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ON THE ESSENTIAL SPECTRUM OF SCHROEDINGER
OPERATORS WITH SINGULAR POTENTIALS

JAMES S. HOWL AND

In this paper, we show that under certain conditions the
self-adjoint Schroediner operator — Δn + V(x) on L2(Rn), n^l,
has essential spectrum [0, oo). The theorems improve previous
results by permitting V(x) to be more singular locally. The
proof employs a factorization V(x) = A{x)B(x) of the potential.

The essential spectrum of a self-adjoint operator is defined to
consist of all points of the spectrum which are not isolated eigenvalues
of finite multiplicity. Let V(x) be a real-valued function on the n-
dimensional Euclidian space Rn, and Δn the ^-dimensional Laplacian.
In a recent paper [6], Rejto gives conditions on V such that the op-
erator T = - Δ n + V(x) is self-adjoint with domain &r(T) = &{Δn)
and has essential spectrum [0, oo). His method consits essentially in
proving compactness of the operator VRQ(z), where RQ(z) — ( — Δn — z)~\
The condition &(V)^2&(Δn), which accounts for the equality of the
domains of T and Δn, is essential to this method, and corresponds very
roughly to local square-integrability of V(x).

Recent papers of Kato [3] and Kuroda [5] on the continuous
spectrum and of Konno and Kuroda [4] on the discrete spectrum
employ a method according to which one factors the potential into
V(x) = A(x)B(x) and considers the operator ARQ(z)B. In this theory,
the operator T is defined by first defining its resolvent, and there is
no guarantee that the domains of T and Δn are equal. This is rather
an advantage, since it removes the requirement of local square-integra-
bility. For example, Kato [3, §6] shows that if, for n = 3, the norm
of V in I#3/2(β3) is sufficiently small, then T is unitarily equivalent to
-Δ3.

In the present paper, we shall apply the factorization technique
to the problem of invariance of the essential spectrum, extending
Rejto's results to include potentials which are locally more singular.
In particular, we remove certain seemingly artificial restrictions of
[6] in the case of low (n ^ 3) dimensions. For n = 3, our results
will apply to V(x) — \x\~~a for any a < 2.

For n ;Ξ> 3, the definition and semi-boundedness of T are treated
in §1, and the essential spectrum in §2. §3 is devoted to the proofs
of the essential estimates for n ^ 3. The special cases n = 1, 2 are
discussed in §4.

For references to other work on essential spectra, we refer to the
extensive bibliography of [6].
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1* Definition and semi-boundedness* In order to define precise-
ly the Schroedinger operator — Δn + V(x), we shall use the following
theorem of Kato [3], as formulated by Konno and Kuroda [4]. &(T),
σ(T) and p(T) denote respectively the domain, spectrum and resolvent
set of the operator T.

LEMMA 1.1 (Kato). Let To be a self-adjoint operator on a separa-
ble Hilbert space Sίf, and R0(z) — (To — z)-1 its resolvent. Let A and
B be closed, densely defined operators on Sίf such that

( ) ( ) Π

and

(Ax, By) = (Bx, Ay)

for all x, y in &(A) (Ί &(B). Suppose that for some z in
p(TQ), the operator AR0(z)B has a bounded extension to <S%f such that
max{\\ARo(z)B\\y\\ARo(z)B\\}<l.

Then AR0(z)B has a bounded extension for every z in p(TQ) and
there exists a self-adjoint extension T of To + B*A such that if
zep(T0) and 7 + AR0(z)B has a bounded inverse, then zep(T) and

(1.1) R(z) = R0(z) - [BR0(z)]*(I +AR,(z)B)~ιAR,(z) .

where R(z) = ( T - z)-\

The operator To = — An is self-adjoint on £ίf = L2(Rn) and has
purely continuous spectrum σ(T0) = [0, oo). If n ^ 3, then for z in
p(T0) the resolvent R0(z) = —(Δn + z)~ι is convolution by a function

gn(x,k) = \x\2~nFn(k\x\)

where k2 = z, Im k ̂  0. Fn(z) can be expressed in terms of a Hankel
function [7, p. 79, formula (13.7.2)] and satisfies the following inequali-
ty for Im z ^ 0

I Fn(z) I ̂  CJX + I z r~3 ) / 2) exp ( - I m z)

where Cn depends only on n. In particular, if k = 2iηy η > 0, then

(1.2) \Fn(k\x\)\^Cne-^^

where C'n = C%max{(l + t{n-3)l2)e~tl2: 0 ̂  t < oo}.
Let B(x, 8) be the closed ball with center x and radius o. For

any measurable function g on Rn, we define for 1 <J p < oo and 0 < S <̂  1

GG \l/P
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and Ip,Xΰ) = IPΛ9> 1)> a notation that differs from that of [6] in the
sign of v. Observe that Ip>u(g, δ) is increasing in v and δ and that if
p < q and pqa = (n — v)p — (n — v — ε)q > 0, then by Holder's ine-
quality

Ip,*+.(g, S) £ Cδ%,v{g, δ)

where C depends on n, p and q.

