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ISOMETRIC MULTIPLIERS

S. K. PARROTT

Let G be a locally compact group with right Haar measure.
A left multiplier on LV{G) is a bounded operator which com-
mutes with all the operators induced by left translations.
The main theorem of this paper states that every isometric
left multiplier on LP(G) for l^p<<χ>,pΦ2, is a scalar
multiple of an operator induced by a right translation.

Wendel proved this for p — 1 and used it to show that if L\GX)
and Lι(G2) are isomorphic as Banach algebras under convolution, then
(?! and G2 are isomorphic as topological groups. In § 5 we obtain
some extensions of this result to ZΛ An interesting byproduct is a
theorem which states that an operator which is simultaneously a
contraction on Lp and unitary on U (of a finite measure space) is
actually an isometry on ZΛ

Curiously, the proofs given below do not rely in any crucial way
on the fact that the measure spaces LP(G) are defined with respect
to Haar measure, and consequently the results are valid for a much
larger class of measures. In § 4 this fact is used to obtain examples
of operators on Lp which commute with no isometries (save scalar
multiples of the identity).

An enlightening example is provided by taking G to be the group
of complex numbers of modulus one. It is not difficult to show that
a multiplier on LP(G) sends a function Σ»=-~ an%n into Σ»=-~ cnanz

n,
where {cn} is a fixed sequence. If the multiplier is to be an isometry,
each en must have modulus one, and if p — 2, this condition is also
sufficient. For p Φ 2, oo, the main theorem states that the multiplier
is an isometry if and only if it is a scalar multiple of an operator
induced by a rotation of the circle, which means there are constants
ί>, d of modulus one such that cn = d-bn for all n.

2* Preliminaries. Throughout, G denotes a locally compact
topological group with the group operation written multiplicatively.
Elements of G are indicated by g,h,x,y, •••, and Roman capitals
F, G, H, , usually denote functions. The only Lp spaces considered
are those with 1 <̂  p < co, and usually p refers to a number in this
range different from 2. The Lp spaces may be either real or complex,
and all operators are assumed to be bounded. The characteristic
function of the set Δ is called χJm

The left and right translation operators Lg and Rg are defined by
(LgF)(x) = F(gx) and (RgF)(x) = F{xg). We shall also denote the left
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translate LgF of Fby Fg.
The fact that the theorems to be presented are valid even if

LP(G) is defined with respect to a measure other than Haar measure
indicates that these results are more measure-theoretic than algebraic
in nature. (In fact, if μ is not Haar measure, LP(G) is not even an
algebra because convolution is not associative.) Essentially, they are
consequences of the fact that there are relatively few isometries on
Lp of a measure space for p Φ 2.

This observation is probably more interesting than the particular
generalizations thus obtained, so to avoid complications we shall
restrict our attention to a smaller subclass of measures on G than is
strictly necessary. Specifically, we assume that the spaces LP(G) are
defined with respect to a measure μ of the form du = pdv, where v
is right Haar measure and p is a positive function which is both
bounded above and bounded away from zero. This hypothesis will
not be stated separately in each theorem, and various properties of
μ which follow from the corresponding properties of Haar measure
will be used without comment.

We shall require an interesting theorem of Banach [1, Chapter
11], later refined and extended by Lamperti [5], which goes as follows.
Let (X, μ) and (Y, v) be measure spaces and M an isometry from
LP(X, μ) into LP(Y, v), p Φ 2. Then M is of the form SφU, where,
roughly, Sφ is multiplication by a function and U is induced by a
"measurable transformation." More precisely, φ is a function on Y
whose restriction to any sigma-finite measurable set is measurable,
and Sφ is defined by SΨ(F) = φ F. The (possibly unbounded) operator
U is induced by a nonsingular isomorphism of the Boolean algebra of
sigma-finite measurable sets in (X, μ) into the Boolean algebra of
sigma-finite measurable sets in (Y, v) (see [2], [5] for details). The
pertinent facts about U are that it sends characteristic functions
into characteristic functions, preserves point wise multiplication of L°°
functions (U(F-G) = (UF)-(UG)), and is an isometry of L°°(X, μ) into
L°°(Y, v). Usually, U is induced by a point transformation τ from
Y onto X: (UF)(y) = F(τy). (The statement of the theorem in [4]
includes the hypothesis that {X, μ) and (Y, v) be sigma-finite, but
the extension to the situations to be encountered below is immediate.)

