=\left(A_{i j}\right)$ be a matrix such that $a_{11} \neq 0$ and $a_{i j}=0$ for $i, j \neq 1$. Let $I=a F_{\infty}$. Then I satisfies the identity $(x y-y x)^{2}=0$ but F_{∞} satisfies no identity at all.
4. Remarks. In the case that R is primitive with a right ideal $I \neq 0$ having a polynomial identity then it is sufficient to assume that R has at most a finite number of orthogonal idempotents to ensure that R also have a polynomial identity.

There are other conditions one may impose upon R and I besides those given here, e.g. if R has at most finitely many orthogonal idempotents and I is a maximal right ideal or if $R^{4}=0$ and $I \in L^{4}(R)$.

References

1. S. A. Amitsur, On rings with identities, J. London Math. Soc. 30 (1955), 464-470. 2. C. Faith and Y. Utumi, On Noetherian prime rings, Trans, Amer. Math. Soc. 114 (1965), 53-60.
2. A. W. Goldie, The structure of prime rings under ascending chain conditions, Proc. London Math. Soc. 8 (1958), 589-608.
3. R. E. Johnson, Quotient rings of rings with zero singular ideal, Pacific J. Math. 11 (1961), 1385-1392.
4. The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-89.
5. R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260-268.
6. I. Kaplansky, Topological representations of algebras. II, Trans. Amer. Math. Soc. 68 (1950), 62-75.
7. E. Posner, Prime rings satisfying a polynomial identity, Proc. Amer. Math. Soc. 11 (1960), 180-183.

Received October 9, 1964, and in revised form July 1965.
The second author was partially supported by NSF-Grant No. GP-1447.
University of California Riverside

