PRIME RINGS WITH A ONE-SIDED IDEAL SATISFYING A POLYNOMIAL IDENTITY

L. P. BELLUCE AND S. K. JAIN

It is known that the existence of a nonzero commutative one-sided ideal in a prime ring implies that the whole ring is commutative. Since rings satisfying a polynomial identity are natural generalizations of commutative rings the question arises as to what extent the above mentioned result can be extended to include these generalizations. That is, if R is a prime ring and I a nonzero one-sided ideal which satisfies a polynomial identity does R satisfy a polynomial identity?

This paper initiates an investigation of this problem. A counter example, given later, will show that the answer to the above question may be negative, even when R is a simple primitive ring with nonzero socle. The main theorem of this paper is Theorem 3 which states:

Let R be a prime ring having a nonzero right ideal which satisfies a polynomial identity. Then, a necessary and sufficient condition that R satisfy a polynomial identity is that R have zero right singular ideal and \hat{R} , the right quotient ring of R, have at most finitely many orthogonal idempotents.

2. In the following given a ring R, $R^4({}^4R)$ denotes the right (left) singular ideal of R. Thus $R^4 = \{x \mid x \in R, x^r \in L^4(R)\}$ where $L^4(R)$ denotes the set of right ideals of R that meet, in a nonzero fashion, all right ideals of R. Similarly for 4R and ${}^4L(R)$.

If Q is a ring such that R is a subring of Q and $qR \cap R \neq 0$ for each $q \in Q$ then Q is called a right quotient ring for R. Moreover if $Q = \{ab^{-1} \mid a, b \in R, b \text{ regular}\}$ then Q is called a classical right quotient ring. Following [2] we say that a ring R is right quotient simple if and only if it has a classical right quotient ring Q with $Q \cong D_n, D_n$ a ring of $n \times n$ matrices over a division ring D.

From [4] we know that if R is a prime ring with $R^d = 0$ then R has a unique maximal right quotient ring \hat{R} where \hat{R} is a prime regular ring. Moreover, letting L(R) denote the lattice of right ideals of R, there is a mapping $s: A \to A^s$ of L(R) which is a closure operation satisfying $0^s = 0$, $(A \cap B)^s = A^s \cap B^s$ and $(x^{-1}A)^s = x^{-1}A^s$. The set $L^s(R)$ of closed ideals of R can be made into a lattice in a natural way and it is shown in [4] that $L^s(R) \cong L^s(\hat{R})$ under the mapping $A \to A \cap R$, $A \in L^s(\hat{R})$. We shall have occasion to use the following realization of \hat{R} . Let $E = \bigcup_{A \in L^d(R)} \operatorname{Hom}_{\mathbb{R}}(A, R)$. On E

define the relation, $\alpha \equiv \beta$ if for some $A \in L^{4}(R)$, $A \subseteq \text{Dom } \alpha \cap \text{Dom } \beta$ and $\alpha(x) = \beta(x)$ for each $x \in A$. It is shown in [5] that \equiv is an equivalence relation and that E/\equiv is a ring and in fact is \hat{R} .

The above remarks apply similarly to a prime ring R for which ${}^{4}R = 0$.

3. In this section occur the basic results of this paper. We will have occasion to use the result of Posner [8] stating that if R is a prime ring with polynomial identity then \hat{R} is a classical twosided quotient ring having the same multilinear identities as R. That part of Posners argument that shows if R has a polynomial identity then so does \hat{R} is a very complicated argument and we take this opportunity to present a simple alternative argument.

LEMMA 1. Let R be a prime ring with polynomial identity. Then \hat{R} has a polynomial identity.

Proof. From Posner [8] we know that R has left and right quotient conditions and hence R is right quotient simple, with $\hat{R} \cong D_n$. By a theorem of Faith and Utumi [2] R contains an integral domain K with right quotient ring $\hat{K} \cong \hat{D}$. Since K satisfies a polynomial identity we have by Amitsur [1] that \hat{K} also has a polynomial identity. Thus D, and hence D_n , is finite dimensional over its center; thus D_n , so \hat{R} , has a standard identity.

LEMMA 2. Let R be a prime ring with $R^4 = 0$, let $A \in L^4(R)$ and let $\alpha \in \operatorname{Hom}_{\mathbb{R}}(R, R)$, R considered as a right R-module. If $\alpha(A) = 0$ then $\alpha = 0$.

Proof. Let $x \in R$; then we have that $x^{-1} A \in L^4(R)$. If $r \in x^{-1} A$ then $xr \in A$ and thus $\alpha(xr) = 0$. Since α is a right *R*-endomorphism, $\alpha(xr) = \alpha(x) \cdot r$: It follows that $\alpha(x) \cdot x^{-1} A = 0$, hence $x^{-1} A \subseteq \alpha(x)^r$. Thus $\alpha(x)^r \in L^4(R)$ and so $\alpha(x) \in R^4$. Hence $\alpha(x) = 0$.

The following lemma is trivial in the case R contains a central element. Without a central element the proof is more involved.

LEMMA 3. Let R be a prime ring with a polynomial identity. Then $\operatorname{Hom}_{R}(R, R)$ has a polynomial identity, if $R^{4} = 0$.