It is now easy to describe why every isometric multiplier is a
scalar multiple of a right translation. For simplicity, assume that
φ(x) is never 0 and U is induced by a point transformation r. Forget
for the moment that measurable functions and transformations are
only defined modulo sets of measure 0. Then the relation SΨgLgU =
LgSφU = SΨULg suggests that φ(gx)F(τ(gx)) = φ(x)F(g τx) for all x, g
in G and F in Lp. Consideration of this for characteristic functions
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F suggests that φ(gx) = φ(x) for all x, g (hence φ is constant), and
τ commutes with left translations (hence τ is right translation by
τ(e), where e is the group identity). To make this rigorous, we shall
transform "almost everywhere" considerations into pointwise ones via
a standard result in the theory of commutative Banach algebras.
This approach was suggested by Alessandro Figa-Talamanca.

3* Isometric multipliers*

THEOREM 1. Every left multiplier (not necessarily isometric) on
LP(G1 μ), 1 fj p < c>oy p φ 2, of the form SφU is a scalar multiple of
a right translation Rg. In particular, every isometric left multiplier
is a scalar multiple of a right translation.

Before proving this, we state a few simple lemmas. Lemmas 1
and 2 merely insure that measure-theoretic pathology cannot arise
in the cases under consideration, and Lemma 3 is unnecessary if
SφU is assumed to map Lp onto Lp. Thus the casual reader may
profitably skip directly to the proof of Theorem 1.

LEMMA 1. Let φ be a function on G such that for each sίgma-
finite set E,

(1) The restriction φ\E of φ to E is measurable.
( 2 ) φ\E — φg\ E almost everywhere for each g eG.

Then the restriction of φ to any sigma-finite set is constant almost
everywhere, and the operator S9 is a scalar multiple of the identity.

Proof. For M > 0, let φM(X) = φ(x) or 0 according as | <p(x) \ ̂  M
or I φ(x) I > M. Then φM also satisfies (1) and (2). Let {Va} be a
basis of compact neighborhoods of the identity in G, and let Ia be
the characteristic function of Va divided by μ(Va). Then, as is
well-known,

\im(φM*Ia)(x) = lim \φM(^y''1)Ia(y)dμ(y)
a a J

exists for each x, and if ΨM denotes the limit function, ΨM agrees
with φM almost everywhere on each sigma-finite set. But ΨM is
clearly identically constant, since ΨM(x) = ΨM{gx) for all x, g eG, and
hence φM and φ are constant almost everywhere on each sigma-finite
set.

LEMMA 2. Let φ be a function in L°°(G) such that given ε > 0,
there is a neighborhood V of the identity such that for all g e V,
II φ — ψg IU < ε Then φ coincides almost everywhere with some left
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uniformly continuous function Ψ.

Proof. Again, set Ψ(x) = lima(φ*Ia)(x).

LEMMA 3. Let M be a nonzero multiplier on LP(G), and let Δ
be a set of positive measure. Then there is an F in Lp such that
the intersection of Δ and the support of MF is nonzero. In parti-
cular, if M = Sφ U, the restriction of φ to any sigma-finite set is
nonzero almost everywhere.

Proof. If FeLp, then LgFeLp, and M(LgF) = Lg{MF). The
support of Lg(MF) is g*1 times the support of MF. If the support
of MF has positive measure, then there is a g e G such that g~ι

times the support of MF intersects Δ in a set of positive measure
[4, p. 260, Th. E].

Proof of Theorem 1. We have Sφ{ULg) = LgSφU = SΨg(LgU). If
Δ is a set with 0 < μ{Δ) < oo, then χΔ e Lp, and φ-(ULgχΔ) = φg-(LgUχΔ).

Because both (ULg)χΔ and (LgU)χΔ are characteristic functions
and φ is nonzero a.e. (Lemma 3), they are characteristic functions
of the same set, say Δr. Thus for each g in G, φ — φg almost every-
where on each set of the form Δ' with χΔ, = (ULg)χΔ = U{χg-ι.Δ),
0 < μ(Δ) < cχ3. The class of sets Δ with 0 ̂  μ(Δ) < co is mapped
onto itself by left translation, so φ — φg almost everywhere on each
set of the form Δf with χd, = UχΔi 0 < μ(Δ) < oo. Given geG, if A
is a measurable set such that φ(x) Φ φ{gx) for x in Λ, then A is
disjoint from all sets of the form Δf above, and hence A is disjoint
from the support of every UF and S9UF with FeLp. Lemma 3
implies that A has measure 0, and Lemma 1 shows that Sφ is a
scalar multiple of the identity.

Let F be a continuous function with compact support Δ. Then
F is left uniformly continuous, and the relation || UF — (UF)g\\oo =
\\UF - Ϊ/CFJIU = \\F - F J U together with Lemma 2 show that
UF coincides almost everywhere with a unique left uniformly con-
tinuous function which we shall call UF. Further, UF has compact
support because F Fg — 0 for all g not in the compact set Δ- Δ~ι and
thus (UF) (UF)g = U(F-Fg) = 0 for all g^Δ Δ-1. (The support of
UF is contained in Δ Δ~ι x, where x is any point in the support of
UF.)