THEOREM 1. Let V(x) be a real-valued, measurable function on
Rn, n ^ 3. Assume that there exists a p, 1 < p < oo such that either

(a) IPi2,ΛV) < + oo for some v> n - p

ar

(b) IPiz,AV) <+ oo for v = n - p and

(1.3) lim ( \x -y \p~n \ V(y) \pl2dy = 0 .
| | J j B ( δ )

Then there exists a self-adjoint extension T of —Δn-\- V(x) which
is bounded below.

Proof. Let A and B be the multiplication operators defined by the
functions A(x) = \ V(x) |1/2 and B(x) = \ V(x)\112 sgn V(x). If fc = 2iy,
V ^ Vo > 0, then by (3.3) the operator BR0(k2) is bounded, which im-
plies that &(B) = ^r(A)S&(T0). Furthermore, by (3.2),

\\ARQ(k2)B\\ £

where ap = p + v — n, bp = n(p — 2) and C depends on n, v, p and
η0. Note that b > 0, while α > 0 in case (a) and α = 0 in case (b).
Choose a fixed δ sufficiently small that the first term on the right is
less than unity. (In case (b), where a = 0, IPnlU(Vf δ) —> 0 as δ—> 0 + .
This can be proved by using (1.3) to restrict consideration to a bound-
ed set, where absolute continuity yields the result.) Then for all
sufficiently large η, we have

\\ARQ(V)B\\<1

so that the theorem follows from Lemma 1.1.

REMARKS (1) In the special case v — 0, we obtain p > n in con-
dition (a), so that if V is a function of r = | x \ only, the result ap-
plies to singularities at the origin of order r~a for a < 2. If w(r) is
a spherically symmetric L2(i?%)-eigenfunction of T with eigenvalue λ,
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then v = r[n~1)l2u is an ^(iϊj-solution of the ordinary differential equa-
tion

(1.4) -v" + [V(r) + cjr2]v = Xv

where cn = (n — l)(n - 3)/4. However, [2, Vol. 2, pp. 1462-9, esp.
Th. XIII. 7.40] if

lim sup r2 V(r) < — cn — 1/4
r->0

it follows that (1.4) has a point spectrum which is unbounded below.
Thus if V(r) has a singularity at the origin of order r~a, a >̂ 2, there
may be no lower semibounded extension of — Δn + V. Theorem 1
therefore seems near the " b e s t " with regard to the local behavior
of V.

(2) Note that if v < 0, then

( I g(y) I dy ̂  (Q/d)~λ \χo-y\-»\ g ( y ) | dy
jB(x,o/Z) JB(xo,δ)

whenever | x — xQ \ = δ/2. Hence, negative values of v add noting to
Theorem 1, and one might as well assume that v ^ 0. A similar
remark holds for Theorem 2 of the next section.

2. The essential spectrum* The essential spectrum oe{T) of a
self-ad joint operator T is defined to consist of those points of σ(T)
which are not isolated eigenvalues of finite multiplicity. Two self-
adjoint operators T and To are resolvent congruent if and only if
R0(z) — R(z) is compact for some z in p(T) Π p(T0). It is well-known
that if T and To are resolvent congruent, then σe(T) = σe(T0). We
refer to [6] for references.

LEMMA 2.1. Let T and To be as in Lemma 1.1 and assume that
ARQ(z)B and [BR0(z)]*AR0(z) are compact for some z in p(T) Π p(T0).
Then T and To are resolvent congruent, and hence oe{T) = σe{TQ).

The proof is immediate from (1.1) and the identity

(I + K)~ι = I- K(I+ Ky1 with K = ARQ(z)B .

THEOREM 2. Let V(x) be a real-valued measurable function on
Rn, n ;> 3, for which there exist p and v, 2 < p < co and v > n — p,
such that

(2.1) ( \x-y\-*\V(y)\*l2dy
jB(x,l)

is bounded on Rn and vanishes as \x\ tends to infinity. If T is the
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extension of —Jn+ V defined in Theorem 1, then oe(T) — [0, oo).

Proof. Define A and B as in the proof of Theorem 1. We shall
first prove that AR0(k2)B is compact for k — 2iη, η > 0. Let S denote
the image under AR0(k2)B of the unit ball of L2(Rn). We shall show
that S is pre-compact. For every / = ARQ(k2)Bu, \\u\\ <£ 1 in S, we
have, by Lemma 3.2,

(2.2)

where C is independent of / in S, and χ denotes the characteristic
function. Since IPtU(A, x) vanishes at infinity, the right side of (2.2)
vanishes as N tends to infinity. It therefore suffices by Rellieh's
Theorem [2, Vol. 1, Th. IV. 8.21] to prove that S is equicontinuous
in Z/2-norm.