Proof. From Lemma 1 we know that \hat{R} has a polynomial identity. Consider \hat{R} realized as $\bigcup_{A \in L(R)} \operatorname{Hom}_{\mathbb{R}}(A, R) = .$ For $\alpha \in \operatorname{Hom}_{\mathbb{R}}(R, R)$ let $\overline{\alpha}$ denote the equivalence class in \hat{R} determined by α . The mapping $\alpha \to \overline{\alpha}$ is a homomorphism of $\operatorname{Hom}_{\mathbb{R}}(R, R)$ into \hat{R} . If $\overline{\alpha} = \overline{\beta}$ then for

422

some $A \in L^{4}(R)$ $\alpha(x) = \beta(x)$, $x \in A$. Thus $(\alpha - \beta)(A) = 0$. By Lemma 2 we see that $\alpha = \beta$. Thus $\alpha \to \overline{\alpha}$ is an injection onto a subring of \widehat{R} and so $\operatorname{Hom}_{R}(R, R)$ has a polynomial identity.

The following theorem provides a sufficient condition on the right ideal I having a polynomial identity to ensure the whole ring has a polynomial identity.

THEOREM 1. Let R be a prime ring having a right ideal $I \neq 0$, I satisfying a polynomial identity and $I_l = 0$. Then R satisfies a polynomial identity.

Proof. By assumption I_i , the left annihilator of I, is 0. Hence I is a prime ring itself. Considering I as a left I-module we have by the obvious dual of Lemma 3 that $\operatorname{Hom}_I(I, I)$, (the left I-endomorphisms), has a polynomial identity. For $x \in R$ the mapping $x \to r_x$, right multiplication by x, is an anti-isomorphism of R into $\operatorname{Hom}_I(I, I)$. Thus R itself satisfies a polynomial identity.

THEOREM 2. Let R be a right quotient simple ring, $I \neq 0$ a right ideal of R satisfying a polynomial identity. Then R satisfies a polynomial identity.

Proof. From Goldie [3] we have that I contains a uniform right ideal, thus we may assume I is uniform. Since $R^4 = 0$ it follows that $\{x \mid x \in I, x^r \in L^4(R)\} = 0$, hence from [6] we have that $K = \operatorname{Hom}_R(I, I)$ is an integral domain. Moreover it is known ([3]) that $\hat{K} \cong D, D$ a division ring, where $\hat{R} \cong D_n$. To complete the proof it suffices to show that D has a polynomial identity; the latter will hold provided K has a polynomial identity. To this end consider the homomorphism $a \to l_a$, left multiplication by a, of I into K. Let J denote the image of this map. J = 0 implies $I^2 = 0$ which is impossible; hence J is a nonzero subring of K satisfying a polynomial identity. Let $\alpha \in K$ and let $l_a \in J$. Let $x \in I$. Then $\alpha l_\alpha(x) = \alpha(ax) = \alpha(a) \cdot x = l_{\alpha(a)}(x)$. Thus $\alpha l_a = l_{\alpha(a)} \in J$. Hence J is a left ideal of K. Since K is an integral domain we have by an obvious dual to Theorem 1 that K has a polynomial identity.

We now obtain, easily, the following.

THEOREM 3. Let R be a prime ring having a nonzero right ideal which satisfies a polynomial identity. Then, a necessary and sufficient condition that \hat{R} satisfy a polynomial identity is that $R^4 = 0$ and \hat{R} have at most a finite number of orthogonal idempotents. *Proof.* Necessity is clear. Conversely, then, since \hat{R} is regular with at most finitely many orthogonal idempotents it follows from [7] that \hat{R} has the descending chain condition (d.c.c.) on right ideals. \hat{R} is prime, thus $\hat{R} \cong D_n$ for some division ring D. Since $L^*(R) \cong L^*(\hat{R})$ we see that $L^*(R)$ has d.c.c. Thus from [4] we see that \hat{R} is a classical right quotient ring, hence Theorem 2 applies.

The following example (communicated orally to S. K. Jain by A. S. Amitsur) shows that the extension of an identity from a right ideal to the entire ring is not always possible. Let F be a field and let F_{∞} be the ring of all infinite matrices of finite rank. Let $a = (A_{ij})$ be a matrix such that $a_{11} \neq 0$ and $a_{ij} = 0$ for $i, j \neq 1$. Let $I = aF_{\infty}$. Then I satisfies the identity $(xy - yx)^2 = 0$ but F_{∞} satisfies no identity at all.

4. REMARKS. In the case that R is primitive with a right ideal $I \neq 0$ having a polynomial identity then it is sufficient to assume that R has at most a finite number of orthogonal idempotents to ensure that R also have a polynomial identity.

There are other conditions one may impose upon R and I besides those given here, e.g. if R has at most finitely many orthogonal idempotents and I is a maximal right ideal or if $R^4 = 0$ and $I \in L^4(R)$.

References

S. A. Amitsur, On rings with identities, J. London Math. Soc. 30 (1955), 464-470.
C. Faith and Y. Utumi, On Noetherian prime rings, Trans, Amer. Math. Soc. 114 (1965), 53-60.

3. A. W. Goldie, The structure of prime rings under ascending chain conditions, Proc. London Math. Soc. 8 (1958), 589-608.

4. R. E. Johnson, Quotient rings of rings with zero singular ideal, Pacific J. Math. 11 (1961), 1385-1392.

5. ____, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-89.

6. R. E. Johnson and E. T. Wong, *Quasi-injective modules and irreducible rings*, J. London Math. Soc. **36** (1961), 260-268.

7. I. Kaplansky, Topological representations of algebras. II, Trans. Amer. Math. Soc. **68** (1950), 62-75.

8. E. Posner, Prime rings satisfying a polynomial identity, Proc. Amer. Math. Soc. 11 (1960), 180-183.

Received October 9, 1964, and in revised form July 1965. The second author was partially supported by NSF-Grant No. GP-1447.

UNIVERSITY OF CALIFORNIA RIVERSIDE