The Banach algebra C0(G) consisting of all continuous functions
on G vanishing at infinity (with the supremum norm) is generated
by the set of continuous functions with compact support, and the
preceding remarks show that U is an isometric isomorphism of C0(G)
into itself which commutes with translations. It is known that each
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homomorphism of C0(G) into the complex numbers is of the form Φg,
where Ψg(F) = F(g) [6, p. 123]. Therefore if e is the group identity,
the homomorphism ¥eoϋ is Ψh for some heG. For each FeC0(G),
F(h) = Ψh{F) = (¥eo U)(F) = (UF)(e). And, for any g e G,

(UF)(g) = (LgUF)(e) = (ULgF)(e) = (LβF)(h) =

Therefore, U = Rh and also U = Rh because C0(G) is dense in LP(G).

4* A class of operators which commute with no isometries*

Theorem 1 states that every isometry on LP(G, μ), p Φ 2, which
commutes with all left translations is a scalar multiple of a right
translation. Of course, if μ is not right Haar measure, not all right
translations, will be isometries. If μ is a measure such that no right
translation Rg with g Φ e is an isometry, then no isometries except
scalar multiples of the identity commute with all left translations.
Thus if μ is of this type and Lg is a left translation whose powers
are dense in the weak operator topology in the set of all left transla-
tions, Lg commutes with no nontrivial isometry.

It is easy to construct such situations. For instance, let G be
the group of complex numbers of modulus one with a measure μ
defined by dμ = φdv, where v is Lebesque measure and φ(z) = 1 or
2 according as z is on the upper or lower half circle. Clearly, no
nontrivial translation is an isometry on LP(G, μ). If c is not a root
of unity, the powers of the operator generated by the translation
z —> c z are easily shown to be dense in the group of translation
operators, and hence this operator commutes with no nontrivial
isometry on LP(G, μ), p Φ 2.

5* Isomorphisms of convolution algebras*

THEOREM 2. Let GL and G2 be locally compact groups with
respective measures μu μ2 as described in § 2. Let T be an isometry
of LP(G19 μd onto LP(G2, μ2), 1 <; p < o o , p ^ 2 , such that T(F*G) =
TF*TG whenever F*GeLp(G1), and T~\F*G) = (ϊ7~1ί1)*(T"1G)
whenever F*Ge LP(G2). Then there is a bicontinuous isomorphism
T of G2 onto Glβ Further, if μ1 and μ2 are right Haar measures,
there is a character λ on G2 and a positive constant c such that
(TF)(g) = cX(g)F(τg) for all geG2.

This theorem was proved for p — 1 and Haar measures μu μ2 by
Wendel [7]. A later paper [9l gave a simpler proof and extended
the theorem to the case in which T is only assumed to be norm-
decreasing. The solution of the isometric multiplier problem for p ^ 1
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(Theorem 1) enables us to easily adapt Wendel's later proof to
establish Theorem 2. Only a sketch of the proof will be given here,
and the reader may consult [9] for details.

Sketch of proof of Theorem 2. Let vγ and v2 be right Haar
measures for G1 and G2 respectively, and suppose dμλ = pYdvu dμ2 —
p2dv2. Easy computations show that for any F, Ge LP(GU μj,
Lg(F*G) = (LgF)*G and Ra(F*G) = F*(SRgG), where S(F) ^(R.pJpJ-F.
Further for any geG1 and F,Ge LP(G2, μ2),

{TRgT-ι){F*G) = F*{TSRgT~ιG) .

Thus, it is apparent that TRgT~ι is a left multiplier on LP(G2, μ2).
If T = SφU as described in §1, TRgT^ = Sψ{URgU-% where Ψ =
φ-iURgU^iφ"1)). Now URgU'1 is an operator induced by a Boolean
set map, so by Theorem 1, TRgT~ι is a scalar multiple of the operator
induced by a right translation on LP(G2). Define a map τ from G2 onto
G1 and a function λ on G2 by TRτgT~ι = X(g)R9. The proof that τ is
a bicontinuous isomorphism from G2 onto G1 and the rest is now
identical to that in [9].

Wendel established Theorem 2 under the weaker hypothesis that
11 T11 ^ 1 by first proving that any convolution-preserving contraction
of Lι{Gx) onto L\G2) is automatically an isometry. The author does
not know if this is true in general for Lp, p Φ 2, but a more modest
result can be obtained quite simply. First we make the following
observation, which is perhaps of interest in its own right. The Lp

norm of a function F is denoted by \\F\\P.