For an arbitrary /, let fk(x) = f(x — h) and write RQ(k2)n = g*u,
where * denotes convolution. Then for every / = AR0Bu in S, we
have

(2.3) | |Λ ~ / l l ^ \\A(gh - g)(Bu)*\\ + \\(Ah - A)gh*(Bu\\ .

Let φ(x, h) = e~vlx+hι -e~ηlxK Then for each fixed x, φ(x, h) vanishes
as h tends to zero and does not exceed 1 + ev in absolute value for
\h\^l. In order to estimate \\A(gh — g)*(Bu)\\, one repeats the
arguments of Lemma 3.2 (with, say, δ = 1), carrying along a factor
I φ(x — y, h) |. We obtain as a result that for || u \\ ̂  1 and | h \ g 1,
I1 A(gh — g) * (Bu) \ \ does not exceed

c(\ \x\~β\ φ(x, h) \adx)lla + c[ e~^ \ φ(x, h) \ dx
\Jβ(*,l) / jRn

where C is independent of u and h, β = (n — 2 — v)a + v and α = p/(p — 2).
As h tends to zero, these terms vanish.

Choose μ and q such that 2 < q < p and n — q < μ < v. Then
since /^(A, x) is increasing in both subscripts, Ig,μ(A, x) is also bound-
ed and vanishes at infinity. Moreover, we claim that Iq>μ(Ah — A)
vanishes as h tends to zero. For since Iq>μ(A, x) vanishes at infinity,
we may assume that A has compact support K. In this case A is in
Lp(Rn), since

|| A | | , :S C(K)IP,O(A) ^ C(K)IP,V(A)

where C{K) is the number of balls of unit radius necessary to cover
K + B(0, 1). Hence by (3.4),

Iq,μ{Ah - A) £ CIUAh -A)^C\\Ah-A\\p
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which vanishes as h tends zero. We now observe that by Lemma 3.2,

|| (Ah - A)g*(Bu) \\ ^ CIq,μ{Aκ - A)

where C is independent of / in S. Hence S is equicontinuous in L2-
norm and AR0(k2)B is compact.

If we now remark that AR0(k2) is compact by the results of [6,
§2], then Theorem 2 follows from Lemma 2.1. Alternatively, Lemma
4.26 and the above procedure can be used to obtain a proof of the
compactness of R0(k2)A and hence of its adjoint AR0(k2). The proof
is simpler, since the second part of the argument—that involving
(Ah — A)—does not occur. This method also yields a proof of Theorem
2.1 of [6] which avoids approximation by smoothed resolvent kernels.

REMARK In Theorem 2, it suffices to assume that for some p, v,
2 < p < oo and v > n — p the function (2.1) is bounded on Rn and
that for some μ > 0

limm \ I V(q) \μdy = 0 .

This assumption is similar to that of [6].
For the proof, assume without loss of generality, that 0 < 2μ <p,

and let 0 ̂  s, t ^ 1, s + t = 1. Writing p'/2 = (p'/2 - μs) + μs, we
obtain by Holder's inequality

B{x)
x-v I-1" I V(y) IpΊ2dy ^ (\ \ V(y)

where p' = tp + μs < p and i/ = tv < v. By choosing s sufficiently
small, the inequality vf > n — p' can be made to hold, so that the
hypotheses of Theorem 2 are satisfied for p' and v\

3. The basic estimates for n ^ 3. The quantities Ip,,(g, d) and
IpΛd) have been defined in §1.

LEMMA 3.1. If 0 <ηo<^η and n^l, then

sup ( e-*'*-*11 f(y) \ dy ^ C(v, η*)Iu*{f) .

Proof. For a fixed x, we have

(3.1) ί e-*-«\f(y)\dy£±e-*»(N+iy\ \x - y \-> \ f(y) \ dy

where A(x, N) is the " annulus " B(x, N + 1) ~ B(x, N). If B(ξ, 1)
is a ball of unit radius with center ξ in A(N, x) then for N ^ 1
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\x-y\-"\f{y)\dy^\ \ξ - y\-*\f(y)\dy £ IUJJ).

Since A(x, N) can be covered by OiN71"1) such balls, the right side of
(3.1) does not exceed

where the sum is bounded uniformly for rj ̂  η > 0.

LEMMA 3.2. Let A(x) and B(x) be measurable on Rn1 n ^3,
k = 2iη, η ̂  η0 > 0 and 0 < δ < 1.

(a) If 2 < p < oo and p + v ^ n, then

(3.2) || AR0(k2)B || ^ C[IPΛA δ)IPtU(Bf δ)d« + IPM)IpΛBW'%ψh]

where ap = 2(p + v — n), pb = ̂ (2? — 2) αtiώ C depends on n, v, p
and Ύ]Q.

(b) If 2^p < 00 αtiώ y + 239 ̂  ^

(3.3) II ββo(fc2) II - II Rύ{¥)B \\ £

where rp — 2p + v — n, and C depends on n, vy p and Ύ]Q.

Before proceeding with the proof, we remark for reference the

elementary inequality

(3.4)

where * denotes convolution and H H,, is the norm of Lp(Rn).

Proof. For part (a), let ueL2(Rn). Then by (1.2)

(3.5) I RQ(k2)Bu(x) \^c\ \ x - y \2~n \ B(y)u(y) \ dy
jB(x,δ)

+ δ2A e-**-« \B(y)u(y)\dy

where C depends only n and ηQ.

Let 2 ̂  p < 00 and p~ι + q*1 — 1. Using Holder's inequality with

respect to the measure \x — y\~vdy, we find that the first term of

(3.5) does not exceed

\x-y\-"\u(y)\<dv)

where a = (n - 2 - v)q + v. Multiply (3.6) by A(x). The L2-norm
of the resulting function is, except for a factor IP,»(B, δ), the L2/(Γnorm
of
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f{x) = I A(x) \
B(Xyδ

y | - α I u(y) \"dy .

Let v e Lffg = L2li2_q) and form the inner product (v,f). Interchanging
the order of integration and applying Holder's inequality with respect
to the measure \x — y \~udx, we obtain

(v, f) I ^ [IPtU(A, u

where

g(x)
B[χ,δ

~β v(x) \σdx

(q/p) = 1 and β = (n - 2 - v)σq + v

But

while || fir ||2 ^ CS%- 31| vσ ||2 = C?i-'31| v ||2

σ

/(2-g), provided that /3 ̂  n. (If
n > β, This follows from (3.4), while if n — β, one uses Sobolev's
inequality [1, p. 220, part (c)].) Combining all these estimates yields
the first term on the right side of (3.2), provided we note that β ^ n
if and only if p + v ^ n and that a = (n — β)/σq.

If we apply Holder's inequality with respect to the measure
e~~ηlx~yldy, we find that the integral in the second term of (3.5) does
not exceed

(3.7) \ B(y) \pdy u(y) \qdy
i/g

By Lemma 3.1, the first factor does not exceed C(ηQ, v)Iv,v(B). If the
second factor is multiplied by A(x), we find as above that it suffices
to estimate

v(x) I A(x) \q\ e~v]x~y] I u(y) \qdy dx
Rn J Rn

where v e L*ίq. Interchange the order of integration and use Holder's
inequality with respect to the measure e~vlx~yldx. The resulting ex-
pression is easily estimated using (3.4), and we find that the L2-norm
of the product of A(x) with the second factor of (3.7) does not exceed
CIp,,χA)η~b, where we note that b — n/σq. This yields the second
term of (3.2).
For part (b), return to (3.5). In the first term, observe that since
\u\q is in L2ίq, Holder's inequality implies that the L2-norm of the
second factor of (3.6) does not exceed
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σn-a)ίq\\u\\2

for a < n. For a = n, the same is true by Sobolev's inequality [1,
p. 220, part (c)]. In the second term, estimate the second factor of
(3.7) by (3.4) and the first factor by Lemma 3.1. Combining these
results yields (3.3), if we observe that (n — a)/q = r, so that a <̂  n
if and only if v + 2p ^ n.

4* The cases n = 1 and n = 2. The cases of lowest dimension
must be considered separately because of the different form of gn(x, k).
For n — 2, we have

where | H0

{1)(it) | does not exceed t-ιe~ι for t > 0, nor log 111 for 0 < t ^ 1.
Let 0 < δ <̂  1 ^ η, and use the first estimate for g2(x, irj) for η\x\ ^ δ
and the second for Ύ] \ x \ ^ δ. One then obtains estimates like those
of §3, except that the use of Sobolev's Theorem in Lemma 3.2 is not
justified, due to the presence of a logarithmic factor. This results in
the failure of the proof of Theorem l(b) for n = 2. Theorems l(a) and
2 hold for n = 2.

If n = 1, we have

Since there is no singularity at x = 0, only the second of the terms
estimated in the proof of Lemma 3.2 appears, and the estimates are
greatly simplified. As a result, Theorems 1 and 2 hold for n — 1,
without the hypothesis p + v > 1; Ϊ; mα /̂ 6β completely arbitrary.
The case w = 1 has been studied extensively by the special techniques
of ordinary differential equations; see [2, Chapter XIII.].
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