THEOREM 3. Let (X, μ) and (Y, v) be measurable spaces with
μ(X) = μ(Y) < °°, and let 1 ^ p < q ^ c>o# Suppose T is an isometry
of LP(X, μ) into LP(Y, v) such that for each F in Lq(X, μ), \\TF\\q^
\\F\\q. Then T is an isometry of Lr(X, μ) into Lr(Y, v) for all r,
1 <ς r ^ oo. In fact, T is of the form SφU described in §2, with
U induced by a measure-preserving transformation and \φ\ = 1.

Proof. We assume the measure spaces are normalized so that
μ(X) — v(Y) = 1. A simple application of Holder's inequality shows
that for all FeLp, \\F\\P ^ \\F\\q, and equality occurs if and only if
F has constant modulus one. For,

S /f \PIQ /Γ \Q-PIQ

If F has modulus one, \\F\\P = | | jP | | f f , and by hypothesis

TFII < I I F I I — \\ F\\ — II TF1
-L J- \\q = | | -*• \\g — | | -L U p — | | -̂  J- \
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Hence || TF\\q = \\ TF\\P and TF has constant modulus one. If Δ is
any set, and | c | = 1, | χΔ + cχx_Δ \ = 1 a.e. and | TχΔ + cTχx_Δ | = 1 a.e.
This can happen for all | c | = 1 only if TχΔ and Tχx_Δ have disjoint
supports.

Let e be the function constantly one, and let U = Sf^ Γ. The
new operator U satisfies the hypotheses because | T(e) | = 1. Now
UχΔ + Uχx_Δ = Ue — e, and UχΔ and t/χx_j have disjoint supports, so
UχΔ is a characteristic function. Hence if F = Σ ^Zz^ is a simple
function with ^ pairwise disjoint, then for all r >̂ 1,

UχFi= Σ

Thus U is an isometry on all the spaces Lr(X, μ).
The last statement of the theorem follows from a result of

Lamperti [4] which states that an operator which is an isometry on
17 for two distinct values of r must be of the form given above.
This may also be deduced from the observation that the set map τ
defined by UχΔ = χτ{Δ) is Boolean.

Lamperti's theorem holds even if μ(X) = μ(Y) = °°, while
Theorem 3 does not. Theorem 3 may therefore be regarded as a
partial generalization of Lamperti's result. Robert Strichartz has
pointed out that the hypothesis μ(X) = μ(Y) in Theorem 3 is essential.
For, take X = [0, 1], Y — [0, 2], and μ, v Lebesque measures. Let
(Tf)(x) = (l/2)/((l/2)x). Then T is an isometry on L\X, μ), but
! I fjl I I Q l — pip

il i \\p — Δ

COROLLARY. Let μ(X) = v(Y) < co and 1 ^ p, q <̂  °°,p Φ q.

Suppose T is an isometry of LV(X, μ) onto LP(Y, v) such that for all
F in Lq(X, μ), \\ TF\\q ̂  || F\\q. Then T is an isometry of each space
Lr(X, μ) onto Lr(Y, ι>), 1 ^ r ^ co.

Proof. For p > q this is Theorem 3. For p > q, apply Theorem
3 to I7*, which is an isometry on Lpf and a contraction on Lq\ where
Lv> and Lqt are the conjugate spaces of Lv and Lq respectively (so
V' < q').

THEOREM 4. If Gι and G2 are compact Abelian groups, and
Lp(G1)y LP(G2) are defined with respect to Haar measures, then
Theorem 2 is valid when the hypothesis that T be an isometry is
replaced by the hypothesis that \\ T \\ ^ 1.

Proof. We show that a convolution-preserving contraction of
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LP(G,) onto Z/(G2), p Φ 2, M, is automatically an isometry.
It is well known that any convolution-preserving operator must

send characters onto characters. (For a quick proof, note that 7 is a
character if and only if 7 * 7 = 7 and 7 * F is a scalar multiple of 7 for
every FeLp.) Since the characters on a group form an orthonormal
basis for U of the group, T is an isometry from L2(G) onto L2(G2),
and the corollary applies.

REMARKS 1. The analogues of Theorems 1 and 2 for L2 are false.
The falsity of Theorem 1 in this context is apparent from the example
given in § 1. And, Gaudry [3] has shown that there is a convolution-
preserving isometry from U of the unit circle onto U of the torus
{(z, w) I I z I = i w I — 1}, but these groups are certainly not topologically
isomorphic.

2. Since this paper was submitted, [7] has appeared in which
Theorems 1 and 2 are proved in slightly less generality.

3. The analogue of Theorem 2 for compact groups (with Haar
measures) and p — co may be found in [3] and [7].

I wish to thank Alessandro Figa-Talamanca for many interesting
conversations and helpful suggestions. Thanks also go to G. Gaudry,
R. Strichartz, and the referee for suggestions which materially improved
the presentation.
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